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Chapter 1

Introduction

Artificial intelligence (AI) depends on data. In sensitive domains – such as health-
care, security, finance, and many more – there is therefore a tension between
unleashing the power of AI and maintaining the confidentiality and security of
the relevant data. This tension must be resolved for AI to reach its full potential in
service of humanity.

Privacy-preserving techniques can enable AI while guaranteeing privacy. In this
book we cover techniques, specifically secure multi-party computation (MPC) and
homomorphic encryption (HE), that provide complexity theoretic security guar-
antees even with a single data point. These techniques have traditionally been too
slow for real-world usage, and the challenge is heightened with the large sizes of
today’s state-of-the-art neural networks, including large language models (LLMs).
We note that we do not in this book cover techniques like differential privacy that
only concern statistical anonymization of data points.

The recent advances in AI were largely spurred by general purpose GPU
(GPGPU) computing and innovation in distributed computing technologies. For-
tunately, these same acceleration technologies can be brought to bear to accelerate
secure MPC and HE too.

This book explains how advances in these three areas—AI, privacy-preserving
techniques, and acceleration—allow us to achieve the dream of high performance
privacy-preserving AI. It also discusses applications enabled by this emerging
interplay.

1
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2 Introduction

The book begins with an overview of homomorphic encryption and secure
MPC, explaining details of both at the level needed to understand the later dis-
cussion of acceleration, the challenges, and where the techniques should be uti-
lized. The next part presents methods for acceleration, starting with hardware and
proceeding to algorithmic specifics. We then proceed to a discussion of particular
healthcare, drug discovery, and consumer applications enabled by the accelerated
privacy preserving AI techniques presented. Lastly, we present methods for scaling
to large numbers of untrusted participants with the use of additional cryptographic
tools, notably blockchains and zero knowledge proofs.



Part I

Privacy Preserving
Techniques
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Chapter 2

Homomorphic Encryption

Homomorphic encryption (HE) is one technique that enables privacy-preserving
computation. Operations (or circuit evaluations) are performed directly on homo-
morphically encrypted data. The result can then be decrypted. Since its intro-
duction 46 years ago, homomorphic encryption has evolved significantly with a
plethora of schemes to choose from, each with their own advantages and disadvan-
tages. Following the invention of fully homomorphic encryption (FHE) in 2009,
there has been a revolution in the field. FHE theoretically allows for evaluation
of arbitrary circuits of unbounded depth. HE can be used with a variety of mod-
els, ranging from simple support vector machines (SVMs) and random forests to
computationally expensive deep neural networks.

2.1 Introduction

This chapter introduces HE techniques and how they are used in privacy-preserving
applications and especially in AI.

HE was first described by Rivest et al. [1] with four schemes: one for addition
and subtraction; one for multiplication and test for equality (RSA [2]); and two for
sum, difference, and products. Since then, there has been much work on developing
systems that are feasible for real-world applications, including AI.

4
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FHE allows evaluation of arbitrary circuits consisting of multiple types of gates
(addition, subtraction, multiplication etc.) without needing decryption. The sem-
inal paper by Gentry [3] introduced the first viable construction of FHE. Prior
to that, there were other schemes that were close to achieving FHE, but they had
key limitations. Partially Homomorphic Encryption schemes support evaluation of
circuits of only one type of gate. Somewhat Homomorphic Encryption schemes can
evaluate certain circuits with some types of gates (generally addition and multiplica-
tion). Leveled Fully Homomorphic Encryption schemes can evaluate arbitrary circuits
of predetermined depth L, and support multiple gates types. Finally, Fully Homo-
morphic Encryption schemes support evaluation of circuits of unbounded depth,
and also support multiple gate types. All of these schemes are discussed in more
detail in Section 2.5. Since the Gentry’s pioneering FHE work, several other FHE
schemes have been introduced 2.6.

Currently, there are HE libraries written in several languages, including Rust, C,
and C++, and there are bindings for many more. Most of the schemes described in
these libraries are too slow for practical use in AI. The schemes that leverage accel-
erators to achieve speedup are described in Chapter 4. Applications of accelerated
HE in AI are discussed in Chapter 5.

HE can be used either standalone or with other techniques like multi-party com-
putation (MPC). Chapter 3 discusses some MPC schemes that use HE for circuit
evaluation on encrypted data. Finally, Section 2.7 describes work on standardiza-
tion of HE. As HE becomes mainstream, standardization is necessary to ensure
that the schemes are secure and that the users adopting the schemes do so without
introducing vulnerabilities.

2.2 Motivation

Homomorphic encryption is a cryptographic technique where computation can
be performed on encrypted data. This is useful when computations have to be
performed on secret data which cannot be revealed to anyone except the owner of
the data. Hospitals, research laboratories, defense organizations, etc., are in posses-
sion of highly sensitive data but they want to derive meaning and patterns from
the data with tools such as AI. It would be dangerous to send this private data to
outside data centers hosting AI services due to the risks associated with transfer.
Similarly, personal data about each individual in the form of government or tax
records, or data generated from personal devices such as phones and wearables, are
also private; we do not wish them to be exposed to outside parties for either train-
ing or inference. On the other hand, AI companies in possession of private models
that are expensive to train might not want to reveal the weights and other details of
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Figure 2.1. Homomorphic encryption.

their models. Hosting these models in plaintext in data centers or as a service APIs
can be dangerous, as these can potentially be exploited to reveal the weights. HE
solves all these problems as the secret data can stay encrypted and computation can
be performed on the encrypted secret itself.

HE is often used in client-server scenarios, as illustrated in Figure 2.1. The client
is in possession of encryption/decryption keys and also has secret data x. The client
encrypts x to get encrypted data [[x]]. The encrypted data is sent to the server, which
homomorphically computes a function [[y]] = f ([[x]]) without learning anything
about x. The result [[y]] is sent back to the client, which decrypts it. Nothing about
x or y is leaked in this process.

2.3 Hardness Assumptions

We list commonly used post-quantum hardness assumptions used in building HE
schemes here. These assumptions are based on lattice cryptography as the follow-
ing lattice-based problems cannot be solved easily either by classical or quantum
computers.

Definition:

Let Rm be the m dimensional real Euclidean space. Let b1, b2, . . ., bn be a set of
linearly independent vectors in Rm.

A lattice L in Rm is the set of all integer linear combinations of such vectors.

L =

{
n∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z for i = 1, 2, . . . , n

}
.

Figure 2.2a illustrates a 2D lattice with basis vectors b1 and b2. The points are
in a Euclidean space and one can arrive at each point in that space by just using the
basis vectors.
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Figure 2.2. Figure 2.2a illustrates an example of a 2D lattice with basis vectors b1 and

b2. Figure 2.2b illustrates the closest vector problem. The problem is about finding a

combination of the basis vectors that will lead to a lattice point that is closest to the red

dot x.

Shortest Vector Problem and Closest Vector Problem:

Given a basis for the lattice and corresponding norm in a vector space, the shortest
vector problem is about finding the shortest non-zero vector measured by the norm.
It is equivalent to finding the closest non-zero vector to the origin. This problem is
known to be average-case NP-hard to solve.

The closest vector problem is similar to shortest vector problem, except that it is
about finding the vector that is closest to a specific point on the lattice. Figure 2.2b
illustrates this.

Learning With Errors (LWE/RLWE)

Introduced by Regev et al. [4], LWE is about finding the secret s of N dimensions in
the linear equation A = B.s + ϵ, where A, and B are (N + 1)-dimensional vectors,
and ϵ is the added error/noise. Without ϵ, s can be found in polynomial time, but
with the added noise, this problem is proved to be worst-case NP-hard. RLWE
(Ring LWE) extends the same concept to polynomial rings over a finite field.

2.4 Terminology

Here we define some commonly encountered terms from the HE literature.

Circuit

In cryptography, computation in some schemes is represented by Boolean circuits,
and in some by arithmetic circuits. Boolean circuits can be represented as directed
acyclic graphs where graph nodes are Boolean gates and graph edges indicate the
flow of computation. Arithmetic circuits have similar structure and can perform
computation with numbers from various algebraic structures, like field. They are
commonly used to compute polynomials.
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Bootstrapping

Bootstrapping is a process that refreshes the ciphertext in an FHE scheme by homo-
morphically decrypting the ciphertext. Note that the secret key is not used here to
decrypt the ciphertext. Instead, a homomorphically encrypted secret key is used
which is called the bootstrapping key to homomorphically decrypt the ciphertext.

Single Instruction, Multiple Data (SIMD)

SIMD is a parallel computing paradigm where a single computer instruction is
executed on multiple elements of data at the same time. This is used to leverage
data-level parallelism which shows up in operations, such as matrix multiplication.
For example, in naive matrix multiplication, regardless of the size of the matrix, the
operations are the same. Hence, as the size of the matrix increases, we can leverage
SIMD operations to achieve more parallelism to gain speedup. SIMD is discussed
in detail in 4.2.1.1.

Quantization

Quantization is a technique to reduce the precision of data types so as to reduce
the memory footprint and speed up the computation. This is normally used for
training and inference of neural networks in machines with low memory and low
computational power. However, this can be applied to homomorphic evaluation of
neural networks to reduce the high memory and compute requirements of homo-
morphic operations.

Residue Number System (RNS)

Homomorphic encryption schemes often use large integers which are not easily rep-
resented in computer data types. Operations like multiply need double wide types
which makes the situation even worse. RNS allows us to decompose the large inte-
gers into smaller integers so that the computation can take place in native computer
data types.

Number Theoretic Transform (NTT)

NTT is a generalized method for performing discrete Fourier transform (DFT)
over finite fields. This often comes up in HE as NTT can be used for efficient
multiplications of polynomials with integer coefficients.

2.5 Non-FHE Schemes

Even though there are many FHE schemes, it is still useful to know preceding
schemes because they tend to be more efficient in terms of evaluation time or in
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ciphertext size and can be used in other privacy-preserving techniques such as MPC
more effectively.

2.5.1 Partially Homomorphic Encryption (PHE)

PHE schemes allow evaluation of circuits with additive or multiplicative gates,
depending on the scheme. Even though it appears overly limiting, PHE allows
evaluation of unbounded circuit depth and is generally faster than SHE, LFHE,
and FHE.

One of the most popular PHE schemes is Paillier [5], which is frequently used
in privacy-preserving AI. Paillier has recently been used in Popcorn [6] to perform
oblivious inference on an ImageNet [7] model, and by Ma et al. to perform a 3-party
(client, data server, verification server) privacy-preserving face verification where
the face features are encrypted with Paillier algorithm and verification is performed
using Hamming distance [8] and oblivious transfer [9] 3.2.1 between client and
verification server [10].

2.5.2 Somewhat Homomorphic Encryption (SHE)

SHE schemes allow evaluation of a subset of circuit types with multiple types of
gates over arbitrary depth. Circuit types and gate types vary depending on the
scheme.

2.5.3 Leveled Fully Homomorphic Encryption (LFHE)

LFHE schemes allow evaluation of arbitrary circuits with multiple types of gates of
predetermined depth L. The depth depends on the parameters picked. Many FHE
schemes have LFHE (and SHE) variants, as they are more efficient for the reasons
discussed in the next section.

Recently, Lou et al., used Leveled Fast Homomorphic Encryption over Torus
(LTFHE), which is a leveled variant of TFHE (Section 2.6.2) to achieve state-
of-the-art inference accuracy on MNIST [11] and CIFAR [12] datasets at greatly
reduced latency compared to previous work [13]. They implemented ResNet-18
[14], Alexnet [15], and ShuffleNet [16] for ImageNet [7], LSTM [17] for Penn
Treebank [18], and ResNet-18 for CIFAR-10. No previous LFHE-enabled models
could perform neural network inference of an entire ImageNet network. This is
also the first LFHE-enabled model for evaluating LSTM.

2.6 FHE

FHE schemes allow evaluation of arbitrary circuits with multiple types of gates of
unbounded depth. This is made possible through a process called bootstrapping.
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In a (leveled) homomorphic encryption scheme, encrypting the plaintext, fol-
lowed by operations such as addition and multiplication on it, results in growth of
an error that becomes quite large over time. Decrypting a ciphertext with a large
error results in inaccurate results and that is what prevents such a scheme from
having unlimited depth. One way to completely zero out the error is to decrypt
the ciphertext resulting in the plaintext. But this can introduce security vulnera-
bilities and can also be inefficient in a client-server environment where the client
wants the server to perform some computation homomorphically on the ciphertext.
Bootstrapping allows us to refresh the ciphertext by homomorphically decrypting
the ciphertext.

Although a revolutionary concept, bootstrapping is known to be incredibly
resource heavy. Since Gentry’s seminal paper [3] introduced this bootstrapping pro-
cedure, many efficient FHE schemes have been introduced. We discuss the most
popular modern FHE schemes and highlight their recent usage in AI.

2.6.1 CKKS

Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN),
which is also known as CKKS (author’s last names) [19, 20], is a fourth-generation
FHE scheme based on RLWE that can perform FHE on approximate arithmetic.
This means that certain amounts of error during encryption, evaluation, and
decryption are tolerated while still being able to decrypt the ciphertext. This is
achieved by a method called rescaling that the authors introduce in the paper.
CKKS also introduces a packing strategy to allow multiple messages in a single
ciphertext, making it readily available for SIMD parallelism.

In CKKS, a message m consisting of n double-type complex numbers (as it sup-
ports packing) is first encoded as a polynomial t of degree < (N − 1) with N
integer coefficients. Then the polynomial is placed in a polynomial ring.

R = Z[X ]/(X N
+ 1) (2.1)

The coefficients of this polynomial is in q. The polynomial t is then multiplied
with a scaling factor 1 to convert it to an integer. Ciphertext c is obtained from this
plaintext polynomial by adding it to the public key pk and some random errors e.
The modulus of c starts with logQ and as we perform multiplication, it decreases by
logp which is the rescaling factor. Multiplications can be performed L times, which
is the number of levels or multiplicative depth after which a bootstrapping should
be performed to refresh the ciphertext [21]. The parameters listed in Table 2.1
determine the security level λ of the scheme which can be calculated from equa-
tion 2.2. Security levels of HE schemes are described in 2.7.1. Note that the integers
represented by the polynomials are usually too big to be represented on computers
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Table 2.1. CKKS parameters.

Parameters Description

1 Scaling factor

p Rescaling factor

L Multiplicative depth

Q Maximum ciphertext modulus

q Ciphertext modulus

N Number of polynomial (of degree N − 1) coefficients

n Number of messages in ciphertext, a.k.a. slots

P Product of primes

with small word sizes (typically 64-bit). Hence, RNS is incorporated to represent
the big integer as a product of integers that are pairwise coprime [22].

N ≥
λ + 110

7.2
log(P · qL) (2.2)

HEAAN has been used in many AI applications, including in PrivFT [23], where
a GPU implementation of HEAAN was used to provide both inference as a service,
and training as a service for text classification tasks such as sentiment analysis, spam
detection and topic classification. Lee et al. use the RNS-variant of CKKS [22]
with bootstrapping to implement the standard ResNet-20 model [14] for secure
inference [24]. HEAAN has also been used to privatize BERT embeddings [25].

2.6.2 Fast Fully Homomorphic Encryption Over the Torus
(TFHE)

TFHE [26] is a derivative of the FHEW scheme [27] and is known for fast Boolean
gate evaluation and bootstrapping in milliseconds. Because of improvements in
TFHE over the years, fixed-precision evaluations have also been possible [28].
TFHE has Torus in its name because Torus, the mathematical structure can be
used to visually represent the modulo operations [29]. Just like BGV [30] and BFV
[31, 32], TFHE has exact gate evaluation while evaluations in CKKS tend to be
noisy. Like CKKS, TFHE is based on the LWE assumption.

A message m in TFHE is encoded into a polynomial t in the ring 2.1. The
coefficients of this polynomial is in q. The ciphertext c is obtained from this plain-
text polynomial by adding to the public key pk and some random errors e. This
ciphertext is in GLWE which is a generalization of LWE and RLWE. RLWE is for
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polynomials and LWE is for individual bits. p is the plaintext modulus and the
scaling factor is calculated as 1 = q/p. Both p and q are powers of two.

TFHE does not support ciphertext multiplications, so the scheme uses three
different ciphertext types to accomplish gate evaluations besides addition namely
LWE/RLWE, RGSW [33] and GLev [28]. GLev is a generalization of Lev and
RLev and it consists of a list of GLWE ciphertexts encyrpting the same message
with different scaling factors 1. Finally, GGSW (generalization of RGSW) is a list
of GLev ciphertexts. TFHE defines two types of products with these ciphertexts:
external product which is a product of GLWE and GGSW ciphertexts, and internal
product which is a product of GGSW ciphertexts.

Since this is a leveled scheme, as more operations are performed on a cipher-
text, it has to be refreshed so that the message can be recovered from the noise.
For this, two types of bootstrapping are available: gate bootstrapping and circuit
bootstrapping. Gate bootstrapping bootstraps the ciphertext and evaluates binary
gates at the same time, and circuit bootstrapping is used for building GGSW from
LWE. Programmable bootstrapping (PBS), which is a generalization of gate boot-
strapping, is used to bootstrap LWE ciphertexts. Regarding the security levels of a
TFHE scheme, it has to be determined using an LWE-estimator [34].

TFHE scheme has also been used for building AI applications and it is mostly
suitable for tree-based machine learning models as described in Chapter 4.5. Stoian
et al. perform neural network inference of networks of up to 9 layers using a library
called ConcreteML [35, 36]. The library allows users to create an FHE-compatible
network without any knowledge of cryptography. They provide a few standard
trained models but also allow users to train their own custom models using a tech-
nique called Quantization Aware Training (QAT). Normally, neural network train-
ing and inference is done in floating points but as TFHE only supports integers, it
makes sense to quantize the model so that inference can be performed easily using
TFHE. In this work, instead of using post-training quantization, they use QAT as
it enables extreme quantization of less than 4-bit weights and biases without losing
neural network accuracy.

2.7 Standardization

HE will be used in applications such as health and medicine where patient privacy
laws should be respected, and in personal technology where private information
has to be kept private. Thus, it is critical that the technology provides measurable
security guarantees.

HomomorphicEncryption.org has created a committee that publishes a stan-
dard for various HE schemes [37]. This committee organizes regular meetings and

HomomorphicEncryption.org
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workshops to evaluate security and set standards for security of these schemes.
Besides this organization, International Organization for Standardization (ISO) has
also published a standard [38].

2.7.1 Security Level

Most of the HE schemes are based on LWE assumption. Depending on the appli-
cation, users can pick parameters such as dimension, ciphertext modulus etc. The
choice of these parameters dictates the security level of the scheme λ – how many
operations in bits (O(2λ)) it takes for known attacks to break the scheme. In the
standards paper referenced above, the authors publish a table that calculates the
security level for common attacks by using an LWE estimator [34].



DOI: 10.1561/9781638283454.ch3

Chapter 3

Multi-Party Computation

Multi-party computation (MPC) is a cryptographic technique where multiple par-
ties can jointly compute a function f on their secret data, without exposing their
secret data to other parties or by extension any eavesdroppers. Only the result of
the computation will be revealed to all parties. In AI, MPC can be used in a multi-
party setting to jointly perform training of, and inference with, neural networks on
secret data.

3.1 Introduction

Formally, in an MPC scheme, a set of n participants P = {p1, p2, p3, . . . , pn} who
each have data D = {d1, d2, d3, . . . , dn} can jointly compute a function f (D), while
keeping their respective data a secret. As illustrated in Figure 3.1, the private data
of each participant di is never shared among other participants. Various schemes
discussed in later sections are used to jointly compute f (D). MPC protocols usually
have an overhead of requiring a high communication cost amongst parties, and
hence should be used cautiously where bandwidth and transfer limits are a concern.
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Figure 3.1. Each participant is in possession of their data di jointly computes f (D).

In this chapter, we start by discussing various techniques that MPC schemes
are based on in Section 3.2. Techniques such as garbled circuits, secret sharing,
and homomorphic encryption are common approaches. We discuss various security
settings that MPC schemes support in Section 3.3. Appropriate schemes can be
picked depending on the MPC scenario. If an MPC protocol is adhered to by all
parties, it is guaranteed that the computation will be performed correctly. However,
there is a possibility of bad actors that either deviate from the protocol and do not
perform their end of the computation, or try to learn about data from other parties.
We discuss various threat models and approaches.

With the advent of large language models (LLMs) [39] and foundation mod-
els [40], there has been much interest in leveraging these models privately, but these
models are incredibly large and computationally intensive. Hence, these models are
evaluated in large data centers so that results can be availed quickly and efficiently.
Unfortunately, that means that parties who want their queries to be private have
to procure expensive hardware or risk leaking their inputs to these data centers.
There has been work on performing fast inference on low-cost devices [41, 42] but
that usually involves quantizing the models, which results in lower accuracy and
still needs a capable accelerator with high memory and bandwidth requirements
for fast inference. There are some MPC implementations that target inference on
these foundation models. In addition, MPC has also been used in several other AI
applications, and we discuss these implementations in Section 3.4.

3.2 Approaches

There are many ways to construct an MPC protocol, such as basing it on garbled
circuits, secret sharing, oblivious transfer or homomorphic encryption. We next
discuss each of these techniques with an illustrative example.
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3.2.1 Oblivious Transfer

Oblivious transfer (OT) is a protocol between a sender and a receiver where the
sender has multiple choices to offer and the receiver wants one of those choices. In
this protocol, the sender does not learn about the receiver’s choice, and the receiver
does not learn about other choices offered by the sender. OT is heavily used in
MPC protocols and supports both Boolean and arithmetic circuits.

To illustrate this, let us consider an example of 1-2 oblivious transfer with Alice
and Bob (Figure 3.2).

(a) Alice holds a red-colored ball (Xred ) and a blue-colored ball (Xblue) and is
willing to give Bob one of them. Bob, however, does not want Alice to know
which one he requested

(b) Bob sends Alice a key to encrypt Xred and Xblue in two different ways and
Alice sends the encrypted results back to Bob

(c) Only one of them can be successfully decrypted. Hence, Bob only learns
about the one of the two pieces of information. To Alice, the two choices
for encryption are indistinguishable, so she does not learn which piece of
information Bob requested.

Figure 3.2. Oblivious transfer protocol.
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3.2.2 Garbled Circuit

Garbled circuits (GC) were introduced in 1986 [43] and can be used as a basis for
constructing an MPC protocol. Garbling is the quintessential step in this protocol,
which is where one or more parties encrypt the Boolean circuit, and then permute
the input output combinations to produce a garbled circuit. This circuit can then
be evaluated by parties with encrypted inputs to get an encrypted output that the
garbler(s) can then share with other parties if needed.

Each computation can be decomposed into a set of Boolean functions, and each
single Boolean function can be represented as a simple lookup table. The lookup
table for the OR function is given in Table 3.1. The rows of the table can now
be shuffled (garbled) and encrypted independently. Decrypting a single row would
then reveal the truth value for a single input without revealing any other informa-
tion about that function.

Consider an abstract Boolean function f with two inputs L (left input) and R
(right input) that is to be computed in a secret two-party computation. One party,
Alice, has four different keys – LT, LF, RT, RF – indicating that the left or the
right input to be either true (T ) or false (F ). The output value, True or False, is
then encrypted twice for each row in the table, once with one of the keys LT, LF
for the first input and a second time with one of the keys RT, RF. This gives four
encrypted values (E(LTRT ), E(LTRF ), E(LFRT ), E(LFRF )), each of which can
only be decrypted with a different combination of the four keys. The unordered
list of the four encrypted values is then sent to Bob. Bob can ask Alice for two keys:
one from LT, LF and one from RT, RF. He tries to decode all four encrypted values
but will only be successful for one of them. This will be the value of the Boolean
function he wants to compute. If Alice and Bob use OT in the last step, where Bob
requests one of the 2 keys LT, LF and one of RT, RF, Alice does not learn anything
about the function value Bob computed, and Bob does not learn anything about
the function, except the specific function value of his input.

We illustrate this exchange with Figure 3.3 which shows a two-party MPC pro-
tocol based on Yao’s garbled circuit. Yao’s garbled circuit can be used to solve Yao’s
millionaire problem: Two millionaires want to know which one of them is richer

Table 3.1. Truth table for OR operation.

Input 1 Input 2 Output

False False False

False True True

True False True

True True True
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Figure 3.3. Describes a simple two-party MPC protocol with garbled circuit.

without revealing their net worth to each other. This protocol can also be used to
perform two-party computation on any Boolean circuit. In the figure, we have an
OR gate as an example. Alice and Bob know the gate beforehand and can perform
an OR operation. Alice’s input is iA and Bob’s input is iB, at the end of this proto-
col, both want to know the result o = iA ∨ iB without either party learning about
other party’s input.

To accomplish this, Alice first garbles the circuit (encryption, permutation) and
her garbled input iA− > iAG and sends both of them over to Bob. Bob needs his
input garbled so that he can perform oG = iAG ∨ iBG . he sends iB via OT. OT
guarantees that Alice does not learn about Bob’s ungarbled input and is discussed
below. Alice sends garbled input iBG to Bob. Bob finally evaluates circuit and sends
the result over to Alice. Alice can now decrypt the answer and can share it with Bob
if needed.

One drawback of GC is that the circuits are not reusable for new inputs without
compromising security and thus the circuits have to be regarbled every time inputs
change.

3.2.3 Secret Sharing

With secret sharing, a secret s can be split into n shares in such a way that t ≤ n
(threshold) shares can reveal the secret. This can be accomplished in many ways.
Most MPC protocols use additive secret sharing or Shamir’s secret sharing (which
is also additive) [44]. For protocols that support multiplication, usually, Beaver
triples [45], OT, or homomorphic encryption are used instead. A drawback of secret
sharing is that each share should be at least as long as the secret.

Additive Secret Sharing

In an additive secret-sharing scheme defined over a finite field (e.g. Zp which is
an integer modulo of prime p), the secret s is split into n shares and each of the n
parties holds on to their share. For illustration, we pick a scheme where n shares are
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Figure 3.4. Secret sharing with three parties X , Y , and Z .

needed to arrive at the secret. Although, an n − 1 additive secret sharing scheme
can also be constructed.

Figure 3.4 illustrates a simple additive scheme where parties X ,Y , and Z
exchange their shares x =

∑3
i=1 xi, y =

∑3
i=1 yi, and z =

∑3
i=1 zi respectively. At

the end of the exchange, each party computes the partial sums, e.g., X computes
Sx = x1 + y1 +z1 and then shares the partial sums freely with other parties. Finally,
after the exchange of partial sums, each party has Sx , Sy, and Sz and when added up,
it reveals the secret S = Sx +Sy +Sz =

∑3
i=1 xi +

∑3
i=1 yi +

∑3
i=1 zi = x + y + z.

Shamir’s Secret Sharing

Shamir’s secret sharing (SSS) is another additive secret sharing scheme that is
defined using polynomials over a finite field. Unlike the additive scheme discussed
above, SSS can be defined for any threshold t ≤ n. Only t shares are needed to
reveal the secret. This works because SSS takes advantage of polynomial interpola-
tion: t points are sufficient to come up with a unique polynomial curve of degree
≤ t − 1. If only t − 1 shares (points) are given, there are infinitely many possible
polynomials that can pass through those points. Another advantage of SSS is that
the scheme is information-theoretically secure 3.3.1.

Beaver Triples

Beaver triples are three numbers a, b, and c, which are secret shared among par-
ticipants. Once the participants get the secret shared triples, they jointly compute
x−a and y−b, which are then publicly revealed. Then, each participant i computes
zi = ci + (x − a)bi + (y − b)ai. Subsequently, the participants add the product
of public value (x − a)(y − b) to the secret-shared zi, and then all participants
open z to reveal the product xy. This works because of an interesting property:∑

i zi = c + (x − a)b + (y − b)a + (x − a)(y − b) = xy. The Beaver triples
cannot be used for another multiplication without revealing information about the
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secrets we are trying to multiply, so new triples have to be generated for each new
multiplication.

3.2.4 Homomorphic Encryption

MPC is more commonly based on secret sharing and garbled circuit, but it can
also be based on HE, discussed in detail in the previous chapter. In the following
sections, we discuss MPC protocols that use various HE schemes, such as SHE
and FHE.

3.3 Security Settings

This section discusses various security scenarios that arise in the discussion of the
underlying machinery of MPC. An appropriate protocol must be chosen depending
on the type of adversaries in the system.

3.3.1 Information-Theoretic Security

A protocol is said to be information-theoretically (IT) secure if it is secure against
adversaries that have unlimited compute power and time. This also means that if a
protocol is IT secure, it is quantum-resistant. The probability of breaking the cryp-
tosystem by an adversary would be minuscule in IT secure protocols. A protocol is
said to have perfect security if it has zero probability of an adversary with unlimited
compute power and time breaking the system.

3.3.2 Semi-honest Security

If a cryptosystem has semi-honest security, that means that the system is secure
against honest-but-curious adversaries – the parties do not deviate from the pro-
tocol but might be curious about the keys and random numbers that are given to
them by other parties, and might try to make sense of it. This system is not secure
against malicious adversaries – parties that can deviate from the protocol, eavesdrop,
or collect data.

On the same note, there are protocols that are honest majority, which means
that it is secure against situations where there are (n − 1) honest parties out of n.

3.3.3 Active Security

A cryptosystem that has active security is secure against malicious adversaries. A
dishonest majority protocol is one that is secure even if malicious adversaries are in
the majority (e.g. all but one are dishonest). There can also be protocols that offer
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security midway between semi-honest and active security, such as against covert
adversaries – where adversaries might try to go against the protocol but do not
want to risk getting caught. Protocols that are secure against covert adversaries may
assign a probability of cheat detection.

3.4 MPC Protocols Used in AI

MPC protocols such as SPDZ, MASCOT, and others are being used in AI not
only because of the features of the protocol but also because of the availability of
libraries that are built specifically for AI tasks.

3.4.1 SPDZ

SPDZ [46–48] and its variants have gained adoption in privacy-preserving AI appli-
cations in the last few years. The original SPDZ and SPDZ-2 [47] protocols are
based on additive secret sharing and Beaver triples. Depending on the application,
the protocol can be used for one of honest-but-curious (semi-honest), covert, or
malicious security (dishonest majority or active security) assumptions.

Most of the communication overhead in evaluating a circuit with SPDZ comes
from secure generation and secret sharing of triples. SPDZ optimizes this process
by splitting the protocol into an offline (pre-processing) phase and an online phase.
Since generation of multiplication triples is independent of the circuit to be evalu-
ated, the triples can be generated in the offline phase and the circuit is evaluated in
the online phase. In the original SPDZ paper [46], each party uses SHE described
in Chapter 2.5.2 to generate the triples. The values generated in the offline phase
can only be used for evaluating one function here. For subsequent functions, offline
phase has to be repeated from scratch. In the subsequent paper [47], there is no such
limitation. Furthermore, most of the computation is offloaded to the offline phase
resulting in a faster online phase.

CrypTen [49] is a PyTorch-based [50] MPC framework for machine learning
applications and uses a semi-honest security version of SPDZ under the hood. It
offers popular machine learning abstractions that are common in modern machine
learning frameworks to make it easy for developers to leverage MPC in their
machine learning training or inference of their models. In addition to tensor com-
putation, neural network model abstraction, optimizers, automatic differentia-
tion, it also offers GPU support for faster training/inference. Another assumption
that the library makes is that there is a trusted third party that generates Beaver
triples. Although it does support arbitrary number of parties. They also provide
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benchmarks and samples for machine learning tasks, such as text classification,
speech recognition, and image classification.

CrypTen has been used by Adams et al. for private text classification without
exposing the text of the data owner or exposing the model parameters of the model
owner’s classification model [51]. In a two-party setting of text-owner and model-
owner, the authors reveal that the scheme can securely classify customer review texts
in 0.74s in sequential mode and in 0.11s in batch mode.

3.4.2 MP-SPDZ and MASCOT

MASCOT [52] is an MPC protocol that improves on SPDZ’s (active security) run-
time by 200x by using OT to perform secure multiplications with reduced commu-
nication and computation, and exploits parallelism with use of SSE [53] instruc-
tions. MASCOT improves SPDZ in the offline phase, where it uses OT to speed up
the triple generation, while still offering active security. MP-SPDZ (Multi-Protocol
SPDZ) [54, 55] is an open-source implementation of 34 MPC protocol variants
of SPDZ-2 (includes MASCOT) by the authors and it presents a high-level pro-
gramming interface based on Python. MP-SPDZ also offers functions for machine
learning applications like regression, decision trees, SGD and Adam optimizers,
layers like dense, convolution, maxpool and dropout, along with functionality for
loading of pre-trained models.

3.4.3 Two-Party, Three-Party, and Four-Party Computation

In some cases, there might not be a need for protocols that generalize to arbitrary
number of parties in the protocol. There might be instances like peer-to-peer net-
works where only a handful of parties are trying to jointly compute a function.
Hence there are protocols designed where there are only 2 parties (2PC), 3 parties
(3PC), 4 parties (4PC), etc. Some of these protocols use m-out-of-n secret sharing
which means that m secret shares are sufficient to reconstruct the secret.

There are several 2PC, 3PC, and 4PC protocols such as Cheetah [56] which is a
2PC based on secret sharing, homomorphic encryption and OT for the inference
of deep neural networks in a semi-honest setting. ABY3 [57] which is a 3PC proto-
col with semi-honest assumption designed for machine learning applications, and
Fantastic Four [58] which is a 4PC secret sharing based protocol providing mali-
cious security. Some of the recent applications of these protocols in AI applications
are highlighted below.

CryptGPU [59] is a GPU-accelerated MPC library described in Chapter 4.7.1
that implements 2-out-of-3 replicated secret sharing (3PC) in a honest-majority
setting that fully accelerated MPC protocols on the GPU and is based on CrypTen.
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Chatbots based on LLMs increasingly see private information in queries. PUMA
[60] aims to bring privacy-preserving AI to LLMs [39]: specifically inference on
Llama-7B [61]. This is a great step forward in private prompting on LLMs. PUMA
implements a transformer layer and high quality efficient approximations for non-
linear functions such as GeLU and softmax. The authors claim the method to be
about two times faster than MPCFormer [62] and that it can evaluate Llama-7B in
5 minutes to generate 1 token. This is still quite slow compared to plaintext but is
a step in the right direction towards private LLM inference.



Part II

Acceleration
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Chapter 4

Accelerating Homomorphic Encryption
and Multi-Party Computation

Homomorphic encryption (HE) and multi-party computation (MPC) protocols
can be slow in practice. However, they can be accelerated by various accelera-
tors such as multi-core CPUs, GPUs (Graphics Processing Units), FPGAs (Field-
Programmable Gate Arrays), and ASICs (Application-Specific Integrated Circuits)
to make them practical for artificial intelligence (AI) applications. We discuss the
bottlenecks in these protocols and various ways of mitigating them. We then dis-
cuss recent works that mitigate bottlenecks with accelerators and enable use in AI
applications.

4.1 Introduction

For privacy-preserving AI to be ubiquitous, it needs to be accelerated by a large mag-
nitude. Luckily, there has been much progress in hardware technologies allowing
for higher performance in matrix operations, which are used extensively in cryp-
tographic protocols and in AI. Faster and more efficient caching allow for acceler-
ation of HE schemes which tend to be memory bandwidth bound. Furthermore,
there have been advances in special-purpose chips such as FPGAs and ASICs that
allow for acceleration of routines that cannot be easily parallelized by off-the-shelf
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hardware accelerators. In addition to accelerating compute, these chips can also
accelerate networking operations, which are crucial for the acceleration of MPC
schemes.

This chapter starts with a description of widely used accelerators for AI and
privacy-preserving techniques in Section 4.2. There are general purpose acceler-
ators available such as multi-core CPUs and SoCs and there are special purpose
accelerators such as GPUs, FPGAs, and ASICs that are designed to be incredibly
fast at performing certain bottleneck tasks. Section 4.3 discusses essential functions
that are ripe for acceleration to gain speedup in HE. Techniques and recent work on
accelerating HE schemes are discussed in Section 4.4 and 4.5. Two popular homo-
morphic schemes, CKKS and Fast Fully Homomorphic Encryption over the Torus
(TFHE), are compared in Section 4.6. Finally, Section 4.7 discusses the acceleration
of MPC schemes.

4.2 Accelerators

Accelerators are special purpose devices that can be used to accelerate components
of a computation. For example, if a part of the computation can be performed in
SIMD (Single Instruction, Multiple Data), vector instructions like AVX-512 [63]
can be used on certain CPUs to execute one operation, such as addition on sixteen
32-bit floats (512-bit data) at the same time.

4.2.1 Multi-Core CPU

Moore’s Law [64] is a historically accurate trend that the number of transistors will
double in new chips every two years. Traditionally, chip makers relied on making
the transistors smaller and adding more transistors to increase the density, but this
trajectory is reaching the limits of physical possibility. As a way to resolve this, more
compute units (or cores) were introduced in each processor to achieve parallelism.
In addition, SIMD and vector instructions were introduced.

4.2.1.1 SIMD

SIMD instructions can be used to execute a single instruction on a wide bit, such as
128, 256, or even a 512-bit input. These instructions are accompanied by registers
that are as wide. During execution, multiple smaller bits can be packed into one
wide bit so that they can be computed in parallel. Figure 4.1 illustrates a SIMD
processing unit with an instruction cache that issues one instruction at a time that
each of the eight 32-bit floating point units executes in parallel. Inputs are loaded
from either registers or memory.
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Figure 4.1. Architecture of a SIMD processing unit.

SIMD instruction sets for the x86 architecture include SSE, AVX, and Fused
Multiply Add (FMA). For example, the FMA instruction VFMADD231PD [63]
ymm1, ymm2, ymm3/m256 can perform the operation,

ymm1 = ymm2 ∗ ymm3/m256 + ymm1 (4.1)

where ymm1, ymm2, and ymm3 refer to AVX registers that are 256-bit wide.
ymm3/m256 indicates that this operand can either be a YMM register or a 256-
bit memory address. This operation happens on packed double precision floating
point values (PD).

SIMD and vector instructions can be used to achieve parallelism at a lower level
in the programming stack. For most applications and optimizations, programmers
can just leverage compilers to generate these instructions from their code.

4.2.1.2 Multi-core and Threading

Multi-core and threading on the other hand can facilitate task and data parallelism
at a higher level with less effort. Programming languages and libraries like OpenMP
[65], C++17 [66], and Rayon for Rust [67, 68] can be used to parallelize any part
of the code that can leverage task and data parallelism at thread-level.

4.2.2 GPUs

GPUs were originally designed to process graphics workloads. Graphics processing
involves processing large 2D or 3D arrays and displaying them on the screen at
high frame rates. GPUs have evolved a lot over the years and have been used for
general-purpose tasks and they are incidentally called GPGPU (General-purpose
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computing on GPU). Because it was used to originally solve the problem of ren-
dering large multi-dimensional arrays, they can achieve massive parallelism. Unlike
CPUs, a single GPU can launch up to hundreds to thousands of threads that can
run in parallel at a time. Programs that run on the GPU are called kernels.

Certain mathematical operations can take advantage of this massive parallelism,
processing large amounts of data quickly. As a result GPUs have revolutionized the
field of AI. Neural network training and inference mostly involves matrix opera-
tion for which standard open-source and vendor-provided libraries exist and can
be drop-in replaced to quickly accelerate the task. Training that can take days on
multi-core CPUs can be performed in hours on a GPU. Similarly, cryptographic
schemes can also leverage this parallelism for significant speedups.

4.2.2.1 Architecture

NVIDIA, Intel, and AMD are major GPU vendors, with most AI applications
using NVIDIA GPUs. Although there are significant differences in microarchite-
cures of each GPU, Figure 4.2 seeks to illustrate the essential elements with a generic
architecture for a PCIe [69] connected GPU. Each GPU has a VRAM (Video Ran-
dom Access Memory) or HBM (High Bandwidth Memory) of its own that is then
connected to the computer (processor) via PCIe. The memory is cached via L2
and is shared among multiple SMs (Steaming Multiprocessors/Compute Units).
Each SM has GPU cores, which are SIMD processing units. Some manufacturers,
like AMD, sometimes use VLIW (Very Long Instruction Word) instead. Each of
these GPU cores can process fp32 (32-bit floating point) in SIMD fashion. MAC
(Multiply Accumulate) is another unit that is used for faster matrix operations

Figure 4.2. Architecture of PCIe GPUs.
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Table 4.1. Comparison of different data formats.

Format Description

FP8 8-bit floating point. A compact representation of floating-point numbers,
offering less precision and range than FP16 or FP32.

FP16 16-bit floating point (half precision). 5-bit exponent and 10-bit fraction

FP32 32-bit floating point (single precision). 8-bit exponent and 23-bit fraction

FP64 64-bit floating point (double precision). 11-bit exponent and 52-bit fraction

BF16 Bfloat16 (brain floating point). 8-bit exponent and 7-bit fraction. With more
bits for exponent than fp16, bf16 can have as much numeric range as fp32.

INT8 8-bit integer. Used in quantized neural networks for edge devices and LLMs [39]

explained in more detail below. Each SM also has an L1 cache which can be shared
among the GPU cores and MAC.

NVIDIA GPUs

NVIDIA calls their GPGPU architecture CUDA (Compute Unified Device Archi-
tecture) which is also the name for their API and programming language (CUDA
C/C++).

Each NVIDIA GPU consists of several Streaming Multiprocessors (SMs), each
of which have multiple CUDA cores. Each CUDA core can launch a group of 32
threads, which are collectively called a warp. To execute a warp efficiently, only one
instruction should be issued to it. The H100 GPU in PCIe form has 114 SMs [70],
each of which has 128 fp32 CUDA cores. Each SM also has 4 tensor cores. Tensor
cores are special cores that can perform faster MACs(D = A ∗ B + C ) than using
CUDA cores. Tensor cores also allow for smaller types such as fp8, fp16, bf16, and
int8 (Table 4.1) which are useful for faster, but less precise, computation. This is
useful in performing training and inference of large models on a GPU with smaller
VRAMs. Several SMs also share one or two L2 caches and each SM has an L1 cache,
which is also called shared memory.

AMD GPUs

AMD calls their GPGPU architecture CDNA (Compute DNA) and their GPU
architecture RDNA (Radeon DNA). These GPUs are programmed using either
HIP (C++ Heterogeneous-Compute Interface for Portability), which is part of the
ROCm stack (Radeon Open Compute meta-project) [71], or OpenCL [72].

Similar to NVIDIA GPUs, each CDNA3 GPU has multiple CUs (Compute
Units), each of which have several shader cores and a few matrix cores. Each CU can
launch a group of 64 threads, called a wavefront. The MI300X accelerator, which is
equivalent to the H100, has 304 CUs [73, 74], each with 4x 16-wide SIMD shader
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cores and 4x matrix cores that are specially designed for AI for matrix operations and
also support the above special data types. The CUs share an L2 cache, and each CU
has an L1 cache called local data share (LDS) which is analogous to shared memory
in NVIDIA architectures.

4.2.3 TPUs

Tensor Processing Units (TPUs) are ASICs optimized for training and inference
of large AI models [75] by Google. While mostly used for accelerating AI applica-
tions, they are also used to accelerate cryptographic protocols and operations [76].
TPUs are organized into pods and each pod has hundreds to thousands of chips
connected by high-bandwidth interfaces. Each chip has one or two TensorCores
[77] that consist of matrix multiply units that can perform an 128x128 matrix
multiply-accumulate (MAC), vector units, and a scalar unit. The multiply in the
MAC operation takes bfloat16 inputs and the accumulate is performed in fp32.
Vector units are used for activation functions such as rectified linear unit (ReLU)
or softmax. The scalar unit is used for control flow and maintenance operations.
TPUs are mostly isolated to data centers and are not as widely available as GPUs.

4.2.4 FPGAs

Field-Programmable Gate Arrays (FPGAs) are special integrated circuits that can be
reprogrammed. Like ASICs, they can be designed for a specific purpose, but can also
be reprogrammed to iterate on the circuit design. Configurable Logic Blocks (CLB)
are the building blocks of an FPGA as each of these can be configured to build any
kind of circuit. FPGAs are useful for prototyping, as well as for deployment, and
have been used for developing chips for accelerating parts of cryptographic, math-
ematical, or other computations that can be accelerated with a specialized circuit.

Even though accelerators like GPUs are much more prevalent, they are not as
capable as FPGAs for accelerating most parts of HE and MPC computations in AI
as they are mostly used to speed up multiplications and some of the more complex
operations like FFT. The advantage of accelerating with FPGA is that highly spe-
cialized operations can be programmed-in right on the hardware for acceleration.

Besides accelerating multiplications, FPGAs can also be used to implement
SmartNICs [78], which can be used in distributed cryptographic protocols like
MPC, which tend to have very high network cost compared to compute cost.

4.2.5 Performance Measures

Performance of an HPC system/accelerator can be categorized into peak compute
performance and peak bandwidth availability.
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Table 4.2. Bandwidth capabilities.

Component Bandwidth

Caches (L1, L2, L3) TB/s

GPU Memory (VRAM/HBM) TB/s

SXM 5 Up to TB/s

GPU interconnects (NVLINK/die stacking) GB/s to TB/s

PCIe 5.0 Up to 128 GB/s

Network Interconnects (Data centers) Hundreds of GB/s

Network Interconnects (Outside Data centers) Varies

Compute performance is measured with FLOPS (floating operations per second)
which measures the amount of floating point operations the system can perform
in one second. A single accelerator like NVIDIA H100 PCIe can do a peak of 756
teraFLOPS of fp32 tensor operations, which are used for neural network related
tasks, and a peak of 51 teraFLOPS of fp32 for HPC applications [79].

Memory bandwidth is another measurement that is used to ensure that the
application can load the data into registers before executing instructions. This
is measured in MB/s, GB/s, TB/s, etc. Table 4.2 lists the bandwidth of various
components.

But the peak performance measures are not always reachable because of many
reasons such as the type of problem being solved which can be compute-bound
or memory-bound, algorithm design, compiler optimizations and design, and pro-
gram designs. The units throughput and latency are used instead to measure realistic
performance.

4.3 Essential Functions in HE

We discuss the functions that are essential to HE. These functions show up quite
frequently and accelerating them will result in impactful speedup.

4.3.1 Polynomial Multiplication and Number Theoretic
Transform

Component-wise polynomial additions and multiplications are just modular addi-
tions and multiplications and can be performed in O(N ). Polynomial multipli-
cations on the other hand are more resource intensive as the result of the mul-
tiplication is a convolution of the input polynomials. Naively it can be per-
formed in O(N 2) but with Number Theoretic Transform (NTT) [80], it can
be done in O(NlogN ). NTT is like FFT but operates on modular arithmetic.
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NTT has become one of the fundamental techniques used to optimize polynomial
multiplications.

4.3.2 Key-switching

Key switching is an operation that allows one to move from one ciphertext modulus
Q to another Q ′. This is necessary because operations like multiplication effectively
double the modulus of the results, and to perform further computation with this
result we need to switch the modulus. Key switching is considered one of the biggest
bottlenecks in FHE systems and involves performing several NTTs, additions, and
multiplications, which are themselves heavy operations. Most acceleration efforts
are devoted to improving the efficiency of this operation and making sure that it
accesses memory with reduced cache hits.

4.4 Accelerating CKKS

CKKS and similar lattice-based schemes can be accelerated at various layers of the
software and hardware stack. On the hardware stack, optimizations can be done
on commodity hardware, and accelerators can be used in tandem to achieve higher
circuit evaluation throughput. Alternatively, specialized hardware such as FPGAs
and ASICs can be used to achieve maximum throughput. On the software stack,
improvements can be made through parallelization and code optimizations that
use hardware intrinsics, optimal memory accesses, algorithmic optimizations, and
changes in cryptographic techniques.

Most of the work has been done on the server-side of HE because that is where
most of the processing is done. Encryption and decryption happens on the client-
side and it is usually on small amounts of data.

4.4.1 Bottlenecks

First, Castro et al. observed that in FHE implementations, bootstrapping exhibits a
low arithmetic intensity of < 1 operation/byte as a consequence of it being heavily
main memory bandwidth bound [81]. They also pointed out that improvements in
arithmetic throughput by using special arithmetic hardware has resulted in marginal
gains and that significant gains can be achieved by bridging the memory bandwidth
gap. The paper also mentions that for parameters that render 128-bits of security
(which is considered secure), the ciphertext size blows up to ∼73.4 MB, which
is too large for cache sizes of CPUs. Note that there have been improvements in
cache sizes since then and the largest available cache size per chip is 1152MB in
AMD EPYC™ 9684X CPU. 9684X has 12 CCDs (complex core dies) each with
32MB L3 cache with an additional 64MB 3D V-cache. Since the paper increases



Accelerating CKKS 33

utilization of cache even with smaller L3 cache sizes of just 32MB per CCD, it
would be interesting to see the results on CPUs with bigger L3 caches sizes.

Similar conclusions were drawn in F1 [82], where authors find that the move-
ment of homomorphically encrypted data, which typically is at least 50 times larger
than plaintext, and auxiliary data poses the key challenge in FHE acceleration. They
also point to key-switching, which is an essential part of homomorphic multipli-
cation as the most expensive operation. Since on-chip storage and memory band-
width is limited, optimizations must be made in such operations to get the most
out of what is available. This work claims that the F1 accelerator, an ASIC, is the
first programmable accelerator and can enable real-time fully homomorphic deep
learning inference in the cloud. F1 also supports other CKKS-like schemes such as
BGV [30] and GSW [33]. Some of the drawbacks of F1 is that it does not support
packed bootstrapping (multi-slot), and it only supports slot sizes up to N = 16K .

4.4.2 FPGA and ASIC

Besides the papers described above, there have been several solutions to accelerate
CKKS-like FHE schemes on FPGA and ASICs that have resulted in a phenomenal
increase in performance.

The follow-up paper from Castro et al., implements CKKS on a standard com-
mercially available multi-FPGA system that outperforms all prior FPGA imple-
mentations and outperforms the CPU by 456x, the GPU by 6.5x, and F1 by
12x for training logistic regression [83]. ARK [84] is an ASIC FHE accelerator
that improves upon prior works like F1, and improves the parameter require-
ments for efficient and practical bootstrapping. ARK can perform real-time con-
volutional neural network inference on the ResNet-20 model in 0.125 seconds.
REED [85] introduces the first chiplet architecture for accelerating FHE with
2.5D packaging technology. To solve the computation-communication bottleneck,
they introduce an inter-chiplet communications strategy that ensures computation-
communication parallelism. This chip can supposedly train an MNIST neural net-
work with two hidden layers and one output layer for ∼7000 iterations with ∼5.8
bootstrappings per iteration that achieves 95.2% accuracy in 7.7 minutes. The same
using OpenFHE [86] on 24-core, 2×Intel Xeon CPU X5690 @ 3.47GHz takes 29
days. Chiplet approaches are more scalable than one-off designs and can also be
made much more efficient in terms of power consumption.

4.4.3 GPU

A paper [87] often dubbed “100x” accelerates multiple essential functions of
CKKS including bootstrapping. They apply optimizations like kernel fusion where
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multiple GPU kernels are merged into one to reduce the number of memory
accesses between kernels and thus going around the memory bandwidth bottle-
necks. For training of logistic regression models, they report a 40x speedup over
multi-core CPU.

TensorFHE is a fast GPU-accelerated implementation of FHE [88]. It boosts
the GPGPU implementation of CKKS by up to 2.61x compared to previous state-
of-the-art described above. They analyze NTT at a microarchitecture level and
improve its performance by replacing the butterfly algorithm with matrix-vector
multiplication, they further utilize tensor cores available in newer NVIDIA archi-
tectures for NTT. They also fully utilize data parallelism through operation-level
batching.

Going back to the architecture of GPUs described in previous sections, we can
see that each CUs/SMs have a local shared memory and any memory transfers
between them is expensive as it needs to go through the L2 cache. This is not
great for FHE functions because they have wide vectors that cannot fit into one
CU. GME [89] explores what would happen if CUs can efficiently communi-
cate with each other. They also propose several GPU microarchitectural enhance-
ments, scheduler, and a simulator infrastructure called Blocksim for investigating
GPU architecture that is suitable for FHE. All of these proposed optimizations
are applied to AMD CDNA architecture and are implemented on a cycle-accurate
GPU architecture simulator called NaviSim [90]. With these proposed changes,
secure inference can be performed on ResNet-20 in 982ms, and logistic regression
can be performed in 54.5ms which is 2.9x faster than 100x [87].

Recently, GPU implementation of CKKS was applied to privatize Bidirectional
Encoder Representations from Transformers (BERT) embeddings [91]. BERT is
a neural network commonly used for training large language models [39] and it
is based on transformers [40] architecture which revolutionized the field of AI
recently. Embedding layer compresses the input of a neural network into semantics-
preserving low-dimensional vector which is then fed to downstream text classifi-
cation tasks. However, embeddings can still leak data of the text it was trained
on. Lee et al. homomorphically encrypt the pre-trained embeddings of BERT and
then build a homomorphic logistic regression-based classifier with GPU-accelerated
CKKS [91]. The trained model can then be used for downstream tasks with mini-
mal loss in accuracy.

4.5 Accelerating TFHE

TFHE is known for its fast bootstrapping speed and programmable bootstrapping
(PBS), which not only refreshes the ciphertext but also lets us evaluate arbitrary
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univariate functions that can be represented by lookup tables [92]. Unlike CKKS,
TFHE doesn’t inherently support packing of ciphertexts, which makes acceleration
on data-parallel accelerators challenging. However, because of fast programmable
bootstrapping, TFHE can run quite fast on CPUs.

4.5.1 CPU

On CPU, Concrete and ConcreteML [36, 93] provide the most extensive support
for utilizing TFHE for AI applications. ConcreteML offers some built-in models
that are best suited for TFHE schemes such as linear regression, decision trees [94],
XGBoost [95] and random forest [96], as well as deep neural network models with
QAT (Quantization-Aware Training) for MNIST, CIFAR10 and CIFAR100, and
for evaluation of one layer of the GPT-2 [97] LLM [39, 98].

4.5.2 FPGA and ASICs

Strix [99] is an ASIC made for evaluating TFHE over streaming data at high
throughput. They achieve over 1067x higher throughput compared to CPU imple-
mentation (Concrete), 37x higher throughput over the GPU implementation
[100], and 7.4x over the state-of-the-art ASIC called Matcha [101], which was
the first ASIC designed for TFHE. In Strix, authors identify that blind rotation
operation during the PBS step runs sequentially, leading to significant performance
degradation. They incorporate device-level and core-level batching using special-
ized hardware units and thus exploit parallellism and amortize the cost of blind
rotation.

They benchmark their performance for MNIST inference on neural network
NN-20, NN-50, and NN-100. NN-20 for example has an input layer with 10x11
convolution, followed by ReLU activation. Next i (i = 20, 50, 100) layers each have
92 neurons [102] followed by ReLU. ReLU is performed during PBS. For compari-
son, they use Concrete library with Intel Xeon Platinum CPU (details not specified)
running Concrete, and NVIDIA Titan RTX GPU running nuFHE. They report
33-38x gains over the CPU and 8-17x gains over the GPU.

4.5.3 GPU

There are three main implementations of TFHE on the GPU with comparable per-
formance metrics for FFT and NTT: cuFHE [103], nuFHE [100], and Concrete-
cuda [104]. nuFHE and cuFHE accelerate the NTT/FFT part of the bootstrapping
algorithm, and Concrete-cuda accelerates PBS and key switching. The latter offers
two types of bootstrapping depending on the workload. Low latency bootstrap is
used for < 10 simultaneous bootstraps and amortized bootstrap is for accelerating
> 10 bootstraps.
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Table 4.3. Comparison of CKKS and TFHE HE Schemes.

Feature CKKS TFHE

Bootstrapping speed Seconds to minutes [87] Milliseconds to
seconds [27]

Scheme type Approximate arithmetic Exact

Ciphertext Packed No packing

Input format Complex, integer Boolean, integer,
fixed-precision

Bottleneck Memory bound Throughput

Best suited for Neural networks General AI, decision trees,
random forest

Polynomial multiplications NTT FFT/NTT

4.6 Comparing CKKS and TFHE

The Table 4.3 lists the differences between CKKS and TFHE for high performance
privacy-preserving AI.

4.7 Accelerating MPC

High performance MPC protocols in AI are mostly accelerated through the use
of GPUs. Since HE takes place across two parties with asymmetric capabilities, it
is sufficient for the HE server to have an expensive, high performing processor or
co-processor. But in the case of MPC, the capabilities of all parties should be more
or less equal. There are protocols where a trusted party with high performance
compute does some of the compute/memory intensive parts of the computation
for the rest of the parties, but this is not secure.

Another thing to note is that MPC protocols tend to be communication-
intensive, so adding more compute-based solutions to solve this problem might
not be helpful after a certain point. In some cases, acceleration can be achieved by
reducing the communication required or by using network optimizers/accelerators.
We discuss the latest efforts to accelerate MPC protocols here.

4.7.1 GPU Accelerated MPC

CrypTen [49], which was discussed in Chapter 3.4.1, offers a machine learning
focused API in PyTorch and natively supports running functions on the GPU. One
challenge in performing SPDZ on the GPU is that integer computations are not
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supported on the GPUs. To solve this problem, CrypTen decomposes the 64-bit
integer a into four components a = a0 +216a1 +232a2 +248a3 and then performs
computations like convolutions and products by multiplying the 16-bit ai pairwise
(with bi for instance) on the GPU using optimized floating-point CUDA kernels.
They find that CrypTen is 1–2 magnitudes faster on GPUs (NVIDIA Tesla P100)
than on CPUs (Intel Skylake 18-core 1.6GHz). On that setup, CrypTen takes 8.47s
to perform two-party inference on the ViT-B/16 [105] model, which is a vision
transformer model that has 12 multi-head self-attention layers [106] with 12 heads
each. It takes ∼0.3 GB of communication between parties to achieve that.

CryptGPU [59] is a library that is based on CrypTen but only considers MPC
in a three party setting (3PC) and uses replicated 2-out-of-3 secret sharing instead
of Beaver triples. It is secure against a single semi-honest party.

4.7.2 FPGA/ASIC Accelerated MPC

PPMLAC [107] introduces two FPGA prototypes, one as an ASIC and another as a
protoype for a RISC-V [108] CPU with extended instructions for MPC. This chip
is able to run maliciously secure secret sharing MPC and is capable of running large-
scale complex machine learning models like ResNet-18 [14] at high performance.
Mainly, PPMLAC focuses on reducing communication between the parties by a)
locally generating pseudo random numbers (trusted chip) instead of jointly gener-
ating Beaver triples b) re-using secrets using a secure secret cache c) synchronization
of the chips through one-way communication to remove bottlenecks. In a Trans-
Pacific two-party setting with 200ms round-trip latency, they find that PPMLAC
achieves 280x speedup over semi-honest secure CrypTen running on NVIDIA Tesla
V100 GPU and 300000× speedup over maliciously secure MP-SPDZ. Two-party
Resnet-18 inference with the 200ms network latency runs in less than 4s.

Patel et al. introduce FPGA-based smartNIC along with an MPC accelerator
that can saturate a 100Gb/s link available through COPA (Intel’s Configurable
Network Protocol Accelerator) [109, 110]. COPA enables remote accelerator trig-
gering between MPC participants, which reduces the need for explicit synchronize
commands. For the MPC, they use the Fantastic Four protocol [111] which is an
honest-majority four party protocol with malicious security. The MPC accelerator
includes a pseudorandom number generator and the local shares are communicated
through DMA. Approaches like these eliminate latency in environments where par-
ties are colocated in the same data center.
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Chapter 5

Applications

With the advent of general purpose foundation models that support modalities like
text, images, audio, and video, privacy-preserving AI requires high performance
now more than ever. High performance privacy-preserving AI can enable a wide
range of such applications where valuable knowledge can be gained from private
data without revealing the data to others. We now discuss representative solutions
in the fields of healthcare, drug discovery, and consumer applications.

5.1 Introduction

High performance AI is now ubiquitous, with applications permeating into every
field. However, in applications where privacy of individuals can potentially get
compromised, usage of AI can get hindered. For example, in healthcare, medi-
cal records are private and not readily available for use in model training. If data
from across healthcare institutions could be leveraged, invaluable insights would
undoubtedly be obtained, improving patient care and reducing costs. Examples of
privacy-preserving methods for healthcare applications are discussed in Section 5.2.
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As another example, multi-party computation (MPC) can also be used in AI-
based drug discovery. Drug companies are highly protective of intellectual property
but there are situations where all could benefit from collaboration, such as for creat-
ing joint models of toxicity prediction. MPC can enable such joint work while still
protecting the confidentiality of intellectual property. Section 5.3 discusses appli-
cations in drug discovery.

Consumer applications such as IoT (Internet of Things), smart home, personal
health tracking, personal finance, and personal digital assistants generate sensitive
data that usually end up in the control of corporations that may or may not have
protections in place to secure sensitive data. One report [112] says that the num-
ber of victims of data breaches reached an all time high in 2023 already by Q3 at
around 233 million victims and 2116 compromises. The userbase of a compro-
mised services and the company hosting the data both end up victimized. Accord-
ing to a report by IBM [113], the global average cost for a data breach was USD
4.45 million in 2023. Privacy-preserving technologies are one way to reduce the
attack vectors. Section 5.4 discusses consumer applications where high performance
privacy-preserving AI technologies are being used.

5.2 Applications in Healthcare

Healthcare data is both highly sensitive and highly treasured as it reveals patterns
that can be used for developing better treatments for patients. This section high-
lights the need for privacy-preserving techniques in healthcare applications and how
they are being used in some instances.

5.2.1 Motivation

During the COVID-19 pandemic, it would have been powerful to be able to train
predictive models across electronic health records (EHR) early in the pandemic.
But healthcare institutions are understandably highly protective of record confiden-
tiality, meaning that traditionally, such work happens within individual hospitals
rather than across hospitals.

Questions like the impact of common blood pressure medications should be
easy to answer based on the real-world data accumulated in health records. Or con-
sider Ibuprofen. Earlier, the World Health Organization issued a recommendation
against the use of Ibuprofen based on reports out of Europe that many younger
patients admitted to the hospital with COVID-19 had been taking the popular
NSAID (non-steroidal anti-inflammatory drug). But mere days later, they with-
drew the recommendation. Issues like this should be possible to probe instantly
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over large patient record datasets. So too should we have been able to rapidly gain
statistically significant insight into the impact of various comorbidities.

With emerging new technologies like MPC/HE, such analysis can be performed
without any records leaving each participating institution, bypassing fraught pri-
vacy considerations. The authors of this book have demonstrated this with part-
ner institutions [114]. The security model is such that no one can even tell the
number of patients meeting a given criteria at the institution. Current practices
would require us to wait for one institution to see enough cases or for time con-
suming manual compilation of results across institutions, a process that frequently
takes months. Given the pace of the outbreaks like COVID-19, traditional research
timelines are unacceptable. By making patient records immediately available for
study—without any sacrifice of institutional or patient privacy whatsoever—the
technology enables for findings based on the real-world evidence of patients already
seeking care in hospitals.

5.2.2 HE in Healthcare

Homomorphic encryption (HE) is particularly useful for inference. Consider that
a private company or academic collaborator has a powerful AI model. As illustrated
in Figure 5.1, a hospital can homomorphically encrypt a patient’s data and send it to
the partner, who will pass it through the model, but will not be able to decrypt the
input or the output. The encrypted output is returned to the healthcare institution,

Figure 5.1. A patient’s data can be homomorphically encrypted and sent to an outside

model provider, who will neither be able to read the query nor result.
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where it is decrypted. In this manner, the patient’s sensitive information is never
exposed to the outside party – and the outside party does not need to share its
model with the healthcare institution.

An earlier effort to help advance medical research was made with SecureMed
[115], which is an FHE scheme based on an NTRU-variant [116] of GSW [33].
The public-keys are distributed by a key authority system to the server and then to
the patients which is then used to encrypt the private data. Results of the compu-
tation can then be accessed by research groups through secure channels to the key
authority system. They implement solutions for applications such as blood pres-
sure classification, Framingham Coronary Heart Disease Risk Score (FCRS) [117],
genotype encoding, and predictive analysis. Their implementation can be acceler-
ated by a multi-GPU setup of four GPUs (NVIDIA GeForce GTX980) and they
report a speedup of 104x (or 410x for multi-GPU) over their CPU (Intel Core-i7
5930K) implementation.

CareNets [118] is a FHE library based on GPU-accelerated BFV [31, 32]
for abnormality detection of two clinical conditions: Retinopathy of Prematurity
(ROP) and Diabetic Retinopathy (DR). By making use of a compact matrix pack-
ing strategy implemented as a library, and by designing a resource efficient CNN
designed for inference on real-world medical imaging datasets, they perform infer-
ence on these tasks which work on images of size 96x96 and 256x256 respectively.
On ROP, for security level of 80-bits, they report a speedup of 3.96x on CPU (Intel
Xeon Platinum 8170) and 45.9x on GPU (NVIDIA Tesla V100 16GB) compared
to the traditional packing strategy used in CryptoNets [119].

5.2.3 MPC in Healthcare

MPC allows for collaboration across multiple parties to compute a function in a
privacy-preserving manner. This opens up new avenues for organizations like hos-
pitals, insurers, drug companies, and universities, and for individuals like doctors,
patients, and care providers, to team up to build innovative AI models without wor-
rying about privacy of their data. Figure 5.2 illustrates one scenario where MPC can
be used. Multiple hospitals can train AI models collaboratively. Once trained, each
hospital will have access to the trained model and can perform inference. These
trained models benefit from the large number of patients that would otherwise be
unavailable.

While developing solutions for applications in areas like healthcare, it is essential
that application development is made user-friendly. Sequre [120], an MPC com-
piler framework, is one such effort in that direction while still being able to use opti-
mized execution to achieve high performance. It follows the principle that compile-
time optimizations that utilize domain-specific knowledge can produce optimized
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Figure 5.2. MPC can be used to train models across sites, without any sensitive data

being exposed from each site to the other parties or anyone else.

executables. By providing the Python decorator @sequre, Sequre automatically
converts the enclosed function into an MPC function and also performs MPC
related operations to reduce network utilization and runtime performance. It uses
additive secret sharing in a four party setting with trusted dealer under honest-
but-curious model and it supports common arithmetic, Boolean and linear algebra
operations. They demonstrate improvements on usage of this framework on tasks
such as genome-wide association studies, drug-target interaction prediction, and
metagenomic binning, and report 3–4x increased speed over existing pipelines with
7-fold reduction in codebase size. Neural network functions are also supported and
they find that Sequre is 2x faster when compared to PySyft [121] while performing
inference on a drug-target interaction prediction model.

When a disease is rare, a single hospital will not have enough data to train pre-
dictive models for it. Spini et al. developed a proof-of-concept implementation to
assist clinicians to choose optimal treatments for HIV patients based on insights
uncovered from previous treatment data [122]. The solution computes an effec-
tiveness measure of an HIV treatment (average time-to-treatment-failure), while
preserving privacy. Time-to-treatment-failure is an effectiveness measure in time of
days between the start of a therapy and either a therapy switch, discontinuation,
or death. They define distance metrics to calculate patient similarity so that the
effectiveness of the treatment plan can be estimated. They use SPDZ protocol in
a multi-party setting with a) input parties who can issue queries b) clinicians who
supply the database records (data owners), and c) computing parties. The output
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of the computation is presented to the clinician without leaking it to any other
parties. Their experimental setup has a i7-7567U CPU with 32GB RAM for each
computing party, and a security level of 40-bits (128-bit computational security)
in a 128-bit prime field. With this setup, they can compute the solution to a query
in 24 minutes for a database of 20000 patient records, which roughly matches the
number of patients in the authors’ country, the Netherlands, and is considered a
realistic database size. Most of the time elapsed in computation is consumed during
triple generation taking approximately 22 minutes to generate 40 million multipli-
cation triples.

One of the challenges faced when using MPC protocols in healthcare applica-
tions is that not all participants might have the data formatted in the same way.
File formats may include comma-separated values, JSON, XML, or proprietary
formats. Additionally, column names may vary. In smaller groups of participants,
this can be solved by agreeing upon the formats and labels beforehand, but this
might take time and effort. Another solution would be to use one of the foun-
dation models like LLMs to predict the meaning of the columns and perform a
cleanup of the data beforehand and automatically generate an agreed upon format.

5.3 Applications in Drug Discovery

Figure 5.3 illustrates a scenario for privacy-preserving drug discovery where uni-
versities, hospitals, and pharmaceutical companies can collaborate to jointly train

Figure 5.3. In drug discovery too, models may be trained with secure MPC.
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neural network-based predictive models via MPC. With a larger pool of data
for joint private training between multiple organizations, better AI models can
be trained and better conclusions can be drawn without jeopardizing intellectual
property.

An earlier work on privacy-preserving drug discovery [123] showcases using
SPDZ in a three-party honest-but-curious setting for predicting drug-target inter-
actions (DTI). In their setup the collaborating entities such as pharmaceutical com-
panies or research labs share their large DTI datasets along with chemical and pro-
tein structures privately among participating entities via secret sharing and then
jointly train a predictive model such as a neural network on it. The final model
can then be shared among the participants. With that setting, they demonstrate
training a neural network (Secure DTI) on more than 1 million training instances
over a WAN (wide area network) in less than 4 days.

Ma et al. develop two neural networks: DTIMPC for privacy-preserving predic-
tion of novel DTIs and QSARMPC for privacy-preserving collaboration on large-
scale quantitative structure-activity relationship (QSAR) [124]. This is the first
work on collaborative prediction of QSAR with MPC. They use a replicated 2-out-
of-4 secret sharing MPC protocol, which is secure for 2 out of 4 semi-honest parties
[125]. The authors also note that there are many challenges in doing MPC-based
drug discovery across companies and institutions: convincing pharmaceutical com-
panies about collaboration and security, slow execution time, and learning curve.

5.4 Applications in Consumer Applications

Entities in consumer applications are varied, including customers, anonymous
computing parties, and third-party server providers, and customers have little
insight into who is able to see their most private data.

5.4.1 Wearables

Wearable devices are used for personal health monitoring. They can be used to
detect irregular heartbeat, sleep apnea, blood oxygen levels, and falls. All this is
possible because of sensors and AI technologies that predict these events based on
learned features. This data can also be abused by malicious entities in many ways.

A proof-of-concept study for privacy-preserving atrial fibrillation detection
[126] was executed involving the building of a deep learning library for homomor-
phically encrypted data and then testing it for predicting atrial fibrillation [127].
Atrial fibrillation can be detected by analyzing ECG (electrocardiogram) data that
is recorded by wearables and in this work they used the recording from Physionet
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2017 challenge [128] as their dataset. The homomorphic encryption scheme they
use here is based on MORE (Matrix Operation for Randomization or Encryption)
encryption scheme [129]. This is a fully homomorphic scheme but with some draw-
backs, such as the inability to perform comparison operations on ciphertext, which
impacts implementation of CNN layers such as maxpooling, limited choice in neu-
ral network optimizers, and vulnerability to chosen plaintext attack. This vulnera-
bility is not a concern in this scenario, as the plaintext ECG data never leaves the
device. They obtain encouraging results from this detection model which achieves
high accuracy that is close to the state-of-the-art.

Falls can be detected in various ways [130] using sensors such as accelerometers,
inertial measurement unit which is a multi-modal sensor consisting of accelerom-
eter and a gyroscope, camera-based approaches, and ambience-based approaches
where sensors are placed in the vicinity. Since falls can vary in many ways depend-
ing on environment and the person, fall detection might need substantial process-
ing power and accurate predictions might not be possible on wearable devices thus
needing to send the data over to external servers. In that process, the server might
learn revealing information about the user such as gait, activities and relative posi-
tion. To move towards a privacy-preserving approach for fall detection [131], inves-
tigates an MPC-based fall detection technique based on various AI techniques to
detect falls by using data from an IMU sensor. Using publicly available datasets
provided by SmartFall [132], they achieve state-of-the-art error rates with their
SVM classifier with their derivative-based features. They find that the total pre-
diction time is less than the on-device acquisition time, which makes real-time fall
detection via MPC a possibility. They adopt arithmetic secret sharing based MPC
in honest-but-curious setting that supports an arbitrary number of parties (3 for
experiments) using MPyc [133].

5.4.2 IoT

IoT devices are ubiquitous in our lives but they can be invasive in terms of pri-
vacy as the sensors in these devices collect private data. Manufacturers and service
providers use this data for constantly improving the performance of AI applica-
tions enabled through and for IoT but in that process, the data can be abused in
many ways. An example of that is the recent controversy resulting from Ring’s han-
dling of customer’s private home security videos [134]. Training and inference with
privacy-preserving technologies such as HE and MPC is one of the ways to protect
consumers against issues like this.

A GPU accelerated FHE-based runtime library was proposed that can perform
inference of neural network models with high accuracy in real-time for IoT appli-
cations. Li et al. developed a confused-modulo projection [135] based FHE and
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RT-HCNN (real-time homomorphic CNN) network that can perform a GPU-
accelerated (NVIDIA RTX 3090) MNIST inference with 99.13% accuracy in
79.5ms, with security level of 192-bits [136].

A challenge with the use of HE in IoT applications is that the edge devices on the
client-side are not as capable as servers, and thus might not offer the kind of perfor-
mance needed for fast encryption and decryption of ciphertext. Works such as RISE
[137] have attempted to close that gap. RISE is an ASIC solution that is 6191.19x
more energy efficient for CKKS encryption, and 2481.44x more energy efficient for
CKKS decryption, than a RISC-V processor. It makes applications like homomor-
phically encrypted QVGA-size video streaming possible. Aloha-HE [138] offers an
FPGA solution that can perform these edge encryption operations by a factor of
up to 59x compared to RISE.
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Chapter 6

Blockchain and Zero Knowledge Proofs

Blockchain and zero-knowledge (ZK) proof techniques have advanced greatly in
recent years, largely spurred by cryptocurrency development. They enable decen-
tralized coordination of, and proofs of computational integrity in, the execution of
privacy-preserving protocols.

6.1 Introduction

Bookkeeping is an important part of digital transactions. Protocols based on
blockchains were first proposed by David Chaum [139]. Blockchains provide a
distributed ledger on which consensus may be obtained without appeal to a trusted
authority. Bitcoin [140] was pioneering and triggered an explosion in the develop-
ment of consensus techniques and real-world blockchains.

Meanwhile, ZK proofs allow a party to prove to another party that a statement
is true, without disclosing any information beyond the truth of a statement
[141, 142]. ZK proofs of knowledge furthermore allow the prover to demon-
strate knowledge of the witness to a particular statement’s truth. For example, one
can prove that one knows the secret preimage of a given hash, without disclos-
ing that preimage. ZK proof techniques are developing by leaps and bounds, and
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non-interactive succinct ZK proofs are already commonly used in the context of
cryptocurrencies such as Zcash [143]. The proofs are not only succinct, but also
highly efficient to verify. Furthermore, consider that one can phrase the execution
of a statement to be proven in a ZK proof. With this, ZK can be used to ensure
that MPC-based computations are performed correctly by each party.

By combining blockchain and ZK proofs, one can extend privacy-preserving
computation to greater numbers of parties, while still being able to ensure compu-
tational integrity. They remove the need for a central trusted authority, providing
for greater privacy and eliminating the risk of the trusted node being compromised.

Section 6.2 goes into the origin of blockchain technologies and highlights its
usage in privacy-preserving techniques. Other cryptographic techniques like hash-
ing, Merkle trees and smart contracts are also introduced. The next Section 6.3
discusses various ZK proof techniques. Finally, Section 6.4 showcases how high per-
formance privacy-preserving AI techniques can be scaled by the use of blockchain
and zero-knowledge protocols.

6.2 Blockchain

Simple blockchains consist of a chain of blocks on which consensus has been
formed. Each block contains the hash of the previous block, meaning that any
attempt to alter the prior history would invalidate all blocks subsequent to the
invalidation. A blockchain may also be structured as a decentralized acyclic graph
rather than a single linear chain.

In-depth discussion of consensus methods are beyond the scope of this chapter,
and we simply note that notable varieties include Byzantine fault tolerant (BFT)
methods, typically requiring 2/3 of the set of validators to be honest, and Nakamoto
“longest chain” consensus, where the blockchain with the most valid blocks wins.
Chains may be secured by proof of work, proof of stake, proof of time, and/or proof
of space. With proof of work, for example, adding a block requires the achievement
of a computational result (such as a hash meeting given criteria) requiring expen-
diture of energy, and thus rewriting history would requiring a similar expenditure
(during which time the “true” chain is continuing to grow).

6.2.1 Merkle Proofs

Merkle trees facilitate proofs of membership. They can easily be used in zero-
knowledge proofs, as discussed in Section 6.3.

Figure 6.1 illustrates a small Merkle tree where the leaves of the tree represent
blocks of data D. Data such as files can be large and thus are split into blocks
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Figure 6.1. Merkle tree and Merkle proof.

d1, d2, d3, d4. Each non-leaf node in the tree is labeled with the hash of its two
children. This means that the root of the tree has a value that is dependent upon,
and captures, all leafs. To prove membership of a leaf, one can provide the path
of hash pairs from that leaf and its immediate sibling, up to the root. A so-called
Merkle proof is therefore logarithmic in the size of the set.

Consider a large file chunked into thousands of pieces. Given the root of the
Merkle tree that is constructed from those chunks, one can efficiently show that a
given chunk is indeed part of the file.

6.2.2 Smart Contracts

Smart contracts are programs that can reside on a blockchain that automate the
process of mediation, payments, services, and actions upon satisfying certain con-
ditions that is dictated by the program. They were proposed by Nick Szabo [144].

Privacy-preserving AI can take advantage of smart contracts to establish digital
contracts among participating nodes. For example, contracts can demand satisfac-
tion of certain criteria, such as model accuracy or response time in the protocol, for
payment to be released.

Figure 6.2 illustrates an example of how smart contracts can enable transactions
on the blockchain. Here is how it plays out:

1. A service provider denoted by the blue meeple creates a smart contract and
deploys it to the blockchain. The smart contract has some rules and automa-
tion setup for price for the service and then fulfillment of the service.
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Figure 6.2. Illustration of smart contracts.

2. Another participant yellow, who wants the service, pays a certain amount via
a transaction on the blockchain.

3. The smart contract executes successfully, with the service provided and pay-
ment released to the provider.

4. The purple client wants the service as well and makes a transaction on the
blockchain. This time, there is an unmet condition in the smart contract
execution.

5. The contract is not satisfied, so the payment is subsequently returned back
to purple and no service is provided.

6.2.3 Hash Functions

A hash function in cryptography is a function with three properties [145]:

1. Preimage-resistance: It is computationally infeasible to find the preimage m
of a hash h = H(m).

2. Second-preimage resistance: It is computationally infeasible to find a message
m′

̸= m such that H(m) = H(m′).
3. Collision resistance: It is computationally infeasible to find messages m1 and

m2 such that H(m1) = H(m2).

Collision resistance implies second-preimage resistance but does not guarantee
preimage resistance [146].

Special hash functions are being designed and actively used in ZK proofs that
improve proving time as the common hashing algorithms like SHA-2, SHA-3 are
known to be slow for ZK proving [147].
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6.3 Proofs of Knowledge

A proof of knowledge must satisfy two properties.

• Completeness: An honest verifier should be convinced by a proof of a true
statement provided by an honest prover. Many commonly-used proof systems
are perfectly complete.

• Soundness: A dishonest prover cannot convince an honest verifier of an
untrue statement. Succinct so-called arguments of knowledge are often com-
putationally sound: sound given a set of hardness assumptions.

If the proof is a zero-knowledge proof, it must satisfy the additional prop-
erty of zero knowledge: the verifier learns nothing except the fact that the
statement is true.

The literature contains established methods for proving that a particular zero
knowledge proof system has the knowledge soundness and zero knowledge prop-
erties, but discussing these is beyond the scope of this work. The interested reader
is referred to Thaler et al. [148] for more information.

6.3.1 Assumptions and Models Used in ZK

Most practical instantiations of ZK proofs rely on certain cryptographic hardness
assumptions for their security, including soundness and zero-knowledge. Common
assumptions include the standard assumptions regarding cryptographic hash func-
tions, the hardness of the discrete logarithm, and various hardness results around
pairings of elliptic curves.

While a full discussion of the various assumptions commonly invoked is beyond
the scope of this text, we note here that certain assumptions, such as the security
of cryptographic hash functions, can be instantiated such that they are plausibly
secure in the face of large quantum computers, while others, such as the discrete
logarithm, would fall in the face of such a threat.

6.3.2 Non-interactive ZK Proofs

A ZK proof can be interactive or non-interactive. Interactive proofs need back and
forth communication between the prover and verifier, which is not so in the case of
non-interactive proofs. In interactive ZK proofs, a verifier can offer multiple chal-
lenges to the prover to convince themselves that the prover in fact is in possession
of the witness. Once the verifier reaches a desired level of certainty, the prover is
believed to be in possession of witness. It should be noted that analyzing the sound-
ness of such multi-round proofs can be a very complex exercise. Finally, interactive
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proofs are limited in the contexts in which they can be used, and non-interactive
proofs are often better suited to decentralized situations.

6.3.3 Setup

Some proof systems, such as Groth16 [149], require a possibly circuit-specific setup
to generate data for future invocations of the prover and verifier. Furthermore, in
some systems, the setup is non-transparent, that is, in addition to generating the
public reference data, it also generates data that must be deleted. This so-called
“toxic waste” can be used to compromise the security of future proofs, and so it
is essential that it be deleted. In a decentralized setting, such toxic waste can be
mitigated by using secure multiparty computation for the setup, or by using a proof
system that does not require such a trusted setup, such as ZK-STARKs [150].

6.3.4 Recursive Proofs

In the case where a verifier has considerably lower complexity than the prover, a
natural question arises: is it possible to prove one step at a time (or many in par-
allel), and then prove the execution of the verifier in another proof to “aggregate”
the initial proofs? The answer is yes, and this practice—recursion—significantly
decreases memory complexity and enhances parallelism for provers, opening the
door to proofs of much larger statements. Some systems, such as Nova [151], are
even specifically designed with recursion in mind, having very simple verifiers when
expressed in their native constraint systems. While it is beyond the scope of this
book to discuss in detail, we note that the addition of recursion to ZK systems can
considerably complicate proofs of knowledge soundness.

6.3.5 Pairing-based SNARKs

Pairing-based ZK-SNARKs, often simply referred to as “SNARKs” in the literature,
are among the first general zero knowledge proof systems to become popular. They
require a trusted setup 6.3.3, but produce extremely small proofs, less than 300
bytes. They accept statements in the form of Rank-1 Constraint Systems [148],
and have a fairly complex set of cryptographic assumptions.

Zcash [143] is a pioneering user of SNARKs, and other cryptocurrency ecosys-
tems, like Ethereum [152] and Loopring [153], also make use of them.

6.3.6 STARK (Zero-Knowledge Scalable Transparent
Argument of Knowledge)

STARKs [150] are a family of ZK proofs that do not need a trusted setup and
are plausibly quantum safe, as the only cryptographic assumption is the existence
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of cryptographically secure hash functions. They also enjoy small proof size (on
the order of 100kB), verification complexity that is polylogarithmic in the size of
the witness, and a prover whose complexity is quasilinear in the size of the witness.
Statements to be proven in a ZK-STARK take the form of an AIR, which represents
a succinct, low-degree transition function that is repeatedly applied. However, it
should be noted that for larger witnesses, the quasilinear prover complexity leads
to very high memory demands on the prover. As a result, many modern efforts in
ZK-STARKs revolve around recursion 6.3.4.

6.3.7 Nova

Another relatively new and popular proof sytem is Nova [151], supporting con-
straints in R1CS. The core concept in Nova is first to express its own verifier very
succinctly as an R1CS. Then, the statement of interest is proven, then the two dif-
ferent instances are “folded” into a single instance. This process can be repeated
many times, allowing prover memory demand to remain very low, as well as allow-
ing prover complexity to vary with the length of the proof. Because of its extreme
efficiency with recursion, statements used with Nova are often so-called step cir-
cuits, that is, intended to be applied repeatedly, each taking the output of the pre-
vious as its input. In its current instantiation, Nova relies on the security of the
discrete log problem.

In recent years, ZK proofs have become practical for a large class of statements,
especially with the introduction of recursion. In principle, they can be used directly
to prove to a counterparty that a particular task has been performed correctly. How-
ever, there are several difficulties. First, the problem statement must be described in
relatively unnatural languages such as Rank-1 Constraint Systems (R1CS) [148] or
Algebraic Intermediate Representation (AIR) [148], both of which are far removed
from even low-level programming. Second, even though the performance of zero-
knowledge proofs has drastically improved, they are still difficult to use on tasks as
large as deep neural networks, which may contain hundreds of millions of multi-
plications (a key measure of complexity) or more. The following subsection offers
some solutions for more practical ZK proving.

6.3.8 Practical ZKP

In addition to prover performance, a major obstacle to practical ZK proofs is the
need to express the statement of interest in an unusual language, such as R1CS
or AIR. However, there are several recent developments that have eased this bur-
den. One is tooling, akin to high-level hardware description languages, that can
compile programmer-friendly languages down to constraint systems. These include
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Noir [154], Zokrates [155], and Circom [156], among others. However, though
they ease the burden of developing constraint systems, several difficulties remain.
For instance, conditionals must always evaluate both branches, and loops without
compile-time bounds are forbidden.

To alleviate this challenge, some groups, including the authors, are developing
or have developed so-called Zero Knowledge Virtual Machines (ZKVMs). These
ZKVMs provide a constraint system for a virtual version of a CPU, which can be
targeted by standard programming languages such as C or Rust or unique languages
that nonetheless retain capabilities such as branching and unbounded looping.

Cairo [157] is a virtual machine implemented as a zero-knowledge proof plat-
form. This allows it to target arbitrary programs to a virtual machine, without wor-
rying about constructing new algebraic representations for each new problem. It
offers a Rust-like language for programming and supports generation of STARK
proofs of execution.

RISC Zero [158] is another ZKVM that opens up the RISC-V microarchitecture
for ZK proofs. It allows developers to write Rust programs and potentially any
language that compiles to RISC-V to write ZK proofs. Additionally, it also allows
for GPU and Apple Metal acceleration.

To address performance, ZK proofs can be accelerated by GPUs, FPGAs, or
ASICs. Particular steps during proving and verification such as polynomial evalua-
tion and interpolation of STARKs are usually targeted for acceleration as they are
performed with FFT/NTT which can be accelerated easily. Multiscalar multiplica-
tion is another common target for GPU acceleration in proof systems for which it
is relevant. GPU accelerated libraries such as Winterfell [159] for STARKs written
in Rust, ICICLE [160] which is a general purpose library for ZK proofs written
in C++ with Rust and Go bindings, bellperson [161] which is a GPU-accelerated
SNARK library based on bellman [162], and ezkl [163] which is a Rust-based
SNARK library for inferencing deep learning models and computational graphs.
There are also special purpose hardware (ASICs that have been referred to as “ZPUs”
[164]), such as PipeZK [165], which is a 28nm chip that can achieve 10x speedup
on SNARKs on standard benchmarks and 5x speedup on Zcash [143].

6.4 Enhancing Privacy at Scale with Blockchain and ZK

Collaborating across multiple organizations for privacy-preserving AI tasks can be
a daunting task as it can present a wide range of challenges, such as unfaithful or
malicious parties trying to either gain information without giving anything back, or
trying to thwart the whole process by sharing false or malicious data to throw off the
statistics, or simply not performing expensive parts of the computation honestly.



56 Blockchain and Zero Knowledge Proofs

Figure 6.3. A verifiable and auditable homomorphic encryption system.

Using blockchain technologies and cryptographic proof systems described above
provides a solution to these problems by allowing the detection of malicious activity.

6.4.1 Verifiable and Auditable Homomorphic Encryption

A verifiable and auditable privacy-preserving system that can handle AI applica-
tions such as neural network inference is shown in Figure 6.3. The client creates
homomorphic encryption keys and encrypts their private data with the keys. The
server is a service provider or a node on the cloud or the internet that offers infer-
ence of neural networks or any other such computation. The server stores execution
steps/trace of its computation and subsequently generates a ZK proof out of it. A
commitment to the ZK proof can be then published to allow the client or anyone
with access to the blockchain to verify that the server performed the computation
correctly. Such a system was developed and demonstrated by the authors for per-
forming secure inference of neural networks on private data.

This system can also account for payment systems. If server expects a fee from the
client for the computation, the server can set up a smart contract on the blockchain
that dictates that on a successful, faithful and correct training of the neural network,
server gets the payment from the client.

6.4.2 Verifiable and Auditable MPC

Figure 6.4 illustrates a verifiable and auditable MPC framework where nodes use
their private data to perform MPC and, while doing so, store execution traces
so that ZK proofs can be generated. Each party publishes commitments to the
blockchain that reflect the proofs. Anyone who has access to the blockchain com-
mitments can check whether each party performed their part of the training cor-
rectly. We are leveraging such a framework for training of neural networks across
multiple institutions.
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Figure 6.4. A verifiable and auditable MPC.

Payment systems can also be incorporated where each party is compensated for
its share of their training.

Training of neural networks with MPC is thus possible in a verifiable manner
that maintains the privacy of all parties’ data and allows them to be paid for proper
participation.

There have been recent works incorporating blockchain technologies and
ZK proofs for computational integrity and auditing. Healthlock [166] enabled
blockchain-based homomorphic encryption for training of deep neural networks
on IoT data. It enforces fine-grained access control through blockchain and smart
contracts ensuring that only authorized users can access sensitive encrypted data.
Zhang et al. trained encrypted neural networks on the IRIS dataset [167], such that
anyone in possession of the proof of training generated from the ZKVM can verify
if the learning nodes performed the training correctly [168].
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Chapter 7

Conclusion

Techniques for accelerating privacy-preserving AI are opening a new era unhindered
by tension between utilizing data and maintaining privacy.

As discussed, applications are already arising in fields such as healthcare, drug dis-
covery, wearable technologies, home security, and more. Challenges in organizing
a large-scale collaboration can be addressed with blockchain and ZK proof tech-
nologies. The space is rapidly progressing.

This book showcased the current state of high performance privacy-preserving
techniques when applied to AI applications and it also provided a look into the
future where these techniques can be applied in large scale distributed and decen-
tralized environments. We hope the reader helps advance this exciting future.
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