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Abstract

In this survey, we give an overview of invariant interest point detectors,
how they evolved over time, how they work, and what their respective
strengths and weaknesses are. We begin with defining the properties of
the ideal local feature detector. This is followed by an overview of the
literature over the past four decades organized in different categories of
feature extraction methods. We then provide a more detailed analysis
of a selection of methods which had a particularly significant impact on
the research field. We conclude with a summary and promising future
research directions.
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Preface: The Local Features Paradigm

Interest points have become increasingly popular over the last few
years. Today, they are the preferred strategy for solving a wide vari-
ety of problems, from wide baseline matching and the recognition of
specific objects to the recognition of object classes. Additionally, simi-
lar ideas have been applied to texture recognition, scene classification,
robot navigation, visual data mining, and symmetry detection, to name
just a few application domains.

Yet, in spite of their recent success and gain in popularity, local
features can hardly be called novel. In fact, they have been around
since the late 1970s — even though different terminology was used at
the time and the level of invariance was less than what we typically work
with today. Indeed, the term “interest points” has been introduced by
Moravec back in 1979 [155], and there exists a long tradition in corner,
blob, and edgel detectors — all of which fall under the general category
of “local features.”

Interest points were popular in the past mainly because of their effi-
ciency, information content, and invariance. However, the recent upraise
of local feature based approaches is not so much due to the locality of
the features nor to their increased levels of invariance. We claim it

ix
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x Preface

is rather caused by a shift in paradigm on how to use such features.
Previously, the stress was on accurate (even subpixel) localization and
search for correspondences, and on the gain in efficiency by consider-
ing only a carefully chosen subset of pixels. These arguments still hold
today. Yet on top of that, the emphasis moved toward representing the
image content in a robust and flexible way, with image understanding
the primordial goal.

The introduction of powerful local descriptors by Lowe [126] had a
significant impact on the popularity of local features. Interest points
combined with local descriptors started to be used as a black box pro-
viding reliable and repeatable measurements from images for a wide
range of applications. The vision community soon realized the local
descriptors computed on the interest points can capture the essence
of a scene without the need for a semantic-level segmentation. Sepa-
rating the different foreground objects from the background is a very
hard problem indeed — a problem that probably cannot be solved in
a generic way using low-level features only. Assuming you have such
a segmentation available prior to the actual image interpretation thus
results in a chicken-and-egg problem. However, representing the image
as a set of overlapping local regions, this problem can be circumvented,
as it yields an implicit segmentation: since the features are local, some
of them cover part of the foreground object(s) and can be considered as
relevant, while others fall on the background or on object boundaries
and can be considered as irrelevant. It is the task of the subsequent
higher-level processing steps to filter out the relevant information or at
least to be robust to the (sometimes high) percentage of outliers. This
new way of looking at local features has opened up a whole new range
of applications and has brought us a step closer to cognitive-level image
understanding.

This survey focuses on the feature detectors only, with the emphasis
on local features well suited for image understanding applications. Local
descriptors will be discussed in another survey.
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1

Introduction

In this section, we discuss the very nature of local (invariant) fea-
tures. What do we mean with this term? What is the advantage of
using local features? What can we do with them? What would the ideal
local feature look like? These are some of the questions we attempt to
answer.

1.1 What are Local Features?

A local feature is an image pattern which differs from its immediate
neighborhood. It is usually associated with a change of an image prop-
erty or several properties simultaneously, although it is not necessarily
localized exactly on this change. The image properties commonly con-
sidered are intensity, color, and texture. Figure 1.1 shows some exam-
ples of local features in a contour image (left) as well as in a grayvalue
image (right). Local features can be points, but also edgels or small
image patches. Typically, some measurements are taken from a region
centered on a local feature and converted into descriptors. The descrip-
tors can then be used for various applications.

1
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2 Introduction

Fig. 1.1 Importance of corners and junctions in visual recognition [20] and an image example

with interest points provided by a corner detector (cf. Section 3.2).

1.2 Why Local Features?

As discussed shortly in the preface, local (invariant) features are a
powerful tool, that has been applied successfully in a wide range of
systems and applications.

In the following, we distinguish three broad categories of feature
detectors based on their possible usage. It is not exhaustive or the only
way of categorizing the detectors but it emphasizes different proper-
ties required by the usage scenarios. First, one might be interested in
a specific type of local features, as they may have a specific seman-
tic interpretation in the limited context of a certain application. For
instance, edges detected in aerial images often correspond to roads; blob
detection can be used to identify impurities in some inspection task;
etc. These were the first applications for which local feature detec-
tors have been proposed. Second, one might be interested in local fea-
tures since they provide a limited set of well localized and individually
identifiable anchor points. What the features actually represent is not
really relevant, as long as their location can be determined accurately
and in a stable manner over time. This is for instance the situation in
most matching or tracking applications, and especially for camera cal-
ibration or 3D reconstruction. Other application domains include pose

Full text available at: http://dx.doi.org/10.1561/0600000017



1.3 A Few Notes on Terminology 3

estimation, image alignment or mosaicing. A typical example here are
the features used in the KLT tracker [228]. Finally, a set of local features
can be used as a robust image representation, that allows to recognize
objects or scenes without the need for segmentation. Here again, it
does not really matter what the features actually represent. They do
not even have to be localized precisely, since the goal is not to match
them on an individual basis, but rather to analyze their statistics. This
way of exploiting local features was first reported in the seminal work
of [213] and [210] and soon became very popular, especially in the
context of object recognition (both for specific objects as well as for
category-level recognition). Other application domains include scene
classification, texture analysis, image retrieval, and video mining.

Clearly, each of the above three categories imposes its own con-
straints, and a good feature for one application may be useless in the
context of a different problem. These categories can be considered when
searching for suitable feature detectors for an application at hand. In
this survey, we mainly focus on the second and especially the third
application scenario.

Finally, it is worth noting that the importance of local features
has also been demonstrated in the context of object recognition by
the human visual system [20]. More precisely, experiments have shown
that removing the corners from images impedes human recognition,
while removing most of the straight edge information does not. This is
illustrated in Figure 1.1.

1.3 A Few Notes on Terminology

Before we discuss feature detectors in more detail, let us explain some
terminology commonly used in the literature.

1.3.1 Detector or Extractor?

Traditionally, the term detector has been used to refer to the tool that
extracts the features from the image, e.g., a corner, blob or edge detec-
tor. However, this only makes sense if it is a priori clear what the
corners, blobs or edges in the image are, so one can speak of “false
detections” or “missed detections.” This only holds in the first usage

Full text available at: http://dx.doi.org/10.1561/0600000017



4 Introduction

scenario mentioned earlier, not for the last two, where extractor would
probably be semantically more correct. Still, the term detector is widely
used. We therefore also stick to this terminology.

1.3.2 Invariant or Covariant?

A similar discussion holds for the use of “invariant” or “covariant.”
A function is invariant under a certain family of transformations if
its value does not change when a transformation from this family is
applied to its argument. A function is covariant when it commutes
with the transformation, i.e., applying the transformation to the argu-
ment of the function has the same effect as applying the transformation
to the output of the function. A few examples may help to explain the
difference. The area of a 2D surface is invariant under 2D rotations,
since rotating a 2D surface does not make it any smaller or bigger. But
the orientation of the major axis of inertia of the surface is covariant
under the same family of transformations, since rotating a 2D sur-
face will affect the orientation of its major axis in exactly the same
way. Based on these definitions, it is clear that the so-called local scale
and/or affine invariant features are in fact only covariant. The descrip-
tors derived from them, on the other hand, are usually invariant, due to
a normalization step. Since the term local invariant feature is so widely
used, we nevertheless use “invariant” in this survey.

1.3.3 Rotation Invariant or Isotropic?

A function is isotropic at a particular point if it behaves the same in
all directions. This is a term that applies to, e.g., textures, and should
not be confused with rotational invariance.

1.3.4 Interest Point, Region or Local Feature?

In a way, the ideal local feature would be a point as defined in geometry:
having a location in space but no spatial extent. In practice however,
images are discrete with the smallest spatial unit being a pixel and
discretization effects playing an important role. To localize features in
images, a local neighborhood of pixels needs to be analyzed, giving

Full text available at: http://dx.doi.org/10.1561/0600000017



1.4 Properties of the Ideal Local Feature 5

all local features some implicit spatial extent. For some applications
(e.g., camera calibration or 3D reconstruction) this spatial extent is
completely ignored in further processing, and only the location derived
from the feature extraction process is used (with the location sometimes
determined up to sub-pixel accuracy). In those cases, one typically uses
the term interest point.

However, in most applications those features also need to be
described, such that they can be identified and matched, and this again
calls for a local neighborhood of pixels. Often, this neighborhood is
taken equal to the neighborhood used to localize the feature, but this
need not be the case. In this context, one typically uses the term region
instead of interest point. However, beware: when a local neighborhood
of pixels is used to describe an interest point, the feature extraction
process has to determine not only the location of the interest point,
but also the size and possibly the shape of this local neighborhood.
Especially in case of geometric deformations, this significantly compli-
cates the process, as the size and shape have to be determined in an
invariant (covariant) way.

In this survey, we prefer the use of the term local feature, which can
be either points, regions or even edge segments.

1.4 Properties of the Ideal Local Feature

Local features typically have a spatial extent, i.e., the local neigh-
borhood of pixels mentioned above. In contrast to classical segmen-
tation, this can be any subset of an image. The region boundaries
do not have to correspond to changes in image appearance such as
color or texture. Also, multiple regions may overlap, and “uninter-
esting” parts of the image such as homogeneous areas can remain
uncovered.

Ideally, one would like such local features to correspond to seman-
tically meaningful object parts. In practice, however, this is unfeasible,
as this would require high-level interpretation of the scene content,
which is not available at this early stage. Instead, detectors select local
features directly based on the underlying intensity patterns.

Full text available at: http://dx.doi.org/10.1561/0600000017



6 Introduction

Good features should have the following properties:

• Repeatability: Given two images of the same object or scene,
taken under different viewing conditions, a high percentage
of the features detected on the scene part visible in both
images should be found in both images.

• Distinctiveness/informativeness: The intensity patterns
underlying the detected features should show a lot of varia-
tion, such that features can be distinguished and matched.

• Locality: The features should be local, so as to reduce the
probability of occlusion and to allow simple model approx-
imations of the geometric and photometric deformations
between two images taken under different viewing conditions
(e.g., based on a local planarity assumption).

• Quantity: The number of detected features should be suffi-
ciently large, such that a reasonable number of features are
detected even on small objects. However, the optimal number
of features depends on the application. Ideally, the number
of detected features should be adaptable over a large range
by a simple and intuitive threshold. The density of features
should reflect the information content of the image to provide
a compact image representation.

• Accuracy: The detected features should be accurately local-
ized, both in image location, as with respect to scale and
possibly shape.

• Efficiency: Preferably, the detection of features in a new
image should allow for time-critical applications.

Repeatability, arguably the most important property of all, can be
achieved in two different ways: either by invariance or by robustness.

• Invariance: When large deformations are to be expected,
the preferred approach is to model these mathematically if
possible, and then develop methods for feature detection that
are unaffected by these mathematical transformations.

• Robustness: In case of relatively small deformations, it often
suffices to make feature detection methods less sensitive to

Full text available at: http://dx.doi.org/10.1561/0600000017



1.4 Properties of the Ideal Local Feature 7

such deformations, i.e., the accuracy of the detection may
decrease, but not drastically so. Typical deformations that
are tackled using robustness are image noise, discretization
effects, compression artifacts, blur, etc. Also geometric and
photometric deviations from the mathematical model used
to obtain invariance are often overcome by including more
robustness.

1.4.1 Discussion

Clearly, the importance of these different properties depends on the
actual application and settings, and compromises need to be made.

Repeatability is required in all application scenarios and it directly
depends on the other properties like invariance, robustness, quantity
etc. Depending on the application increasing or decreasing them may
result in higher repeatability.

Distinctiveness and locality are competing properties and cannot be
fulfilled simultaneously: the more local a feature, the less information is
available in the underlying intensity pattern and the harder it becomes
to match it correctly, especially in database applications where there
are many candidate features to match to. On the other hand, in case of
planar objects and/or purely rotating cameras (e.g., in image mosaicing
applications), images are related by a global homography, and there are
no problems with occlusions or depth discontinuities. Under these con-
ditions, the size of the local features can be increased without problems,
resulting in a higher distinctiveness.

Similarly, an increased level of invariance typically leads to a
reduced distinctiveness, as some of the image measurements are used to
lift the degrees of freedom of the transformation. A similar rule holds
for robustness versus distinctiveness, as typically some information is
disregarded (considered as noise) in order to achieve robustness. As
a result, it is important to have a clear idea on the required level of
invariance or robustness for a given application. It is hard to achieve
high invariance and robustness at the same time and invariance, which
is not adapted to the application, may have a negative impact on the
results.

Full text available at: http://dx.doi.org/10.1561/0600000017



8 Introduction

Accuracy is especially important in wide baseline matching, regis-
tration, and structure from motion applications, where precise corre-
spondences are needed to, e.g., estimate the epipolar geometry or to
calibrate the camera setup.

Quantity is particularly useful in some class-level object or scene
recognition methods, where it is vital to densely cover the object of
interest. On the other hand, a high number of features has in most
cases a negative impact on the computation time and it should be kept
within limits. Also robustness is essential for object class recognition,
as it is impossible to model the intra-class variations mathematically, so
full invariance is impossible. For these applications, an accurate local-
ization is less important. The effect of inaccurate localization of a fea-
ture detector can be countered, up to some point, by having an extra
robust descriptor, which yields a feature vector that is not affected by
small localization errors.

1.5 Global versus Local Features

Local invariant features not only allow to find correspondences in spite
of large changes in viewing conditions, occlusions, and image clutter
(wide baseline matching), but also yield an interesting description of
the image content for image retrieval and object or scene recognition
tasks (both for specific objects as well as categories). To put this into
context, we briefly summarize some alternative strategies to compute
image representations including global features, image segments, and
exhaustive and random sampling of features.

1.5.1 Global Features

In the field of image retrieval, many global features have been proposed
to describe the image content, with color histograms and variations
thereof as a typical example [237]. This approach works surprisingly
well, at least for images with distinctive colors, as long as it is the overall
composition of the image as a whole that the user is interested in, rather
than the foreground object. Indeed, global features cannot distinguish
foreground from background, and mix information from both parts
together.

Full text available at: http://dx.doi.org/10.1561/0600000017



1.5 Global versus Local Features 9

Global features have also been used for object recognition, result-
ing in the first appearance-based approaches to tackle this challenging
problem. Turk and Pentland [245] and later Murase and Nayar [160]
proposed to compute a principal component analysis of a set of
model images and to use the projections onto the first few principal
components as descriptors. Compared to the purely geometry-based
approaches tried before, the results of the novel appearance-based
approach were striking. A whole new range of natural objects could
suddenly be recognized. However, being based on a global description,
image clutter and occlusions again form a major problem, limiting the
usefulness of the system to cases with clean backgrounds or where the
object can be segmented out, e.g., relying on motion information.

1.5.2 Image Segments

An approach to overcome the limitations of the global features is to
segment the image in a limited number of regions or segments, with
each such region corresponding to a single object or part thereof. The
best known example of this approach is the blobworld system, pro-
posed in [31], which segments the image based on color and texture,
then searches a database for images with similar “image blobs.” An
example based on texture segmentation is the wide baseline matching
work described in [208].

However, this raises a chicken-and-egg problem as image segmen-
tation is a very challenging task in itself, which in general requires a
high-level understanding of the image content. For generic objects, color
and texture cues are insufficient to obtain meaningful segmentations.

1.5.3 Sampled Features

A way to deal with the problems encountered with global features or
image segmentations, is to exhaustively sample different subparts of
the image at each location and scale. For each such image subpart,
global features can then be computed. This approach is also referred
to as a sliding window based approach. It has been especially popu-
lar in the context of face detection, but has also been applied for the

Full text available at: http://dx.doi.org/10.1561/0600000017



10 Introduction

recognition of specific objects or particular object classes such as pedes-
trians or cars.

By focusing on subparts of the image, these methods are able to find
similarities between the queries and the models in spite of changing
backgrounds, and even if the object covers only a small percentage
of the total image area. On the downside, they still do not manage to
cope with partial occlusions, and the allowed shape variability is smaller
than what is feasible with a local features based approach. However, by
far the biggest drawback is the inefficiency of this approach. Each and
every subpart of the image must be analyzed, resulting in thousands
or even millions of features per image. This requires extremely efficient
methods which significantly limits the scope of possible applications.

To overcome the complexity problems more sparse fixed grid sam-
pling of image patches was used (e.g., [30, 62, 246, 257]). It is however
difficult to achieve invariance to geometric deformations for such fea-
tures. The approach can tolerate some deformations due to dense sam-
pling over possible locations, scales, poses etc. 00, but the individual
features are not invariant. An example of such approach are multi-scale
interest points. As a result, they cannot be used when the goal is to
find precise correspondences between images. However, for some appli-
cations such as scene classification or texture recognition, they may
well be sufficient. In [62], better results are reported with a fixed grid
of patches than with patches centered on interest points, in the context
of scene classification work. This can be explained by the dense cover-
age, as well as the fact that homogeneous areas (e.g., sky) are also taken
into account in the fixed grid approach which makes the representation
more complete. This dense coverage is also exploited in [66], where a
fixed grid of patches was used on top of a set of local invariant features
in the context of specific object recognition, where the latter supply
an initial set of correspondences, which then guide the construction of
correspondences for the former.

In a similar vein, rather than using a fixed grid of patches, a random
sampling of image patches can also be used (e.g., [97, 132, 169]). This
gives a larger flexibility in the number of patches, the range of scales or
shapes, and their spatial distribution. Good scene recognition results
are shown in [132] based on random image patches. As in the case of
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1.6 Overview of this Survey 11

fixed grid sampling, this can be explained by the dense coverage which
ignores the localization properties of features. Random patches are in
fact a subset of the dense patches, and are used mostly to reduce the
complexity. Their repeatability is poor hence they work better as an
addition to the regular features rather than as a stand alone method.

Finally, to overcome the complexity problems while still providing a
large number of features with better than random localization [140, 146]
proposed to sample features uniformly from edges. This proved useful
for dealing with wiry objects well represented by edges and curves.

1.6 Overview of this Survey

This survey article consists of two parts. First, in Section 2, we review
local invariant feature detectors in the literature, from the early days in
computer vision up to the most recent evolutions. Next, we describe a
few selected, representative methods in more detail. We have structured
the methods in a relatively intuitive manner, based on the type of
feature extracted in the image. Doing so, we distinguish between corner
detectors (Section 3), blob detectors (Section 4), and region detectors
(Section 5). Additionally, we added a section on various detectors that
have been designed in a computationally efficient manner (Section 6).
With this structure, we hope the reader can easily find the type of
detector most useful for his/her application. We conclude the survey
with a qualitative comparison of the different methods and a discussion
of future work (Section 7).

To the novice reader, who is not very familiar with local invariant
feature detectors yet, we advice to skip Section 2 at first. This section
has been added mainly for the more advanced reader, to give further
insight in how this field evolved and what were the most important
trends and to add pointers to earlier work.
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