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Abstract

This exploratory paper quests for a stochastic and context sensitive
grammar of images. The grammar should achieve the following four
objectives and thus serves as a unified framework of representation,
learning, and recognition for a large number of object categories. (i) The
grammar represents both the hierarchical decompositions from scenes,
to objects, parts, primitives and pixels by terminal and non-terminal
nodes and the contexts for spatial and functional relations by horizon-
tal links between the nodes. It formulates each object category as the
set of all possible valid configurations produced by the grammar. (ii)
The grammar is embodied in a simple And–Or graph representation
where each Or-node points to alternative sub-configurations and an
And-node is decomposed into a number of components. This represen-
tation supports recursive top-down/bottom-up procedures for image
parsing under the Bayesian framework and make it convenient to scale
up in complexity. Given an input image, the image parsing task con-
structs a most probable parse graph on-the-fly as the output interpre-
tation and this parse graph is a subgraph of the And–Or graph after

* Song-Chun Zhu is also affiliated with the Lotus Hill Research Institute, China.
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making choice on the Or-nodes. (iii) A probabilistic model is defined
on this And–Or graph representation to account for the natural occur-
rence frequency of objects and parts as well as their relations. This
model is learned from a relatively small training set per category and
then sampled to synthesize a large number of configurations to cover
novel object instances in the test set. This generalization capability
is mostly missing in discriminative machine learning methods and can
largely improve recognition performance in experiments. (iv) To fill the
well-known semantic gap between symbols and raw signals, the gram-
mar includes a series of visual dictionaries and organizes them through
graph composition. At the bottom-level the dictionary is a set of image
primitives each having a number of anchor points with open bonds to
link with other primitives. These primitives can be combined to form
larger and larger graph structures for parts and objects. The ambigu-
ities in inferring local primitives shall be resolved through top-down
computation using larger structures. Finally these primitives forms a
primal sketch representation which will generate the input image with
every pixels explained. The proposal grammar integrates three promi-
nent representations in the literature: stochastic grammars for compo-
sition, Markov (or graphical) models for contexts, and sparse coding
with primitives (wavelets). It also combines the structure-based and
appearance based methods in the vision literature. Finally the paper
presents three case studies to illustrate the proposed grammar.
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1

Introduction

1.1 The Hibernation and Resurgence of Image Grammars

Understanding the contents of images has always been the core prob-
lem in computer vision with early work dated back to Fu [22], Riseman
[33], Ohta and Kanade [54, 55] in the 1960–1970s. By analogy to natural
language understanding, the task of image parsing [72], as Figure 1.1
illustrates, is to compute a parse graph as the most probable inter-
pretation of an input image. This parse graph includes a tree struc-
tured decomposition for the contents of the scene, from scene labels, to
objects, parts, primitives, so that all pixels are explained, and a num-
ber of spatial and functional relations between nodes for contexts at all
levels of the hierarchy.

People who worked on image parsing in the 1960–1970s were, obvi-
ously, ahead of their time. In Kanade’s own words, they had only 64K
memory to work with at that time. Indeed, his paper with Ohta [55]
was merely 4-page long! The image parsing efforts and structured meth-
ods encountered overwhelming difficulties in the 1970s and since then
entered a hibernation state for a quarter of a century. The syntactic
and grammar work have been mostly studied in the backstage as we

1
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2 Introduction

Fig. 1.1 Illustrating the task of image parsing. The parse graph includes a tree structured

decomposition in vertical arrows and a number of spatial and functional relations in hori-
zontal arrows. From [72].

shall review in later section. These difficulties remain challenging even
today.

Problem 1: There is an enormous amount of visual knowledge about
the real world scenes that has to be represented in the computer in order
to make robust inference. For example, there are at least 3,000 object
categories1 and many categories have wide intra-category structural
variations. The key questions are: how does one define an object cate-
gory, say a car or a jacket? and how does one represent these categories
in a consistent framework?

The visual knowledge is behind our vivid dreams and imaginations
as well as the top-down computation. It was known that there are far
more downward fibers than upward fibers in the visual pathways of
primate animals. For example, it is reported in [65] that only 5%–10%
of the input to the geniculate relay cells derives from the retina. The

1 This number comes from Biederman who adopted a method used by pollsters. Take an
English dictionary, open some pages at random, and count the number of nouns which

are object categories at a page and then times the number of pages of the dictionary
proportionally.
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1.1 The Hibernation and Resurgence of Image Grammars 3

rest derives from local inhibitory inputs and descending inputs from
layer 6 of the visual cortex. The weakness in knowledge representation
and top-down inference is, in our opinion, the main obstacle in the road
toward robust and large scale vision systems.

Problem 2: The computational complexity is huge.2 A simple glance
of Figure 1.1 reveals that an input image may contain a large number
of objects. Human vision is known [70] to simultaneously activate the
computation at all levels from scene classification to edge detection —
all occurs in a very short time ≤400 ms, and to adopt multiple visual
routines [76] to achieve robust computation. In contrast, most pat-
tern recognition or machine learning algorithms are feedforward and
computer vision systems rarely possess enough visual knowledge for
reasoning.

The key questions are: how does one achieve robust computation
that can be scaled to thousands of categories? and how does one coor-
dinate these bottom-up and top-down procedures? To achieve scalable
computation, the vision algorithm must be based on simple procedures
and structures that are common to all categories.

Problem 3: The most obvious reason that sent the image parsing
work to dormant status was the so-called semantic gap between the
raw pixels and the symbolic token representation in early syntactic and
structured methods. That is, one cannot reliably compute the symbols
from raw images. This has motivated the shift of focus to appearance
based methods in the past 20 years, such as PCA [75], AAM [12], and
appearance based recognition [51], image pyramids [69] and wavelets
[15], and machine learning methods [21, 63, 78] in the past decade.

Though the appearance based methods and machine learning algo-
rithms have made remarkable progress, they have intrinsic problems
that could be complemented by structure based methods. For example,
they require too many training examples due to the lack the compo-
sitional and generative structures. They are often over-fit to specific
training set and can hardly generalize to novel instances or configura-
tions especially for categories that have large intra-class variations.

2 The NP-completeness is no longer an appropriate measure of complexity, because even
many simplified vision problems are known to be NP-hard.
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4 Introduction

After all these developments, the recent vision literature has
observed a pleasing trend for returning to the grammatical and com-
positional methods, for example, the work in the groups of Ahuja [71],
Geman [27, 36], Dickinson [14, 40], Pollak [79], Buhmann [57] and Zhu
[9, 32, 44, 59, 72, 74, 85, 86]. The return of grammar is in response to
the limitations of the appearance based and machine learning methods
when they are scaled up.

The return of grammar is powered by progresses in several aspects,
which were not available in the 1970s. (i) A consistent mathemati-
cal and statistical framework to integrate various image models, such
as Markov (graphical) models [90], sparse coding [56], and stochas-
tic context free grammar [10]. (ii) More realistic appearance models
for the image primitives to connect the symbols to pixels. (iii) More
powerful algorithms including discriminative classification and gener-
ative methods, such as the Data-Driven Markov China Monte Carlo
(DDMCMC) [73]. (iv) Huge number of realistic training and testing
images [87].

1.2 Objectives

This exploratory paper will review the issues and recent progress in
developing image grammars, and introduce a stochastic and context
sensitive grammar as a unified framework for representation, learning,
and recognition. This framework integrates many existing models and
algorithms in the literature and addresses the problems raised in the
previous subsection. This image grammar should achieve the following
four objectives.

Objective 1: A common framework for visual knowledge representa-
tion and object categorization. Grammars, studied mostly in language
[1, 26], are known for their expressive power in generating a very large
set of configurations or instances, i.e., their language, by composing
a relatively much smaller set of words, i.e., shared and reusable ele-
ments, using production rules. Hierarchic and structural composition
is the key concept behind grammars in contrast to enumerating all
possible configurations.

Full text available at: http://dx.doi.org/10.1561/0600000018



1.2 Objectives 5

In this paper, we embody the image grammar in an And–Or
graph representation3 where each Or-node points to alternative sub-
configurations and an And-node is decomposed into a number of
components. This And–Or graph represents both the hierarchical
decompositions from scenes, to objects, parts, primitives and pixels
by terminal and non-terminal nodes and the contexts for spatial and
functional relations by horizontal links between the nodes. It is an alter-
nate way of representing production rules and it contains all possible
parse trees. Then we will define a probabilistic model for the And–Or
graph which can be learned from examples using maximum likelihood
estimation. Therefore, all the structural and contextual information
are represented in the And–Or graph (and equivalently the grammar).
This also resolve the object categorization problem. We can define each
object category as the set of all valid configurations which are produced
by the grammar, with its probability learned to reproduce natural fre-
quency of instances occurring in the observed ensemble.

As we will show in later section, this probability model integrates
popular generative models, such as sparse coding (wavelet coding) and
stochastic context free grammars (SCFG), with descriptive models,
such as Markov random fields and graphical models. The former rep-
resents the generative hierarchy for reconfigurability while the latter
models context.

Objective 2: Scalable and recursive top-down/bottom-up computa-
tion. The And–Or graph representation has recursive structures with
two types of nodes. It can be easily scalable up in the number of nodes
and object categories. For example, suppose an Or-node represents an
object, say car, it then has a number of children nodes for different
views (front, side, back etc.) of cars. By adding a new child node, we
can augment to new views. This representation supports recursive top-
down/bottom-up procedures for image parsing and make it convenient
to scale up in complexity.

Figure 1.2 shows a parsing graph under construction at a time step.
This simple grammar is one of our case study in later section uses one

3 The And–Or graph was previously used by Pearl in [58] for heuristic searches. In our work,
we use it in a very different purpose and should not be confused with Pearl’s work.

Full text available at: http://dx.doi.org/10.1561/0600000018



6 Introduction

Fig. 1.2 Illustrating the recursive bottom-up/top-down computation processes in image
parsing. The detection of rectangles (in red) instantiates some non-terminal nodes shown as

upward arrows. They in turn activate graph grammar rules for grouping larger structures
in nodes A,B, and C, respectively. These rules generate top-down prediction of rectan-
gles (in blue). The predictions are validated from the image under the Bayesian posterior

probability. Modified from [59].
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1.2 Objectives 7

primitive: rectangular surfaces projected onto the image plane. The
grammar rules represents various organization, such as alignments of
the rectangles in mesh, linear, nesting, cubic structures. In the kitchen
scene, the four rectangles (in red) accepted through bottom-up process
and they activate the production rules represented by the non-terminal
nodes A, B, and C, respectively. Which then predict a number of can-
didates (in blue) in top-down search. The solid upward arrows show
the bottom-up binding, while the downward arrows show the top-down
prediction. As the ROC curves in Figure 9.5 shows in later section, the
top-down prediction largely improves the recognition rate of the rect-
angles, as certain rectangles can only be hallucinated through top-down
process due to occlusion and severe image degradation.

Given an input image, the image parsing task constructs a most
probable parse graph on-the-fly as the output interpretation and this
parse graph is a subgraph of the And–Or graph after making choices
on the Or-nodes.

As we shall discuss in later section, the computational algorithm
maintains the same data structures for each of the And-nodes and
Or-nodes in the And–Or graph and adopt the same computational
procedure: (i) bottom-up detecting and binding using a cascade of fea-
tures; and (ii) top-down on-line template composition and matching.
To implement the system, we only need to write one common class (in
C++ programming) for all the nodes, and different objects and parts
are realized as instances of this class. These nodes use different bottom-
up features/tests and the top-down templates during the computational
process. The features and templates are learned off-line through train-
ing images and loaded into the instances of the C++ class during the
computational process. This recursive algorithm has the potential to
be implemented in a massively parallel machine where each unit has
the same data structures and functions described above.

Objective 3: Small sample learning and generalization. The prob-
abilistic model defined on this And–Or graph representation can be
learned from a relatively small training set per category and then sam-
pled through Monte Carlo simulation to synthesize a large number of
configurations. This is in fact an extension to the traditional texture
synthesis experiment by the minimax entropy principle [90], where new

Full text available at: http://dx.doi.org/10.1561/0600000018



8 Introduction

texture samples are synthesized which are different from the observed
texture but are perceptually equivalent to the observed texture. The
minimax entropy learning scheme is extended to the And–Or graph
models in [59], which can generate novel configurations through com-
position to cover unforeseen object instances in the test set. This gener-
alization capability is mostly missed in discriminative machine learning
methods.

In the experiments reported in [44, 59], they seek for the mini-
mum number of distinct training samples needed for each category,
usually in the range of 20–50. They prune some redundant exam-
ples which can be derived through other examples by composition.
Then they found that the generated samples can largely improve the
object recognition performance. For example, a 15% recognition rate is
reported in [44].

Objective 4: Mapping the visual vocabulary to fill the semantic gap.
To fill the well-known semantic gap between symbols and pixels, the
grammar includes a series of visual dictionaries for visual concepts at
all levels. There are two key observations for these dictionaries.

1. The elements of the dictionaries are organized through graph
composition. At the bottom-level the dictionary is a set of
image primitives each having a number of anchor points in a
small graph with open bonds to link with other primitives.
These primitives can be combined to form larger and larger
graph structures for parts and objects, in a way similar to
Lego pieces that kids play with.4

2. Vision is distinct from other sensors, like speech in the aspect
that objects can appear at arbitrary scales. As a result, the
instances of each node can occur at any sizes. The non-
terminal nodes at all levels of the And–Or graph can termi-
nate directly as image primitives. Thus one has to account
for the transitions between instances of the same node over
scales. This is the topics studied in the perceptual scale space
theory [80].

4 Note that Lego pieces are well designed to have standardized teeth to fit each other, this
is not true in the image primitives. The latter are more flexible.
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1.3 Overview of the Image Grammar 9

Though there are variations in the literature for what the low level
primitives should be, the differences are really minor between what
people called textons, texels, primitives, patches, and fragments. The
ambiguities in inferring these local primitives shall be resolved through
top-down computation using larger structures.

Finally the primitives are connected to form a primal sketch graph
representation [31] which will generate the input image with every pix-
els explained. This closes the semantic gap.

1.3 Overview of the Image Grammar

In this subsection, we overview the basic concepts in the image gram-
mar. We divided it into two parts: (i) representation and data struc-
tures, (ii) Image annotation dataset to learn the grammar, and the
learning and computing issues.

1.3.1 Overview of the Representational Concepts
and Data Structures

We use Figure 1.3 as an example to review the representational concepts
in the following:

1. An And–Or graph. Figure 1.3(a) shows a simple example of
an And–Or graph. An And–Or graph includes three types
of nodes: And-nodes (solid circles), Or-nodes (dashed cir-
cles), and terminal nodes (squares). An And-node represents
a decomposition of an entity into its parts. It corresponds to
the grammar rules, for example,

A → BCD, H → NO.

The horizontal links between the children of an And-node
represent relations and constraints. The Or-nodes act as
“switches” for alternative sub-structures, and stands for
labels of classification at various levels, such as scene cat-
egory, object classes, and parts etc. It corresponds to pro-
duction rules like,

B → E | F, C → G | H | I.

Full text available at: http://dx.doi.org/10.1561/0600000018



10 Introduction

Fig. 1.3 Illustrating the And–Or graph representation. (a) An And–Or graph embodies the

grammar productions rules and contexts. It contains many parse graphs, one of which is
shown in bold arrows. (b) and (c) are two distinct parse graphs by selecting the switches at

related Or-nodes. (d) and (e) are two graphical configurations produced by the two parse

graphs, respectively. The links of these configurations are inherited from the And–Or graph
relations. Modified from [59].

Due to this recursive definition, one may merge the And–
Or graphs for many objects or scene categories into a larger
graph. In theory, all scene and object categories can be repre-
sented by one huge And–Or graph, as it is the case for natural
language. The nodes in an And–Or graph may share common
parts, for example, both cars and trucks have rubber wheels
as parts, and both clock and pictures have frames.

2. A parse graph, as shown in Figure 1.1, is a hierarchic gen-
erative interpretation of a specific image. A parse graph is
augmented from a parse tree, mostly used in natural or pro-
gramming language by adding a number of relations, shown
as side links, among the nodes. A parse graph is derived
from the And–Or graph by selecting the switches or classifi-
cation labels at related Or-nodes. Figures 1.3(b) and 1.3(c)

Full text available at: http://dx.doi.org/10.1561/0600000018



1.3 Overview of the Image Grammar 11

are two instances of the parse graph from the And–Or graph
in Figure 1.3(a). The part shared by two node may have dif-
ferent instances, for example, node I is a child of both nodes
C and D. Thus we have two instances for node 9.

3. A configuration is a planar attribute graph formed by link-
ing the open bonds of the primitives in the image plane.
Figures 1.3(d) and 1.3(e) are two configurations produced
by the parse graphs in Figures 1.3(b) and 1.3(c), respec-
tively. Intuitively, when the parse graph collapses, it pro-
duces a planar configuration. A configuration inherits the
relations from its ancestor nodes, and can be viewed as a
Markov networks (or deformable templates [19]) with recon-
figurable neighborhood. We introduce a mixed random field
model [20] to represent the configurations. The mixed ran-
dom field extends conventional Markov random field models
by allowing address variables and handles non-local connec-
tions caused by occlusions. In this generative model, a con-
figuration corresponds to a primal sketch graph [31].

4. The visual vocabulary. Due to scaling property, the termi-
nal nodes could appear at all levels of the And–Or graph.
Each terminal node takes instances from certain set. The set
is called a dictionary and contains image patches of various
complexities. The elements in the set may be indexed by
variables such as its type, geometric transformations, defor-
mations, appearance changes etc. Each patch is augmented
with anchor points and open bond to connect with other
patches.

5. The language of a grammar is the set of all possible valid
configurations produced by the grammar. In stochastic gram-
mar, each configuration is associated with a probability. As
the And–Or graph is directed and recursive, the sub-graph
underneath any node A can be considered a sub-grammar for
the concept represented by node A. Thus a sub-language for
node A is the set of all valid configurations produced by the
And–Or graph rooted at A. For example, if A is an object cat-
egory, say a car, then this sub-language defines all the valid

Full text available at: http://dx.doi.org/10.1561/0600000018



12 Introduction

configurations of car. In an exiting case, the sub-language of
a terminal node contains only the atomic configurations and
thus is called a dictionary.

In comparison, an element in a dictionary is an atomic structure and
an element in a language is a composite structure (or configuration)
made of a number of atomic structures. A configuration of node A in
zoomed-out view loses its resolution and details, and becomes an atomic
element in the dictionary of node A. For example, a car viewed in close
distance is a configuration consisting of many parts and primitives.
But in far distance, a car is represented by a small image patch as a
whole and is not decomposable. This is a special property of the image
grammar. The perceptual transition over scales is studied in [80, 84].

1.3.2 Overview of the Dataset and Learning

Now we briefly overview the learning and computing issues with
stochastic image grammars.

A foremost question that one may ask is: how do you build this
grammar and where is the dataset? Collecting the dataset for learning
and training is perhaps more challenging than the learning task itself.

Although fully automated learning is most ideal, for example, let
a computer program watch Disney cartoon or Hollywood movies and
hope it figures out all the object categories and relations. But purely
unsupervised learning is less practical for learning the structured com-
positional models at present for two reasons. (i) Visual learning must be
guided by objectives and purposes of vision, not purely based on statis-
tical information. Ideally one has to integrate this automatic learning
process with autonomous robot and AI reasoning at the higher level.
Before the robotics and AI systems are ready, we should guide the
learning process with some human supervision. For example, what are
important structures and what are decorative stuff. (ii) In almost all
the unsupervised learning methods, the trainers still have to select their
data carefully to contrast the involved concepts. For example, to learn
the concept that a car has doors, we must select images of cars with
doors both open and closed. Otherwise the concept of door cannot be
learned.

Full text available at: http://dx.doi.org/10.1561/0600000018



1.3 Overview of the Image Grammar 13

We propose to learn the image grammar in a semi-automatic way.
We shall start with a supervised learning with manually annotated
images and objects to produce the parse graphs. We use this dataset
to initiate the process and then shift to weakly supervised learning.
This initial dataset is still very large if we target thousands of object
categories.

To make the large scale grammar learning framework practical, the
first author founded an independent non-profit research institute which
started to operate in the summer of 2005.5 It has a full time annotation
team for parsing the image structures and a development team for the
annotation tools and database construction. Each image or object is
parsed, semi-automatically, into a parse graph where the relations are
specified and objects are names using the wordnet standard. Figure 1.4
lists an inventory of the current ground truth dataset parsed at LHI.
It has now over 500,000 images (or video frames) parsed, covering 280
object categories. Figure 1.5 shows two examples — the parse trees
of cat and car. For clarity we only show the parse trees with naming
of the nodes. Beyond the object parsing, there are many scene images
annotated with the objects and their spatial relations labeled. As stated
in a report [87], this ground truth annotation is aimed at broader scope
and more hierarchic structures than other datasets collected in various
groups, such as Berkeley [4, 50], Caltech [16, 29], and MIT [62].

With this annotated dataset, we can construct the And–Or graph
for object and scene categories and learn the probability model on the
And–Or graphs. These learning steps are guided by a minimax entropy
learning scheme [90] and maximum likelihood estimation. It is divided
into three parts:

1. Learning the probabilities at the Or-node so that the con-
figurations generated account for the natural co-occurrence
frequency. This is typical in stochastic context free gram-
mars [10].

2. Learning and pursuing the Markov models on the horizontal
links and relations to account for the spatial relations, as well

5 It is called the Lotus Hill Research Institute (LHI) in China (www.lotushill.org).
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Fig. 1.5 Two examples of the parse trees (cat and car) in the Lotus Hill Research Institute
image corpus. From [87].
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as consistency of appearance between nodes in the And–Or
graphs. This is similar to the learning of Markov random
fields [90], except that we are dealing with a dynamic graph-
ical configuration instead of a fixed neighborhood.

3. Learning the And–Or graph structures and dictionaries. The
terminal nodes are learned through clustering and the non-
terminal nodes are learned through binding. We only briefly
discuss this issue in this paper as the current literature has
not made significant progress in this part.

The proposed stochastic context sensitive grammar (SCSG) com-
bines the reconfigurability of SCFG with the contextual constraints of
graphical (MRF) models, and has the following properties: (a) Com-
positional power for representing large intra-class structural variations.
The grammar can generate a huge number of configurations (i.e., its
language) for scenes and objects by composing a relatively much smaller
vocabulary. All are represented in graphical configurations. The lan-
guage of the grammar is the set of all valid configurations of a cat-
egory, such as furniture, clothes, vehicles, etc. Thus it has enormous
expressive power. (b) Recursive structures for scalable computing. The
grammar is embodied into an And–Or graph which has recursive struc-
ture. The latter is easy to scale in terms of increasing the number of
object categories or augmenting more levels (e.g., scene nodes). Con-
sequently the inference algorithms is also recursively defined. We only
need to write general top-down and bottom-up functions for a com-
mon And–Or node, and re-use the code for all nodes in the And–Or
graph. (c) Small sample for effective learning. Due to explicit composi-
tion and part-sharing between categories, the state spaces for all object
categories are decomposed into products of subspaces of lower dimen-
sions for the vocabulary and relations. Thus we need relatively smaller
number of training examples (20–100 instances) for each category. In
recent experiments (see Figure 2.6), we can sample the learned object
model to generate novel object configurations for generalization, and
observe remarkable (over 15% improvement in object category) recog-
nition tasks.
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The rest of the paper is organized in the following way. We first dis-
cuss in Chapter 2 the background of stochastic grammar, its formula-
tion, the new issues of image grammar in contrast to language grammar,
and previous work on image grammar. Then we present the grammar
and And–Or graph representation in Chapters 3–6 sequentially: the
visual grammar, the relations and configurations, the parse graphs,
and finally the And–Or graph. The learning algorithm and results are
discussed in Chapter 7, which is followed by the top-down/bottom-up
inference algorithm in Chapter 8, and three case studies in Chapter 9.
Finally, we raise a number of unsolved problems in Chapter 10 to con-
clude the paper.
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