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Abstract

This tutorial presents a hands-on view of the field of multi-view stereo
with a focus on practical algorithms. Multi-view stereo algorithms are
able to construct highly detailed 3D models from images alone. They
take a possibly very large set of images and construct a 3D plausible
geometry that explains the images under some reasonable assumptions,
the most important being scene rigidity. The tutorial frames the multi-
view stereo problem as an image/geometry consistency optimization
problem. It describes in detail its main two ingredients: robust im-
plementations of photometric consistency measures, and efficient opti-
mization algorithms. It then presents how these main ingredients are
used by some of the most successful algorithms, applied into real appli-
cations, and deployed as products in the industry. Finally it describes
more advanced approaches exploiting domain-specific knowledge such
as structural priors, and gives an overview of the remaining challenges
and future research directions.

Y. Furukawa and C. Herndndez . Multi- View Stereo: A Tutorial. Foundations and
Trends® in Computer Graphics and Vision, vol. 9, no. 1-2, pp. 1-148, 2013.

DOI: 10.1561/0600000052.
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Introduction

Reconstructing 3D geometry from photographs is a classic Computer
Vision problem that has occupied researchers for more than 30 years. Its
applications range from 3D mapping and navigation to online shopping,
3D printing, computational photography, computer video games, or
cultural heritage archival. Only recently however have these techniques
matured enough to exit the laboratory controlled environment into the
wild, and provide industrial scale robustness, accuracy and scalability.

Modeling the 3D geometry of real objects or scenes is a chal-
lenging task that has seen a variety of tools and approaches ap-
plied such as Computer Aided Design (CAD) tools [3], arm-mounted
probes, active methods [110, 131, 11, 10] and passive image-based meth-
ods [162, 165, 176]. Among all, passive image-based methods, the sub-
ject of this tutorial, provide a fast way of capturing accurate 3D content
at a fraction of the cost of other approaches. The steady increase of im-
age resolution and quality has turned digital cameras into cheap and
reliable high resolution sensors that can generate outstanding quality
3D content.

The goal of an image-based 3D reconstruction algorithm can be de-
scribed as “given a set of photographs of an object or a scene, estimate
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Figure 1.1: Image-based 3D reconstruction. Given a set of photographs (left), the
goal of image-based 3D reconstruction algorithms is to estimate the most likely 3D
shape that explains those photographs (right).

the most likely 3D shape that explains those photographs, under the
assumptions of known materials, viewpoints, and lighting conditions”
(See Figure 1.1). The definition highlights the difficulty of the task,
namely the assumption that materials, viewpoints, and lighting are
known. If these are not known, the problem is generally ill-posed since
multiple combinations of geometry, materials, viewpoints, and lighting
can produce exactly the same photographs. As a result, without fur-
ther assumptions, no single algorithm can correctly reconstruct the 3D
geometry from photographs alone. However, under a set of reasonable
extra assumptions, e.g. rigid Lambertian textured surfaces, state-of-
the-art techniques can produce highly detailed reconstructions even
from millions of photographs.

There exist many cues that can be used to extract geometry from
photographs: texture, defocus, shading, contours, and stereo correspon-
dence. The latter three have been very successful, with stereo corre-
spondence being the most successful in terms of robustness and the
number of applications. Multi-view stereo (MVS) is the general term
given to a group of techniques that use stereo correspondence as their
main cue and use more than two images [165, 176].

All the MVS algorithms described in the following chapters assume
the same input: a set of images and their corresponding camera param-
eters. This chapter gives an overview of an MVS pipeline starting from
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Figure 1.2: Example of a multi-view stereo pipeline. Clockwise: input imagery,
posed imagery, reconstructed 3D geometry, textured 3D geometry.

photographs alone. An important take-home message of this chapter is
simple: An MVS algorithm is only as good as the quality of the input
images and camera parameters. Moreover, a large part of the recent
success of MVS is due to the success of the underlying Structure from
Motion (SfM) algorithms that compute the camera parameters.

Figure 1.2 provides a sketch of a generic MVS pipeline. Different
applications may use different implementations of each of the main
blocks, but the overall approach is always similar:

e (Collect images,
e Compute camera parameters for each image,

e Reconstruct the 3D geometry of the scene from the set of images
and corresponding camera parameters.

e Optionally reconstruct the materials of the scene.
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Figure 1.3: Different MVS capture setups. From left to right: a controlled MVS
capture using diffuse lights and a turn table, outdoor capture of small-scale scenes,
and crowd-sourcing from online photo-sharing websites.

In the chapter we will give more insight into the first three main
stages of MVS: imagery collection, camera parameters estimation, and
3D geometry reconstruction. Chapter 2 develops the notion of photo-
consistency as the main signal being optimized by MVS algorithms.
Chapter 3 presents and compares some of the most successful MVS al-
gorithms. Chapter 4 discusses the use of domain knowledge, in particu-
lar, structural priors in improving the reconstruction quality. Chapter 5
gives an overview of successful applications, available software, and best
practices. Finally Chapter 6 describes some of the current limitations
of MVS as well as research directions to solve them.

1.1 Imagery collection

One can roughly classify MVS capture setups into three categories (See
Figure 1.3):

e Laboratory setting,
e Outdoor small-scale scene capture,

e Large-scale scene capture using fleets or crowd-sourcing, e.g.,
cars, planes, drones, and Internet.

MVS algorithms first started in a laboratory setting [184, 147, 58],
where the light conditions could be easily controlled and the camera
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could be easily calibrated, e.g. from a robotic arm [165], rotation ta-
ble [93], fiducial markers [2, 43, 192], or early SfM algorithms [62]. MVS
algorithms went through two major developments that took them to
their current state: They left the laboratory setting to a small-scale
outdoor scenes [174, 102, 85, 169, 190], e.g. a building facade or a foun-
tain, then scaled up to much larger scenes, e.g. entire buildings and
cities [129, 153, 97, 69)].

These major changes were not solely due to the developments in the
MVS field itself. It was a combination of new hardware to capture bet-
ter images, more computation power, and scalable camera estimation
algorithms.

Improvements in hardware: Two areas of hardware improvements
had the most impact on MVS: digital cameras and computation power.
Digital photography became mainstream and image digital sensors con-
stantly improved in terms of resolution and quality. Additionally, mass
production and miniaturization of geo positioning sensors (GPS) made
them ubiquitous in digital cameras, tablets, and mobile phones. Al-
though the precision of commercial units is not enough for MVS pur-
poses, it does provide an initial estimate on camera parameters that
can be refined using Computer Vision techniques. The second signifi-
cant hardware improvement was computation power. The rise of inex-
pensive computer clusters [5] or GPU general computation [6] enabled
SfM algorithms [25, 64] and MVS algorithms [69] to easily handle tens
of thousands of images.

Improvements in Structure-from-Motion algorithms: Re-
searchers have been working on visual reconstruction algorithms for
decades [183, 182]. However, only relatively recently have these tech-
niques matured enough to be used in large-scale industrial applications.
Nowadays industrial algorithms are able to estimate camera parameters
for millions of images. Two slightly different techniques have made great
progress in recent years: Structure-from-Motion (SfM) [88] and Visual
Simultaneous Localization and Mapping (VSLAM) [53]. Both rely on
the correspondence cue and the assumption that the scene is rigid. SfM
is most commonly used to compute camera models of unordered sets
of images, usually offline, while VSLAM specializes in computing the
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location of a camera from a video stream, usually real-time. In this
tutorial we focus on SfM algorithms, since a large majority of MVS
algorithms are designed to work on unordered image sets, and rely on
SfM to compute camera parameters. Note however that VSLAM has
made very quick progress recently in the context of MVS [145, 180].

The term “camera parameters” refers to a set of values describing
a camera configuration, that is, camera pose information consisting of
location and orientation, and camera intrinsic properties such as focal
length and pixel sensor size. There are many different ways or “models”
to parameterize this camera configuration. In the following section, we
discuss some of the most common camera projection models used in
MVS applications.

1.2 Camera projection models

As mentioned in the introduction, MVS algorithms need additional
knowledge in order to make the reconstruction problem well posed.
In particular, MVS algorithms require that every input image has a
corresponding camera model that fully describes how to project a 3D
point in the world into a 2D pixel location in a particular image. The
most commonly used camera model for MVS is the pinhole camera
model, which is fully explained by a 3x4 projection camera matrix [88],
defined up to a scale. This is the model commonly used with off-the-
shelf digital cameras capturing still photographs. Any 3 x 4 projection
matrix P can be decomposed into the product of a 3x3 upper triangular
matrix K and a 3 x 4 pose matrix [R|T]

fz s ¢ r11 T2 T13 |tz
P = 0 fy ¢ . T2l T22 T3 |ty
0 0 1 r31 r32 33| t. (1.1)
—_———— —_———
K R T

The matrix K is commonly referred to as the intrinsics matrix, because
it is composed of quantities intrinsic to the camera: vertical and hor-
izontal focal lengths (fz, fy), principal point (cz, ¢, ), and skew s. The
matrix [R|T] is commonly known as the extrinsics matrix, where R is
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Figure 1.4: Common deviations from pinhole camera model. Left: a fish eye lens
exhibiting large radial distortion (top) and a rectified version of the same image
after removing radial distortion (bottom). Right: rolling shutter artifacts caused by
a fast moving object in the scene [155].

the rotation of the camera and T is the translation of the camera. Note
that, due to the quality of digital sensors, one rarely estimates the 11
parameters of the projection matrix. In particular, pixels are assumed
to have no skew (s = 0), and be square (f, = fy). Also, if an image
has not been cropped, it is safe to assume the principal point is at the
center of the image. As a result, a common pinhole camera model is
just composed of 7 parameters: the focal length f, the rotation matrix
R and the translation vector T

If the attached lens is low quality, or wide-angle (See Figure 1.4 left),
the pure pinhole model is not enough and often extended with a radial
distortion model. Radial distortion is particularly important for high-
resolution photographs, where small deviations from the pure pinhole
model can amount to multiple pixels near the image boundaries.

Radial distortion can typically be removed from the photographs
before they enter the MVS pipeline. If the radial distortion parameters
of an image have been estimated, one can undistort the image by resam-
pling as if it had been taken with an ideal lens without distortion (See



Full text available at: http://dx.doi.org/10.1561/0600000052

1.3. Structure from Motion 9

Figure 1.4 bottom left). Undistorting the images simplifies the MVS
algorithm and often leads to faster processing times. Some cameras,
e.g. those in mobile phones, incorporate dedicated hardware to remove
radial distortion during the processing of the image just after its cap-
ture. Note however that rectifying wide-angle images will introduce
resampling artifacts as well as field of view cropping. To avoid these is-
sues MVS pipelines can support radial distortion and more complicated
camera models directly, at the expense of extra complexity.

Finally, rolling shutter is another source of complexity particularly
important for video processing applications (See Figure 1.4 right). A
digital sensor with an electronic rolling shutter exposes each row of an
image at slightly different times. This is in contrast to global shutters
where the whole image is exposed at the same time. A rolling shut-
ter often provides higher sensor throughput at the expense of a more
complicated camera model. As a result, if the camera or the scene are
moving while capturing the image, each row of the image captures ef-
fectively a slightly different scene. If the camera or scene motion is slow
w.r.t. the shutter speed, rolling shutter effects can be small enough to
be ignored. Otherwise the camera projection model needs to incorpo-
rate the effects [63].

1.3 Structure from Motion

There is a vast literature on Structure-from-Motion algorithms, and it
is not our intention to throughly review it here. In the following, we
will discuss some of the key aspects of SfM and how they relate to MVS
algorithms.

SfM algorithms take as input a set of images and produce
two things: the camera parameters of every image, and a set
of 3D points visible in the images which are often encoded as
tracks. A track is defined as the 3D coordinates of a recon-
structed 3D point and the list of corresponding 2D coordinates in
a subset of the input images. Most of the current state-of-the-art
StM algorithms share the same basic processing pipeline (See Fig-
ure 1.5):
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Detect 2D features in every input image.

Match 2D features between images.

Construct 2D tracks from the matches.

Solve for the SfM model from the 2D tracks.

Refine the SfM model using bundle adjustment.

Detect 2D features :> Match 2D features :> Generate 2D tracks
in images between images from matches

g

] <& [ SfM model from 2D tracks ]

SfM model refinement
using bundle adjustment

Figure 1.5: Main stages of a generic SfM pipeline, clockwise: feature detection,
feature matching, track generation, structure-from-motion and bundle adjustment.

Initial work on SfM mainly focused on the geometry of two and
three views under the assumption of a rigid scene [88]. Carlo Tomasi’s
technical perspective on visual reconstruction algorithms [182] presents
an overview of the early work. One of the key developments for SfM
was the use of RANSAC [61] to robustly estimate the epipolar geometry
between two or three views given noisy matches.

Efforts then focused on two key components of the SfM algorithm:
1) computing a Euclidean reconstruction (up to a scale) from multiple
cameras, that is, estimating both the camera parameters and 3D posi-
tions of the tracks, and 2) building longer 2D tracks. By the end of the
20th century, SfM algorithms were able to robustly compute models
from large structured sets of images, e.g. from sequences of images or
video sequences [62, 152] and the first SfM industrial solutions started
to be commercialized for applications such as movie editing and special
effects [4].

These initial systems were mainly designed for structured sets of
images i.e., sets where the order of images matters, such as a video
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o

Figure 1.6: Large scale SfM examples from [25]. Left: SfM model of the city of
Dubrovnik. Right: SfM model of San Marco Square in Venice.

sequence. Although some MVS applications can define such an order,
for example, Google’s StreetView [81] or Microsoft’s Streetside [143],
many recent MVS applications also use unordered sets of images cap-
tured at different times with different hardware, e.g. 3D maps from
aerial images [108, 144, 30]. The development of fast and high quality
feature detectors [87, 135, 57] and descriptors [135, 36, 159, 130, 26]
was a crucial development towards making SfM work with unstruc-
tured datasets. High quality descriptors enabled building longer and
higher quality tracks from images captured with very different pose
and illumination.

The final ingredient to tackle large-scale SfM of unstructured photo
collections was to improve the matching stage. In the case of un-
structured photo collections, one does not have any prior knowledge
of nearby candidate images that should be matched against. There-
fore, every image has to be matched to every other image, which is
computationally very expensive. Efficient indexing [146] combined with
high quality descriptors allowed efficient pairwise matching of millions
of images. Further work on simplifying the connectivity graph of the
tracks [172] and parallelization [25, 64] lead to the current state-of-
the-art SfM pipelines used in the industry, for example, Microsoft’s
photosynth [16] and Google’s photo tours [15] (See Figure 1.6).
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1.4 Bundle Adjustment

Although bundle adjustment [183] is not strictly a part of SfM, it is
a very common step used to refine the initial SM model. Given a set
of camera parameters {P;}, and a set of tracks { M7, {mf }}, where M7
denotes the 3D coordinate of a track, and mg denotes the 2D image
coordinate of its image projection in the i}, camera, bundle adjustment
minimizes the following non-linear least squares error

BEP,M) =Y 3 |P(M) —mil. (1.2)
Jj i€V (j)
V(j) is the list of camera indices where point M7 is visible, and P;(M7)
represents the projected 2D image coordinate of 3D point M7 in camera
1 using the camera parameters P;.

E(P, M) is typically measured in squared pixels, but a more com-
mon metric to express the accuracy of the estimation is to use the
Root Mean Square Error or RMSE, which is measured in pixels and is
defined as:

E(P,M)
N

where N is the number of residual terms being summed up in (1.2).

RMSE(P,M) = (1.3)

Typical RMSE values before bundle adjustment are in the order of
several pixels, while values after bundle adjustment are often sub-pixel.

The bundle adjustment framework enables the combination of mul-
tiple sensors with the SfM objective in a principled optimization frame-
work. One way to fuse GPS and IMU constraints with SfM constraints
is to simply add additional terms to (1.2) that penalize deviations of
P; from the predicted camera models from the GPS and IMU signals.

MVS algorithms are very sensitive to the accuracy of the estimated
camera models. The reason is that, for efficiency purposes, they use
the epipolar geometry defined by the camera models to restrict the 2D
matching problem into a 1D matching problem (See Section 1.5 for
more details). If the reprojection error is large, a pixel might never be
compared against its real match, significantly degrading the MVS per-
formance. The robustness of MVS to camera reprojection error depends
mainly on how tolerant the matching criterion (namely the photo-
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consistency measures presented in Chapter 2) is to misalignments. Usu-
ally, the larger the domain 2 of the photo-consistency measure (See
equation 2.1), the more robust the measure is. Unfortunately, large
domains also tend to produce over smoothed geometry, so there is a
compromise between accuracy and robustness.

Since MVS is so sensitive to reprojection errors, bundle adjustment
is often a requirement for MVS, with the goal of sub-pixel reprojec-
tion errors. Note that, because reprojection error is measured in pixels,
one can downsample the input images and rescale the camera parame-
ters until the reprojection error drops below a certain threshold. This
approach will work as long as the downsampled images still contain
enough texture and details for MVS to work [72].

1.5 Multi-View Stereo

The origins of multi-view stereo can be traced back to human stereop-
sis and the first attempts to solve the stereoscopic matching problem
as a computation problem [139]. Until this day, two-view stereo algo-
rithms have been a very active and fruitful research area [162]. The
multi-view version of stereo originated as a natural improvement to
the two-view case. Instead of capturing two photographs from two dif-
ferent viewpoints, multi-view stereo would capture more viewpoints
in-between to increase robustness, e.g. to image noise or surface tex-
ture [184, 147]. What started as a way to improve two-view stereo has
nowadays evolved into a different type of problem.

Although MVS shares the same principles with such classic stereo
algorithms, MVS algorithms are designed to deal with images with
more varying viewpoints, such as an image set surrounding an ob-
ject, and also deal with a very large number of images, even in the
order of millions. The difference in the nature of the MVS problem
ends up producing significantly different algorithms than the classic
stereo counterpart. As an example, industrial applications for 3D map-
ping [108, 144, 30], process millions of photographs over hundreds of
kilometers at a time, effectively reconstructing large metropolitan ar-
eas, countries and eventually the entire world.



Full text available at: http://dx.doi.org/10.1561/0600000052

14 Introduction

Figure 1.7: Matching images with known camera parameters. Left: The 3D geom-
etry of the scene defines a correspondence between pixels in different images. Right:
when camera parameters are known, matching a pixel in one image with pixels in
another image is a 1D search problem.

Matching pixels across images is a challenging problem that is not
unique to stereo or multi-view stereo. In fact, optical flow is another
very active field in Computer Vision, tackling the problem of dense cor-
respondence across images [33]. The main differences with MVS being
that optical flow is typically a two image problem (similar to two-view
stereo), cameras are not calibrated, and its main application is image
interpolation rather than 3D reconstruction.

Note that in the case of MVS, where the camera parameters are
known, solving for the 3D geometry of the scene is exactly equivalent
to solving the correspondence problem across the input images. To see
why, consider a 3D point belonging to the 3D scene geometry (See
Figure 1.7 left). Projecting the 3D point into the set of visible cameras
establishes a unique correspondence between the projected coordinates
on each image.

Given a pixel in an image, finding the corresponding pixels in other
images needs two ingredients:

e An efficient way to generate possible pixel candidates in other
images.

e A measure to tell how likely a given candidate is the correct
match.

If the camera geometry is not known, as is typically the case in
optical flow, each pixel in an image can match any other pixel in another
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image. That is, for each pixel one has to do a 2D search in the other
image. However, when the camera parameters are known (and the scene
is rigid), the image matching problem is simplified from a 2D search
to a 1D search (See Figure 1.7 right). A pixel in an image generates a
3D optic ray that passes through the pixel and the camera center of
the image. The corresponding pixel on another image can only lie on
the projection of that optic ray into the second image. The different
geometric constraints that originate when multiple cameras look at
the same 3D scene from different viewpoints are known as epipolar
geometry [88].

As for measures to tell how likely a candidate match is, there is a
vast literature on how to build so called photo-consistency measures
that estimate the likelihood of two pixels (or groups of pixels) being
in correspondence. Photo-consistency measures in the context of MVS
are presented in more detail in Chapter 2.
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