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Abstract

Domain adaptation is an active, emerging research area that attempts
to address the changes in data distribution across training and testing
datasets. With the availability of a multitude of image acquisition sen-
sors, variations due to illumination, and viewpoint among others, com-
puter vision applications present a very natural test bed for evaluating
domain adaptation methods. In this monograph, we provide a compre-
hensive overview of domain adaptation solutions for visual recognition
problems. By starting with the problem description and illustrations,
we discuss three adaptation scenarios namely, (i) unsupervised adap-
tation where the “source domain” training data is partially labeled
and the “target domain” test data is unlabeled, (ii) semi-supervised
adaptation where the target domain also has partial labels, and (iii)
multi-domain heterogeneous adaptation which studies the previous two
settings with the source and/or target having more than one domain,
and accounts for cases where the features used to represent the data
in each domain are different. For all these topics we discuss existing
adaptation techniques in the literature, which are motivated by the
principles of max-margin discriminative learning, manifold learning,
sparse coding, as well as low-rank representations. These techniques
have shown improved performance on a variety of applications such
as object recognition, face recognition, activity analysis, concept clas-
sification, and person detection. We then conclude by analyzing the
challenges posed by the realm of “big visual data”, in terms of the
generalization ability of adaptation algorithms to unconstrained data
acquisition as well as issues related to their computational tractability,
and draw parallels with the efforts from vision community on image
transformation models, and invariant descriptors so as to facilitate im-
proved understanding of vision problems under uncertainty.

R. Gopalan, R. Li, V.M. Patel and R. Chellappa. Domain Adaptation for Visual
Recognition. Foundations and TrendsR© in Computer Graphics and Vision, vol. 8,
no. 4, pp. 285–378, 2012.
DOI: 10.1561/0600000057.
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1
Introduction

Over the last few years, we have witnessed a widespread impact of com-
puter vision techniques in practical applications pertaining to surveil-
lance, robotics, human computer interaction and user content per-
sonalization. Typical examples include biometric authentication us-
ing face, iris, fingerprint and gait, object localization and scene un-
derstanding for autonomous agents, human gesture interpretation sys-
tems such as Kinect, and visual analytic apps from web-scale images
and videos. While the foundations for these techniques date back to
atleast three decades ago, the main catalyst enabling the transition of
these methods to real applications is the availability of data, which
from the early 2000’s has seen an exponential increase in part due
to the widespread availability of cameras. The performance improve-
ment facilitated by large quantity of data has been well documented in
several computer vision applications that involve unconstrained vari-
ations in the entities of interest. Examples range from face verifica-
tion on the LFW dataset (Huang et al., 2007; Taigman et al., 2014),
the Pascal VOC challenge for object recognition (Everingham et al.,
2010; Girshick et al., 2014), activity analysis on the HMDB dataset
(Kuehne et al., 2011; Shao et al., 2014), and the MIT scene categoriza-

2
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3

tion challenge (Xiao et al., 2010, 2014), to name a few, where we have
seen substantial gains by properly harnessing the information conveyed
by data using modeling tools that are relevant to the specific problem
of interest.

While the benefits derived from data-centric approaches are many,
they however come with their own set of problems which have begun
to surface in the recent past. Primary among them are (i) the varia-
tions in data properties when obtained from different sources, even for
a specific data category, (ii) imbalance in the amount of data obtained
for different data categories, since certain categories are more common
than others, and (iii) the absence of category labels and/or the presence
of noisy category labels since vast quantities of data available from the
web are unstructured. There have been several attempts in the litera-
ture to address these issues, and in particular, the problem of change
in data properties acquired from different sources is tackled by domain
adaptation (Jiang, 2008). An example would be the pictures of Eiffel
Tower obtained from expert photographers when compared with those
obtained from casual visitors. In this case, although the scene that is
being captured is the same, the properties of the images could vary
vastly due to differences in capabilities. Hence to perform visual recog-
nition on data from these different sources or domains, it is important
to account for the change in data distribution. Transfer learning, on the
other hand, deals with the notion of transferring the information learnt
on some data categories to other/newer categories which may not have
sufficient amount of data to begin with (Pan and Yang, 2010). For one
interested in studying visual appearance of mammals, a typical exam-
ple could be to learn properties of image categories corresponding to
tiger, lion, antelope and cow, which are common mammals, and utilize
them to perform inference on Saola which is one of the world’s rarest
mammals for which one may not have enough data.

While transfer learning and domain adaptation problems originate
from a distribution mismatch between the source and target data, the
underlying causes for such mismatches are traditionally considered dif-
ferent. Thus, even though transfer learning and domain adaptation
algorithms are designed to address different issues, one might argue
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4 Introduction

that these problems are just different manifestations of learning to
learn, i.e. the ability to leverage over prior knowledge when attempt-
ing to solve a new task, such as the one studied by a recent work from
Patricia and Caputo (2014). Practical applications usually involve chal-
lenges overlapping these problems, thereby giving rise to techniques to
deal with them in unison. Hence for the sake of clarity, the primary
focus of this monograph will be on domain adaptation while accom-
modating some key efforts pertaining to transfer learning and big data
techniques with an adaptation flavor.

Circumstances requiring domain adaptation arise very naturally in
visual recognition, where the change in data distribution is caused by
variations in lighting conditions, viewpoint, blur, resolution, and oc-
clusion, in addition to different types of imaging sensors such as RGB,
RGB-D, and infrared among others. Initial attempts for addressing this
problem started around the year 2010 in the context of object recogni-
tion, and since then there have been several efforts that expanded to
problems involving faces, events, concepts, activity and attributes in
general. The technical approaches proposed for these problems derive
motivation from several existing modeling frameworks such as max-
margin learning, transform coding, manifolds, and dictionary learning,
where the broad goal is to modify the cost function of these frame-
works to account for the change in data distribution (or the domain
shift) between the training and testing datasets (or the source and tar-
get domains). In doing so, an inherent assumption is that each domain
contains data drawn from a similar distribution, for instance the source
domain consisting of objects imaged under ambient lighting while the
target domain contains same objects captured under low light.

In the following chapters we discuss these techniques by grouping
them into three adaptation settings. For all these settings the source
domain is either fully labeled, or is partially labeled with labels avail-
able for all data categories. Hence one can think of the source domain
as the reliable data prepared under human supervision for the applica-
tion of interest, using which the inference needs to be performed on the
target domain. We first begin with unsupervised adaptation in Chapter
2 where the target domain is completely unlabeled. This could corre-
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spond to scenarios where the test data comes from real-time feeds for
which it is not possible to obtain labels beforehand. We then discuss
semi-supervised adaptation in Chapter 3 that considers the target do-
main to have partial labels. This could correspond to cases where some
human effort has been spent on labeling a new data corpus, or when
the data itself has weak supervision in the form of text labels accompa-
nying images. The advantage of this setting over the unsupervised one
is the presence of valuable correspondence information on how data
belonging to (some) categories has transformed across the domains.
While for these two settings we have assumed there is only one domain
in both the source and target, there could be cases with multiple do-
mains for either. A typical scenario would be to use the data crawled
from web image collections as the source domain. Since the properties
of such data could vary greatly as the images may be acquired from
dslr cameras, webcams, hand drawings, and paintings, one needs to sep-
arate them into multiple similar-looking source domains using which
adaptation can be performed to infer the target domain data. We dis-
cuss such multi-domain adaptation settings for both unsupervised and
semi-supervised adaptation in Chapter 4, where we also consider het-
erogeneous adaptation where the feature types and dimensionalities for
data in each domain could be different. One practical example is to per-
form adaptation between depth images and intensity images, given the
increased availability of RGB-D sensors such as Kinect.

Finally, with the emergence of “big visual data” the role of adapta-
tion becomes increasingly important in extracting pertinent informa-
tion from a humongous data corpus that would positively contribute to
the final problem objective. This is critical since there are studies that
suggest training with increased data quantities alone may not guarantee
a good performance, and that if data is not utilized in the right way it
could actually be detrimental to the objective. Hence a concerted effort
is required to address these issues from both a computational aspect as
well as from a generalization standpoint, in being robust across possible
variations in data and to accommodate the presence of new categories
in the test set that are not present during training (referred to as the
open-set problem). Moreover, with the utility of adaptation extending
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6 Introduction

beyond visual recognition to problems such as detection, continuous
parameter estimation, reconstruction and segmentation among others,
it is only natural to encode the valuable information conveyed by im-
age transformation models that have been studied for several decades
in the vision community. A vast majority of existing approaches tackle
the adaptation problem in a pure statistical sense by extracting or
learning features from the image data and minimizing the domain shift
with respect to classification accuracy. While this could be due to the
nature of unconstrained data variations, for which the assumptions in-
herent to a model-based treatment may be restrictive, one nevertheless
stands to gain by integrating the data-driven techniques with pertinent
model-induced geometry as it has been shown to have the potential for
accomplishing more with less data. We discuss recent advances related
to such themes in Chapter 5, and draw conclusions in Chapter 6.

While our main focus in this monograph will be on approaches pro-
posed for visual recognition, in the discourse we will also discuss ear-
lier work of domain adaptation used for other signal modalities such
as natural language and speech. In support of the conceptual discus-
sion, we performed an empirical comparison of a couple of language
modeling adaptation algorithms on the visual office object recognition
dataset. By doing so we attempt to answer the question whether there
are unique challenges posed by visual domain shift that require more
specialized techniques than those used in other signal modalities. Last
but least, we will focus throughout the discussion on the efficiency and
scalability of different approaches, and analyze how the algorithms scale
with data size.
Notations. We refer to the training dataset with plenty of labeled data
as the source domain and the test dataset with a few labeled data or no
labeled data as the target domain. Let S = {(xsi , ysi )}Nsi=1, where xs ∈N
denote the labeled data from the source domain. Here, xs is referred
to as an observation and ys is the corresponding class label. Labeled
data from the target domain is denoted by Tl = {(xtli , ytli )}Ntli=1 where
xtl ∈M . Similarly, unlabeled data in the target domain is denoted by
Tu = {xtui }Ntui=1 where xtu ∈M . Unless specified otherwise, we assume
N = M and Ns � Ntl in general. Let T = Tl ∪ Tu. As a result, the
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total number of samples in the target domain is denoted by Nt which
is equal to Ntl + Ntu. Denote S = [xs1, · · · ,xsNs ] as the matrix of Ns

data points from S. Denote Tl = [xtl1 , · · · ,xtlNtl ] as the matrix of Ntl

data from Tl, Tu = [xtu1 , · · · ,xtuNtu ] as the matrix of Ntu data from Tu
and T = [Tl|Tu] = [xt1, · · · ,xtNt ] as the matrix of Nt data from T . It
is assumed that both the target and source data pertain to C classes
or categories.
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