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Abstract

Computational visual perception seeks to reproduce human vision
through the combination of visual sensors, artificial intelligence and
computing. To this end, computer vision tasks are often reformulated
as mathematical inference problems where the objective is to determine
the set of parameters corresponding to the lowest potential of a task-
specific objective function. Graphical models have been the most popu-
lar formulation in the field over the past two decades where the problem
is viewed as a discrete assignment labeling one. Modularity, scalability
and portability are the main strengths of these methods which once
combined with efficient inference algorithms they could lead to state of
the art results. In this tutorial we focus on the inference component of
the problem and in particular we discuss in a systematic manner the
most commonly used optimization principles in the context of graphical
models. Our study concerns inference over low rank models (interac-
tions between variables are constrained to pairs) as well as higher order
ones (arbitrary set of variables determine hyper-cliques on which con-
straints are introduced) and seeks a concise, self-contained presentation
of prior art as well as the presentation of the current state of the art
methods in the field.

N. Komodakis, M. Pawan Kumar, N. Paragios. (Hyper)-Graphs Inference through
Convex Relaxations and Move Making Algorithms: Contributions and Applications
in Artificial Vision. Foundations and TrendsR© in Computer Graphics and Vision,
vol. 10, no. 1, pp. 1–102, 2014.
DOI: 10.1561/0600000063.
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1
Introduction

Graphical models (Conditional Random Fields (CRFs) or Markov Ran-
dom Fields (MRFs)) have been introduced in the field of computer vi-
sion almost four decades ago. CRFs were introduced in Fischler and
Elschlager [1973] while MRFs were introduced in Geman and Geman
[1984] to address the problem of image restoration. The central idea
is to express perception through an inference problem over graph. The
process is defined using a set of nodes, a set of labels, and a neighbor-
hood system. The graph nodes often correspond to the parameters to
be determined, the labels to a quantized/discrete version of the search
space and the connectivity of the graph to the constraints/interactions
between variables. Graph-based methods are endowed with numerous
advantages as it concerns inference when compared to their alterna-
tive that refers to continuous formulations. These methods are in gen-
eral gradient-free and therefore can easily accommodate changes of the
model (graph structure), changes of the objective function (perception
task), or changes of the discretization space (precision).

Early approaches to address graph-based optimization in the field
of computer vision were primarily based either on annealing like ap-
proaches or on local minimum update principles. Simulated annealing

2

Full text available at: http://dx.doi.org/10.1561/0600000063



3

was an alternative direction that provides in theory good guarantees as
it concerns the optimality properties of the obtained solution. The cen-
tral idea is to perform a search with a decreasing radius/temperature
where at a given iteration the current state is updated to a new state
with a tolerance (as it concerns the objective function) that is related
to the temperature. Such meta-heuristic methods could lead to a good
approximation of the optimal solution if temperature/radius are appro-
priately defined that in general is not that trivial. Iterated conditional
modes or highest confidence first were among the first attempts exploit-
ing local minimum iterative principles. Their underlying principle was
to solve the problem progressively through a repetitive local update of
the optimal solution towards a new local optimum. These methods were
computationally efficient and deterministic in the expense of quite inef-
ficient in terms of capturing the global optimum of the solution and the
complete absences of guarantee as it concerns the optimality properties
of the obtained solution.

Despite the elegance, modularity and scalability of MRFs/CRFs,
their adoption was quite limited (over eighties and nineties) from the
image processing/computer vision community and beyond due lack of
efficient optimization methods to address their inference. The introduc-
tion of efficient inference algorithms inspired from the networks com-
munity, like for example the max flow/min cut principle at late nineties
that is a special case of the duality theorem for linear programs as well
their efficient implementations towards taking advantage of image like
graphs Boykov et al. [1998] or message passing methods Pearl [1998]
that are based on the calculation of the marginal for a given node given
the states of the other nodes have re-introduced graphical models in the
field of computer vision. During the past two decades we have witnessed
a tremendous progress both on their use to address visual perception
tasks Wang et al. [2013], Kappes et al. [2015], Paragios and Komodakis
[2014], Szeliski et al. [2008], Blake et al. [2011], Komodakis and Tziri-
tas [2007a] as well as it concerns their inference. This tutorial aims to
provide an overview of the state of the art methods in the field for in-
ference as well as the most recent advances in that direction using move
making algorithms and convex relations. The reminder of this paper is

Full text available at: http://dx.doi.org/10.1561/0600000063



4 Introduction

organized as follows; Section 2 presents briefly the context and a short
review of the the most representative inference methods. Section 3 is
dedicated to move making algorithms, while section 4 presents efficient
linear programming-inspired principles for graph inference. The last
section introduces dual decomposition, a generic, modular and scalable
framework to perform (hyper) graph inference.
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