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Abstract

Path tracing is one of several techniques to render photorealistic im-
ages by simulating the physics of light propagation within a scene. The
roots of path tracing are outside of computer graphics, in the Monte
Carlo simulations developed for neutron transport. A great strength of
path tracing is that it is conceptually, mathematically, and often-times
algorithmically simple and elegant, yet it is very general. Until recently,
however, brute-force path tracing techniques were simply too noisy and
slow to be practical for movie production rendering. They therefore re-
ceived little usage outside of academia, except perhaps to generate an
occasional reference image to validate the correctness of other (faster
but less general) rendering algorithms. The last ten years have seen
a dramatic shift in this balance, and path tracing techniques are now
widely used. This shift was partially fueled by steadily increasing com-
putational power and memory, but also by significant improvements in
sampling, rendering, and denoising techniques. In this survey, we pro-
vide an overview of path tracing and highlight important milestones
in its development that have led to it becoming the preferred movie
rendering technique today.

P. H. Christensen and W. Jarosz. The Path to Path-Traced Movies. Foundations
and TrendsR© in Computer Graphics and Vision, vol. 10, no. 2, pp. 103–175, 2014.
DOI: 10.1561/0600000073.
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1
Introduction

Rendering computer-generated (CG) movies is tough. There are
130,000 high-resolution frames in a 90-minute movie, with each frame
requiring computation of typically two million pixel colors (many more
for IMAX movies). This is several hundred billion pixel colors that
will be scrutinized by the movie director and by audiences worldwide.
The images are often computed with motion blur and depth of field, to
mimic these characteristic effects (limitations) of real cameras. The im-
ages must be free of visual noise—one particularly pesky type of noise
is occasional bright pixels known as “fireflies”. There can be no spatial
or temporal aliasing (affectionately known as “jaggies” and “crawlies”)
in the images. The color of each pixel depends not only on what ob-
ject is visible in that pixel (including its orientation, material, texture,
illumination, etc.), but also—through shadows and reflected light—
on objects in other parts of the scene. The surface color calculations
have to be programmable, with the computations specified in stand-
alone programs called “shaders”. Typical scenes contain huge amounts
of geometry and texture data, often straining the available memory
even on high-end computers. There are often dozens of textures spec-
ifying the material properties of each surface, and a scene can contain

2
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3

Figure 1.1: Frames from the movies Toy Story (1995) and Finding Dory (2016).
( c© 1995, 2016 Pixar/Disney.)

millions of surfaces. With all the data that goes into rendering each
frame, production-strength renderers are sometimes jokingly referred
to as data management systems with images as a by-product. Ren-
dering times are crucial as well, both for quick test images during the
development of the movie, and for the final-quality frames that will
appear in movie theaters.

Figure 1.1(a) shows a frame from the first computer-generated an-
imated feature film: Pixar’s Toy Story from 1995. This movie was ren-
dered with the RenderMan renderer using the Reyes scan-line algo-
rithm [25] with shadow maps and reflection maps [4]. For many years,
the Reyes algorithm was the work-horse of most CG and visual effects
work at major studios.

The last 15 years has seen hybrid renderers combining the Reyes
algorithm for directly visible objects with ray-traced shadows and re-
flections. Soft indirect illumination has been computed with a variety
of methods, including distribution ray tracing and point-based global
illumination.

At the same time, other renderers, such as Arnold, pushed for a
complete switch to path tracing. Compared to Reyes-based hybrid ren-
derers, path tracing is a simpler and more brute-force approach. It has
its roots in a statistical sampling method called Monte Carlo, which was
first used for particle simulation in nuclear engineering. Path tracing
can render shadows and reflections in a conceptually simple recursive

Full text available at: http://dx.doi.org/10.1561/0600000073



4 Introduction

manner, but on the other hand it is more noisy and less memory ef-
ficient than some Reyes hybrids. Path tracing is not necessarily the
fastest method to render final movie-quality images with indirect il-
lumination, depth of field, and motion blur: for example, point-based
global illumination has no noise, and distribution ray tracing with irra-
diance gradients and radiosity caching is better able to exploit sample
domain coherency. However, path tracing’s natural ability to handle
complex light transport effects, along with its potential to simplify the
production pipeline, reduce iteration time during layout and lighting,
and improve overall workflow, are enticing advantages.

Figure 1.1(b) shows a frame from the recent movie Finding Dory.
Here all the direct visibility, shadows, reflections, refractions, indi-
rect diffuse illumination, and subsurface scattering are computed with
RenderMan’s implementation of path tracing.

Even though the algorithmic developments for the switch to path
tracing have been under way for quite some time, there is a fairly sud-
den wave of studios switching their pipelines over. One might even talk
about a path tracing “revolution” [61]. This article is our attempt to
retrace the steps the industry has taken on its journey to path-traced
movies. We will identify major hurdles that stood in the way of that
transition, describe the technical milestones that pushed the field for-
ward over the last couple of decades, and discuss the combination of
circumstances that came together to propel the CG and VFX movie
industry into a path-traced world. Since the journey is not yet com-
plete, we will also discuss on-going challenges and open questions that
practitioners and researchers will need to address in the years to come.

Full text available at: http://dx.doi.org/10.1561/0600000073
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