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Abstract

The control and reduction of multiuser interference is a fundamental
problem in wireless communications. In order to increase the spec-
tral efficiency and to provide individual quality-of-service (QoS), it is
required to jointly optimize the power allocation together with possi-
ble receive and transmit strategies. This often leads to complex and
difficult-to-handle problem formulations. There are many examples in
the literature, where the special structure of the problem is exploited in
order to solve special cases of this problem (e.g. multiuser beamforming
or CDMA). So it is desirable to have a general theory, which can be
applied to many practical QoS measures, like rates, delay, BER, etc.
These measures can all be related to the signal-to-interference ratio
(SIR) or the signal-to-interference-plus-noise ratio (SINR). This leads
to the problem of SIR and SINR balancing, which is fundamental for
many problems in communication theory.
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In this text we derive a comprehensive theoretical framework for
SIR balancing, with and without noise. The theory considers the possi-
ble use of receive strategies (e.g. interference filtering or channel assign-
ment), which can be included in the model in an abstract way. Power
allocation and receiver design are mutually interdependent, thus joint
optimization strategies are derived. The main purpose of this text is
to provide a better understanding of interference balancing and the
characterization of the QoS feasible region. We also provide a generic
algorithmic framework, which may serve as a basis for the development
of new resource allocation algorithms.

We study different interference models, which are general enough
to be valid for a wide range of system designs, but which are also spe-
cific enough to facilitate efficient algorithmic solutions. One important
class of interference functions is based on axioms, which characterize
the impact of the power allocation of the interference received by the
individual users. Another class of interference functions is based on
non-negative coupling matrices, which may be parameter-dependent in
order to model the possible impact of receive strategies. Both mod-
els are studied with and without noise. We analyze the resulting QoS
feasible region (the set of jointly achievable QoS) and discuss different
allocation strategies for min-max fairness and sum-power minimization.
Finally we study geometrical properties of the QoS region, which can
be shown to be convex for log-convex interference functions.
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1

Introduction

The wireless channel is a broadcast medium, so each communication
link is possibly interfered by other users transmitting at the same
resource. The traditional way of handling interference is to assign all
links orthogonal resources, in time (TDMA), frequency (FDMA), or
code space (CDMA). This considerably simplifies the system design
since the links are no longer coupled by interference. However, reserving
each link a fixed resource often comes at the cost of sacrificing spectral
efficiency. The available bandwidth is generally best exploited by let-
ting transmitted signals interfere with each other in a controlled way
(see e.g. [76, 75]). Also, orthogonality may be lost because of system
imperfections and the effects of the time-varying multipath channel. It
can be said that interference and power constraints are the main hur-
dle in achieving a high per-user throughput in heavily loaded multiuser
networks, as will be required in the future.

Since interference plays an important role in the optimal exploita-
tion of the given bandwidth, it is generally not sufficient to regard
the system as a collection of point-to-point communication links. The
quality-of-service (QoS) of each link depends on its own transmis-
sion power, but also on the power levels of the other links, which

1
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2 Introduction

are experienced as interference. This results in a competitive sit-
uation, where all users try to compensate interference by increas-
ing its own transmission power, which in turn increases the overall
interference in the system. A transmission strategy which neglects
these interdependencies is likely to cause uncontrollable and exceeding
interference, which means a waste of the overall system efficiency. Thus,
it is desirable to find a suitable equilibrium that optimally exploits the
available resources. This requires a joint optimization of all communi-
cation links.

Optimization can be performed with respect to various design goals,
like the overall efficiency, max-min fairness, proportional fairness, net-
work utility maximization, etc. There is no such thing as “the” opti-
mal communication strategy. There exists a great deal of literature on
resource allocation from various points of view. For example, there are
network-centric strategies, which aim at finding a stable performance
trade-off by bidding strategies, accounting for traffic, channel quality,
and revenues. User-centric strategies, which are closely related to power
control, aim at fulfilling user-specific QoS requirements. Both strate-
gies have in common that they are determined and limited by the QoS
feasible region (the set of jointly achievable QoS).

The purpose of this text is not to give a comprehensive overview on
allocation strategies, but rather to provide a fundamental theoretical
framework which helps to understand the underlying effects of interfer-
ence coupling, and to characterize the QoS feasible region. A fundamen-
tal question in this context is: what is the region of jointly achievable
QoS, and how can certain points be achieved in a spectrally efficient
way? This question is closely related to the classical power allocation
problem, but in this text we will go one step further in assuming that
interference not only depends on the power allocation, but also on adap-
tive receive strategies, like interference filtering or channel assignment.
The additional optimization of the receive strategy adds new degrees
of freedom to the problem of resource allocation. Thus, new concepts
and algorithms are required.

Since power allocation and receive strategies are intricately inter-
twined, our approach is to use abstract models, which provide a bet-
ter understanding of the underlying structure of the problem at hand.
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1.1. QoS-based power and resource allocation 3

In this respect, the work can be seen as a theoretical basis, which can
be applied to solve existing problems in wireless communications.

1.1 QoS-based power and resource allocation

In this section we give an overview on some aspects of QoS-Based power
allocation. We start by introducing the basic model used throughout
this text, which will be refined later on.

1.1.1 Interference functions

Consider a network with K communication links, whose transmission
powers are collected in a power allocation vector

p = [p1, . . . ,pK ]T > 0 .

as illustrated in Fig. 1.1.
The interference power experienced by the kth user can be modeled

by a function Ik(p). The functions I1, . . . ,IK describe how the links
are affected by mutual cross-talk. Different definitions of Ik(p) and the
resulting QoS region will be analyzed in this text.

It should be noted that the mapping Ik : RK
+ 7→ R+ can be linear

or non-linear, and it can also model the impact of adaptive receiver
designs, like MMSE or interference cancellation, as well as other system
aspects. A few examples are listed in the following.

Fig. 1.1 Example of an interference-coupled multiuser system with four transmitter-receiver

pairs.
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4 Introduction

• Ik(p) = [Ψp]k, where the positive coupling matrix Ψ > 0
contains interference coefficients, which determine in which
way the users are affected by cross-talk (interference). This
is a common model in power control theory (see e.g. [96]).

• Ik(p) = minz∈Z [Ψ(z)p]k, where the adjustable receive strat-
egy z (from a compact set of possible strategies Z, as dis-
cussed later in Section 3.1.1) has impact on the interference
structure. This specific model, which holds e.g. for multi-
antenna beamforming or CDMA designs, and many more,
will be studied in Sections 3 and 5.

• Ik(p) = maxc fk(p, c), where fk(p, c) is the interference for
a given power allocation p under some interference uncer-
tainty c. This definition can be used, e.g. to model worst-case
interference under imperfect channel knowledge. This model
will be discussed in Section 6.

But instead of focusing on a particular model, this text aims at char-
acterizing basic properties, which are a common for a wide range of
interference functions. To this end, we introduce an axiomatic char-
acterization of interference functions in Section 2. This generic model
contains the above examples as special cases. The axiomatic frame-
work will be gradually refined in the following sections. By introducing
additional properties, more results can be shown.

1.1.2 The QoS feasible region

The signal-to-interference ratio (SIR) of the kth user is

SIRk(p) =
pk

Ik(p)
, 1 ≤ k ≤K , (1.1)

where pk is the desired transmission power of the kth user. Note, that
the function Ik(p) can include receiver noise. If noise is part of the
assumed model (as in Sections 4 and 5), then we will emphasize this
by using “SINR” instead of “SIR”. If we use SIR, then we discuss
the general case where noise can be included or not. In this case, we
need Ik(p) > 0 to ensure that (1.1) is well defined.

The term “QoS” is commonly used to describe the performance
and reliability of a communication link. In order to keep the results

Full text available at: http://dx.doi.org/10.1561/0100000010



1.1. QoS-based power and resource allocation 5

as general as possible, we do not make any specific assumption on
QoS, except that it is related to the SIR by a monotonic and bijective
function φ:

QoSk(p) = φ
(
SIRk(p)

)
, 1 ≤ k ≤K . (1.2)

Some examples are BER: φ(x) = Q(
√

x), MMSE: φ(x) = 1/(1 + x),
BER-slope for α-fold diversity: φ(x) = x−α, or capacity: φ(x) =
log(1 + x).

Let γ be the inverse function of φ, then

γk = γ(Qk), 1 ≤ k ≤K , (1.3)

is the minimum SIR level needed by the kth user to satisfy the QoS
target Qk. Thus, the problem of achieving certain QoS requirements,
carries over to the problem of achieving SIR targets γk > 0, ∀k. In the
following we will also summarize the targets in a diagonal matrix

Γ = diag{γ1, . . . ,γK} . (1.4)

It is desirable to find a power allocation p > 0 such that SIRk(p) ≥
γk, for all k = 1, . . . ,K. This can be rewritten as mink SIRk(p)/γk ≥ 1
or equivalently as maxk γkIk(p)/pk ≤ 1. We say that the target Γ is
feasible if and only if C(Γ) ≤ 1, where

C(Γ) = inf
p>0

(
max

1≤k≤K

γkIk(p)
pk

)
. (1.5)

In the following we will refer to (1.5) as the “min-max balancing
problem”.

The optimum C(Γ) provides a single measure for the joint feasibility
of the targets Γ. Note that the optimization is over p > 0 to ensure that
Ik(p)/pk is always defined (see Section 2.1.1). However, this does not
restrict the generality of the results since p can be made arbitrarily
small.

The min-max optimum C(Γ) can be used to characterize the QoS
feasible region:

Q =
{
[φ(γ1), . . . ,φ(γK)] : C(Γ) ≤ 1

}
. (1.6)

Full text available at: http://dx.doi.org/10.1561/0100000010



6 Introduction

Fig. 1.2 QoS-based resource allocation strategies, illustrated for two users with QoS

requirements Q1 and Q2

A fundamental problem in resource allocation theory is to find a fea-
sible point [Q1, . . . ,QK ] ∈ Q according to certain design criteria, like
network efficiency, stability, or fairness. The optimization strategy can
depend on many parameters, like operator revenue, user requests, queu-
ing lengths, individual link priorities, etc. Examples for different points
of interest are depicted in Fig. 1.2. But there exists no joint optimiza-
tion framework. They actual problem structure strongly depends on
the geometry of Q and on the definition of the underlying interference
function.

So the purpose of this text is not to give a comprehensive overview
on allocation strategies, but rather to provide a theoretical framework
which helps to understand underlying principles. Most of the opti-
mization problems illustrated in Fig. 1.2 are directly connected with
the min-max balancing problem (1.5) and the associated QoS feasible
region Q.

In the following we will study the QoS (resp. SIR) feasible region for
different interference functions Ik(p), including adaptive receive strate-
gies and worst-case designs. But before we start with the most basic
(axiomatic) interference model in Section 2, we provide some additional
motivation by discussing the relationship of the generic interference
model with problems in wireless communications.

1.2 Related results in wireless communications

A few examples for possible definitions of the interference function
Ik(p) have already been given in Section 1.1.2. We will now discuss
the SIR balancing problem in the context of previous work.

Full text available at: http://dx.doi.org/10.1561/0100000010



1.2. Related results in wireless communications 7

The linear function Ik(p) = [Ψp]k is a classical model, which is
used, e.g. in power control theory. The square matrix Ψ ≥ 0 models the
link gains between all receiver/transmitter pairs. The min-max problem
(1.5) for this case was already studied in [1] in the context of power bal-
ancing for satellite communication systems employing frequency reuse.
Under the assumption that Ψ is non-negative and irreducible (see
Section 3.1.4 for a definition), it was shown that the min-max-optimal
power allocation is given as the principal eigenvector of Ψ, and the
optimum is the maximal eigenvalue (Perron root). This work was later
extended by [42, 2, 46, 94, 95, 93, 33, 34]. An overview is given in
[96, 38].

The above model can be extended to include AWG receiver noise,
i.e., Ik(p) = [Ψp]k + σ2. The presence of noise results in a situation
where possible constraints on the transmission power do matter. Thus,
the power allocation problem can be formulated so as to minimize the
total power while maintaining certain SINR levels at the receiver. The
optimal power allocation is obtained as the solution of a system of
linear equations. Iterative solutions were proposed in [26, 43, 31, 4, 3,
7, 87].

The same power minimization problem was considered in [91, 39],
where Ik(p) was not defined by a coupling matrix, but by using an
axiomatic framework, equivalent to the one used in Section 4.1.

Since the mid-nineties, there has been a series of publications on
multiuser beamforming for the downlink channel. In analogy to the
power control problem, it was first proposed in [28, 29], to maximize the
minimum SIR, assuming that the SIR not only depends on the power
allocation, but also on a set of transmit beamformers u1, . . . ,uK ∈ CM ,
which can be seen as a bank of linear unity-norm filters, which dis-
tribute all K signals across the M elements of an antenna array. Given
M × M array covariance matrices R1, . . . ,RK , the interference expe-
rienced by the kth receiver is

∑
l 6=k plu∗l Rkul. This is illustrated in

Fig. 1.3.
The resulting min-max balancing problem is

inf
p>0,u1,...,uK

(
max

1≤k≤K

∑
l 6=k plu∗l Rkul

pku∗kRkuk

)
s.t. ‖uk‖2 = 1 . (1.7)

Full text available at: http://dx.doi.org/10.1561/0100000010



8 Introduction

Fig. 1.3 Crosstalk is caused by non-orthogonal beams in a cellular system with multiuser

beamforming, where a base station (BS) is simultaneously connected with K mobiles.

It can be observed that the interference in the numerator is not only
affected by the powers, but also by the beamformers, thus beamforming
adds an additional degree of freedom to the optimization. Problem
(1.7) is difficult to handle in its direct form, since all the interference
terms are coupled by the transmit beamformers u1, . . . ,uK . The kth
beamformer uk can be adjusted such that the desired power u∗kRkuk

becomes maximal. However, this strategy is generally not optimal for
the other users, which are affected by the interference caused by uk.
There is no obvious way how to obtain a good tradeoff between desired
power and interference.

It was recognized in [44] that problem (1.7) can be reformulated as
an eigenvalue optimization problem, which can be solved by an iterative
algorithm. This work was further extended by [10, 13], where it was
shown that this algorithm is closely connected with an equivalent uplink
channel (see also the discussion in Sections 5.6.4, 3.5.4 and 5.7). By
optimizing the uplink interference functions

Ik(p) = min
uk

u∗k
(∑

l 6=k plRl

)
uk

u∗kRkuk
s.t. ‖uk‖2 = 1 , (1.8)

the optimal downlink beamformers can be found. Note that the beam-
former uk in (1.8) is adaptively adjusted for each power allocation p.
This results in a non-linear dependency between the powers and the
experienced interference. Nevertheless, the min-max SIR balancing
problem (1.5) can be solved efficiently for the special choice of interfer-
ence functions (1.8).
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1.3. Outline 9

Downlink beamforming was also studied under the assumption of
additional receiver noise [97, 21, 22, 70, 30, 89, 50, 78, 73, 6, 57, 58, 85].
Similar to the noiseless case, the uplink/downlink duality can be
exploited in order to develop iterative algorithmic solutions. In [50, 78],
an optimal algorithm was proposed, which consists of an iterative opti-
mization of powers and beamformers for a “virtual uplink” problem. In
retrospective, this algorithm can also be understood as a special case
of the axiomatic interference model proposed in [91]. An equivalent
axiomatic model will be studied in detail in Section 4. Another iter-
ative solution was proposed in [57, 58, 9], where techniques from the
theory of non-negative matrices were used to prove monotonicity and
convergence. This was extended in [52], where it was shown that addi-
tional constraints on the beamformers can be added without affecting
the convergence. This already points to the existence of a more gen-
eral framework for interference balancing which will be introduced in
Sections 4 and 5. Many of the results in [57, 58, 9, 52] can also be
understood in the context of this general theory.

Besides beamforming, there are other examples for joint power
allocation and receiver/transmitter optimization. This includes results
on CDMA equalization [76, 71, 79, 72], multi-antenna MMSE fil-
tering [88, 53, 51, 54, 20, 36, 37, 61], as well as recent progress
on transceiver optimization for point-to-point MIMO systems [47].
Information-theoretical aspects of MIMO communication have been
studied, e.g. in [25, 69, 86, 74, 77, 80, 82, 92]

All these results all have in common that they aim at a better
understanding of the joint optimization of interference-coupled links
in a network. While the discussed examples are focused on particular
scenarios, it is desirable to have a general theory for resource allocation
over the QoS region, where QoS can stand for different performance
measures, like SINR, MMSE, or capacity. So the motivation behind
this text is to find general principles behind interference balancing,
which include some of the discussed results as special cases.

1.3 Outline

The sections of this text build on each other. Starting with the
most general case, we successively add specifying assumptions, which

Full text available at: http://dx.doi.org/10.1561/0100000010



10 Introduction

sometimes restrict the generality, but also allow to show more specific
properties. We will conclude each section with a short summary of the
main results.

We start in Section 2 with an axiomatic interference model, which
describes an interference situation in a most abstract and general way.
The properties shown here can be regarded as the most common basis
for interference balancing.

Section 3 focuses on the practically relevant case where interfer-
ence can be modeled with a non-negative coupling matrix. This is
known in the literature as the “SIR Balancing Problem”. But unlike
classical power control theory, we assume that the powers are opti-
mized jointly with an adaptive receiver design. This generalizes known
results and algorithms from the aforementioned beamforming example
[28, 29, 44, 10, 13]. The impact of the receiver design on the interfer-
ence is modeled by a parameter-dependent coupling matrix. This adds
an additional degree of freedom, so classical results and concepts need
to be reconsidered.

From Section 4 on, we study the impact of an additional noise com-
ponent, which leads to the problem of SINR balancing. Section 4 starts
with an axiomatic model, which extends the model of Section 2 by
an additional axiom which requires that the interference function is
strictly monotone with respect to noise. This constant power level can
also be regarded as a fixed interferer, thus the model can be seen as
a special case of the more general model used in Section 2, where all
interferers are assumed to be varying.

Section 5 further specifies the interference functions. As for the SIR
balancing case, we use a parameter-dependent coupling matrix in order
to model the impact of interference and noise. The assumption of a fixed
noise component leads to additional properties. We study the problems
of SINR-constrained power minimization and power-constrained SINR
balancing.

Section 6 investigates the QoS feasible region under the assumption
of log-convex interference functions. In this case, it can be shown that
the resulting QoS region is convex. This useful property is the basis for
the development of fast-convergent algorithms for resource allocation
and scheduling.
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1.3. Outline 11

Notation

Some general notational conventions are: matrices and vectors are set
in boldface. Let y be a vector, then yl := [y]l is the lth component. We
use := for definitions. Finally, y ≥ 0 means component-wise inequality,
i.e., yl ≥ 0 for all indices l. The set R+ does include the zero element,
while R++ only contains strictly positive elements.
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