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Abstract

The topic of information theoretic security is introduced and the princi-
pal results in this area are reviewed. The basic wire-tap channel model
is considered first, and then several specific types of wire-tap channels
are considered, including Gaussian, multi-input multi-output (MIMO),
compound, and feedback wire-tap channels, as well as the wire-tap
channel with side information. Practical code design techniques to
achieve secrecy for wire-tap channels are also introduced. The wire-tap
formalism is then extended to the basic channels of multi-user networks,
including broadcast channels, multiple-access channels (MACs), inter-
ference channels, relay channels and two-way channels. For all of these
models, results on the fundamental communication limits under secrecy
constraints and corresponding coding schemes are reviewed. Further-
more, several related topics including key agreement through common
randomness, secure network coding, authentication, cross-layer design,
and secure source coding are discussed.
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1

Introduction

1.1 Confidentiality and Encryption

Security is one of the most important issues in communications. Secu-
rity issues arising in communication networks include confidentiality,
integrity, authentication, and nonrepudiation. Confidentiality guaran-
tees that legitimate recipients successfully obtain source information
intended for them, while eavesdroppers are not able to interpret this
information. Integrity guarantees that original source information is
not modified by malicious actors during its transmission. Authentica-
tion ensures that a recipient of information is able to identify the sender
from which that information has been sent. Nonrepudiation guarantees
that a sender of information is not able to deny having transmitted
that information and the recipient is not able to deny having received
the information.

Attacks on the security of communication networks can be divided
into two basic types: passive attacks and active attacks. An active attack
corresponds to the situation in which a malicious actor intentionally
disrupts the system. Alternatively, a passive attack corresponds to
the situation in which a malicious actor attempts to interpret source

1
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2 Introduction

Fig. 1.1 Illustration of encryption with channel coding.

information without injecting any information or trying to modify the
information; i.e., passive attackers listen to the transmission without
modifying it. This paper focuses primarily on confidentiality issues, and
passive attacks are of primary concern in this context.

Conventional techniques for achieving confidentiality in communica-
tion networks are based on cryptographic encryption [122, 148], which
is depicted in Figure 1.1. In encryption, a transmitter (Alice) uses a
key to encrypt source information, i.e., plaintext, to convert it into
ciphertext. The intended receiver (Bob) extracts the original plaintext
from the ciphertext by a corresponding key. If an eavesdropper (Eve)
has access to the ciphertext, but it does not know the correspond-
ing decryption key, then it cannot obtain the source information. As
a practical matter, the eavesdropper can be assumed to have limited
time or limited computational resources so that it cannot test all pos-
sible keys to extract the source information. This process is illustrated
in Figure 1.1, in which additional encoding and decoding steps, which
involve physical layer techniques to combat channel transmission errors,
are also shown.

Encryption includes two principal types of algorithms: secret-key
encryption algorithms and public-key encryption algorithms. Secret-key
encryption is also referred to as symmetric key encryption, because the
transmitter and the receiver share a common secret key. The transmit-
ter encrypts the plaintext and the receiver decrypts the ciphertext with
the same key. For public-key encryption, which is also referred to as
asymmetric key encryption, the transmitter and the receiver have dif-
ferent keys for encryption and decryption. The transmitter encrypts the
plaintext by a public key, which is known publicly to all potential users
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1.1 Confidentiality and Encryption 3

of the network, including any eavesdroppers. The intended receiver
maintains a private key corresponding to the public key, with which
the receiver can extract the plaintext encrypted by the public key. It
is in general mathematically difficult (almost computationally impossi-
ble) for other users to derive this private key with only the information
about the public key. Hence, in practice, an eavesdropper can obtain
no source information without the private key.

As compared to public-key algorithms, secret-key algorithms are
computationally efficient, and result in higher data throughput, while
presenting challenges for key management, such as secure key storage
and distribution [7, 15, 20, 35, 38, 65, 100, 134, 167, 181, 184, 185].
Public-key algorithms are simple in terms of key management, but
require considerable computational resources [122]. Hence, hybrid cryp-
tosystems [26, 31] are employed in practice, to facilitate key manage-
ment and achieve high efficiency, in which a secret key is distributed
by public-key algorithms, and encryption and decryption can then
use secret-key algorithms. However, several disadvantages of public-key
algorithms are of serious concern for hybrid cryptosystems. Besides high
computational cost, public-key algorithms are not provably perfectly
secure and are vulnerable to the so-called man-in-the-middle attack
[122]. Moreover, using public-key algorithms to distribute secret keys
adds another layer of complexity in the design of networks.

In addition to these general considerations, providing secure com-
munication over wireless networks using cryptographic approaches
presents further significant challenges due to: (1) the open nature of the
wireless medium, which allows eavesdroppers and attackers to intercept
information transmission (in particular, transmission of secret keys) or
to degrade transmission quality; (2) the lack of infrastructure in decen-
tralized networks, which makes key distribution difficult; and (3) the
dynamic topology of mobile networks (e.g., mobile ad hoc networks),
which makes key management expensive.

The information theoretic approach to achieving secure communi-
cation opens a promising new direction toward solving wireless net-
working security problems. Such an approach was initiated by Wyner
[169] and by Csiszár and Körner [27] in the 1970’s, who demonstrated
that confidential messages can be transmitted securely without using
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4 Introduction

an encryption key. Study of the related topic of secret-key agreement
(including generation and distribution) via information theoretic analy-
sis was later proposed in Maurer’s work [115, 116] and in Ahlswede and
Csiszár’s work [4], which demonstrate that two or multiple legitimate
nodes can agree on a key (for encryption later on) kept secret from an
eavesdropper. More recently, the emergence and increasing ubiquity of
wireless networks, and in particular of networks with minimal infras-
tructure, have spurred considerable interest in this area. In particular,
the promise of this potentially very powerful approach for use in mobile
and other wireless networks has been brought to the attention of the
wireless networking community.

1.2 Information Theoretic Analysis of Cryptosystems

Information theoretic analysis of secrecy was initiated by Shannon in
[145], in which a cryptosystem (see Figure 1.2) was considered. In
Shannon’s model, a source message W is encrypted to a ciphertext
E by a key K shared by the transmitter and receiver. An eavesdrop-
per, which knows the family of encryption functions (keys) and the
probability of choosing keys, may intercept the ciphertext E. The sys-
tem is considered to be perfectly secure if the a posteriori probabilities
of W given E are equal to the a priori probabilities of W for all E, i.e.,
PW |E = PW . It was shown in [145] that the number of different keys
must be at least as large as the number of messages to achieve perfect
secrecy.

Fig. 1.2 A cryptosystem.

Full text available at: http://dx.doi.org/10.1561/0100000036



1.3 Information Theoretic Security 5

Furthermore, the entropy was introduced to measure the amount of
information associated with a message and the amount of uncertainty
associated with the possibilities of a key, i.e., H(W ) and H(K), respec-
tively. The notion of the equivocation was also introduced in [145] to
measure the eavesdropper’s uncertainty about the message and the key,
namely, the conditional entropies H(W |E) and H(K |E). (The reader
can refer to Appendix A.1 for the definitions and the properties of these
quantities.) We note that the entropy of a random variable indicates
the average length of a binary sequence (in bits) required to represent
the random variable (with small probability of error). Based on the
properties of the entropy, we obtain

H(K,W ) = H(K) + H(W ), (1.1)

H(K,W ) = H(K,W,E) = H(K,E) = H(E) + H(K |E), (1.2)

and

H(K,W ) = H(K,W,E) ≥ H(W,E) = H(E) + H(W |E). (1.3)

In the case of perfect secrecy, i.e., H(W ) = H(W |E), (1.1) and (1.3)
imply H(K) ≥ H(E). Moreover, if H(E) = H(W ), then (1.1) and
(1.2) imply H(K) = H(K |E), i.e., no information about the key can
be inferred from the ciphertext E. On the other hand, if H(E) =
H(W ) + H(K), then (1.1) and (1.2) imply H(K |E) = 0, i.e., the key
can be determined from E. Hence, the value of H(E) = H(W ) + H(K)
defines the unicity distance, i.e., the minimum length of the ciphertext
that guarantees recovery of the key used for encryption.

1.3 Information Theoretic Security

Although the scenarios considered in [145] are cryptosystems, the equiv-
ocation, which quantifies how unlikely it is that the eavesdropper can
infer source information from its received information, is central to
information theoretic security as developed later for systems without
using encryption keys [27, 169]. This quantifiable measure also enables
secrecy to be jointly considered with the traditional measure of reli-
ability, namely the error probability (at the legitimate receiver), and
hence facilitates the application of information theoretic techniques to
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6 Introduction

characterize the fundamental communication limits of communication
networks under secrecy constraints.

The basic idea of the information theoretic approach to securely
transmit conferential messages (without using an encryption key) to a
legitimate receiver is to use the inherent randomness of the physical
medium (including noises and channel fluctuations due to fading) and
exploit the difference between the channel to a legitimate receiver and
the channel to an eavesdropper to benefit the legitimate receiver. In
this approach, a transmitter intentionally adds structural randomness
(stochastic coding) to prevent potential eavesdroppers and attackers
from intercepting useful information while guaranteeing that a legiti-
mate receiver can obtain the information. Figure 1.3 illustrates a sys-
tem that exploits information theoretic security. In this system, the
“encryption” and “encoding” of Figure 1.1 are now combined into a
single design block for “secure encoding,” which guarantees both reli-
ability, i.e., the receiver can successfully decode source messages, and
security, i.e., the source messages are guaranteed to be secret from an
eavesdropper.

Compared to contemporary cryptosystems, information theoretic
approaches to guarantee secrecy have the advantages of eliminating

Fig. 1.3 Information theoretic security.
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1.3 Information Theoretic Security 7

the key management issue, thereby resulting in significantly lower com-
plexity and savings in resources. Furthermore, compared to public-key
algorithms for key management in hybrid cryptosystems, the informa-
tion theoretic security approaches are less vulnerable to the man-in-the-
middle attack [78, 113, 114, 141, 146, 162, 171] due to the intrinsic ran-
domness shared by terminals. Moreover, information theoretic security
approaches achieve provable security that is robust to powerful eaves-
droppers possessing unlimited computational resources, knowledge of
the communication strategy employed including coding and decoding
algorithms, and access to communication systems either through per-
fect or noisy channels.

While information theoretic security approaches exploit physical
layer attributes of channel randomness for secure communications, and
encryption keys are not necessary, these approaches can also be applied
to existing cryptosystems to add an additional level of protection for
information transmission or to achieve key agreement (including key
generation and distribution) for remote terminals. The idea of applying
information theoretic approaches to achieve secret-key (SK) agreement
exploits initially shared correlated sources (observations) among legit-
imate terminals or channel transmission between these terminals. In
the simplest model [4, 116], two terminals, each observing correlated
source sequences, can agree on a key by communicating over a noiseless
public channel using Slepian–Wolf coding [23, 147]. This coding scheme
also guarantees that the key is kept secret from an eavesdropper that
has access to this public communication. It was also shown in [4] that
noisy communication channels can also be exploited to create corre-
lated sequences at the two terminals, thereby allowing them to agree
on a secret key.

We note that there is a difference between the two problems of
information theoretic security that we mentioned so far, namely, trans-
mission of confidential messages and SK agreement. The latter allows
public discussion between legitimate terminals in the process, and
secure channel transmission may not be necessary if legitimate termi-
nals share correlated source sequences initially in this latter case. How-
ever, there is also a connection between the two problems as secrecy
transmission may be used to create a secret key (although without
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8 Introduction

public transmission), and an established secret key helps mitigate con-
ditions required for secrecy transmission by transmitting part of the
source information by encryption and only the rest of the information
via secrecy transmission.

In this paper, we will focus on the problem of transmission of
confidential messages, and will address the problem of SK agreement
only in one section to illustrate the main idea. We refer the reader to
the corresponding references for further details. We also note that in
addition to the two problems mentioned above, information theoretic
security covers a variety of other topics that are not included in this
paper, for example, the identification problem [6, 32], biometric security
[60, 61, 79, 80], and the principle of reciprocity [9, 128, 166].

We finally note that the topics we have included in this paper reflect
the subjective views of the authors, and should not be considered as a
comprehensive overview of information theoretic security and its appli-
cations. Within the page limitations of such a work, we can present
only selected topics, and thus we focus on what we consider to be the
most timely issues.

1.4 Organization of the Paper

This paper provides an overview of how information theoretic
approaches are developed to achieve secrecy for a basic wire-tap chan-
nel model as well as for its extensions to multi-user networks. In Sec-
tion 2, we introduce the basic wire-tap channel and derive the secrecy
capacity of this channel. We also describe basic coding techniques
that achieve the secrecy capacity and introduce the converse method-
ology to prove the optimality of these techniques. In Section 3, we
consider several special classes of wire-tap channels, and discuss the
secrecy capacities for these channels. In Section 4, we introduce prac-
tical code design techniques that can achieve secrecy over the wire-
tap channel. In Sections 5–8, we address extensions of the basic wire-
tap channel to several basic multi-user network models including the
broadcast channel, the multiple-access channel (MAC), the interfer-
ence channel, the relay channel and the two-way channel. In Sections 9
and 10, we review several other topics in information theoretic security,
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1.4 Organization of the Paper 9

including key agreement through common randomness, secure network
coding, authentication, cross-layer design, and secure source coding. In
Appendix A, we present basic definitions and properties from informa-
tion theory that are used in the main text, for the benefit of the reader
who is unfamiliar with these notions.

Full text available at: http://dx.doi.org/10.1561/0100000036



References

[1] V. Aggarwal, L. Sankar, A. R. Calderbank, and H. V. Poor, “Secrecy capacity
of a class of orthogonal relay eavesdropper channels,” EURASIP Journal on
Wireless Communications and Networking, Special Issue on Wireless Physical
Layer Security, to appear.

[2] R. Ahlswede, “Multi-way communication channels,” in Proceedings of the 2nd
International Symposium on Information Theory (ISIT, 1971), pp. 23–52,
Tsahkadsor, Armenian S.S.R.: Publishing House of the Hungarian Academy
of Sciences, 1973.

[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, pp. 1204–1216, July
2000.

[4] R. Ahlswede and I. Csiszár, “Common randomness in information theory and
cryptography — Part I: Secret sharing,” IEEE Transactions on Information
Theory, vol. 39, pp. 1121–1132, July 1993.

[5] R. Ahlswede and I. Csiszár, “Common randomness in information theory and
cryptography-Part II: CR capacity,” IEEE Transactions on Information The-
ory, vol. 44, pp. 225–240, January 1998.

[6] R. Ahlswede and Z. Zhang, “Identification via wire-tap channels,” in Proceed-
ings of the IEEE International Symposium on Information Theory (ISIT),
p. 352, Trondheim, Norway, June–July 1994.

[7] N. Asokan and P. Ginzboorg, “Key-agreement in ad hoc networks,” Computer
Communications, vol. 23, no. 17, pp. 1627–1637, 2000.

[8] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow,”
in Proceedings of the 45th Annual Allerton Conference Communication, Con-
trol, and Computing, Monticello, IL, USA, September 2007.

221

Full text available at: http://dx.doi.org/10.1561/0100000036



222 References

[9] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener, “Robust key gener-
ation from signal envelopes in wireless networks,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, pp. 401–410,
Alexandria, VA, USA, October–November 2007.

[10] G. Bagherikaram, A. S. Motahari, and A. K. Khandani, “Secure broadcasting:
The secrecy rate region,” in Proceedings of the 46th Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, September
2008. Also submitted to IEEE Transactions on Information Theory, December
2008.

[11] R. E. Blahut, Algebraic Codes for Data Transmission. New York, NY, USA:
Cambridge University Press, 2003.

[12] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless
information-theoretic security,” IEEE Transactions on Information Theory,
Special Issue on Information Theoretic Security, vol. 54, pp. 2515–2534, June
2008.

[13] R. Bustin, R. Liu, H. V. Poor, and S. Shamai (Shitz), “An MMSE approach
to the secrecy capacity of the MIMO Gaussian wire-tap channel,” EURASIP
Journal on Wireless Communications and Networking, Special Issue on Wire-
less Physical Layer Security, to appear.

[14] R. Bustin, R. Liu, H. V. Poor, and S. Shamai (Shitz), “An MMSE approach to
the secrecy capacity of the MIMO Gaussian wiretap channel,” in Proceedings
of the IEEE International Symposium on Information Theory (ISIT), Seoul,
Korea, June–July 2009.

[15] M. Cagalj, S. Capkun, and J. P. Hubaux, “Key agreement in peer-to-peer
wireless networks,” Proceedings of the IEEE, vol. 94, pp. 467–478, February
2006.

[16] N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum
wire-tap channels,” Problems of Information Transmission, vol. 40, no. 4,
pp. 318–336, 2004.

[17] N. Cai and R. W. Yeung, “Secure network coding,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT), p. 323, Lausanne,
Switzerland, June–July 2002.

[18] N. Cai and R. W. Yeung, “A security condition for multi-source linear network
coding,” in Proceedings of the IEEE International Symposium on Information
Theory (ISIT), pp. 561–565, Nice, France, June 2007.

[19] G. Caire, G. Taricco, and E. Biglieri, “Optimal power control over fading
channels,” IEEE Transactions on Information Theory, vol. 45, pp. 1468–1489,
July 1999.

[20] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for
sensor networks,” in Proceedings of the IEEE Symposium Security and Pri-
vacy, pp. 197–213, Oakland, CA, USA, 2003.

[21] Y. Chen and A. J. H. Vinck, “Wiretap channel with side information,” IEEE
Transactions on Information Theory, vol. 54, pp. 395–402, January 2008.

[22] M. H. M. Costa, “Writing on dirty paper,” IEEE Transactions on Information
Theory, vol. 29, pp. 439–441, May 1983.

Full text available at: http://dx.doi.org/10.1561/0100000036



References 223

[23] T. M. Cover, “A proof of the data compression theorem of Slepian and Wolf
for ergodic sources,” IEEE Transactions on Information Theory, vol. IT-22,
pp. 226–228, 1975.

[24] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Transactions on Information Theory, vol. 25, pp. 572–584, September
1979.

[25] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition.
New York, USA: Wiley, 2006.

[26] R. Cramer and V. Shoup, “Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack,” SIAM Journal
on Computing, vol. 33, no. 1, pp. 167–226, 2004.

[27] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,”
IEEE Transactions on Information Theory, vol. 24, pp. 339–348, May 1978.

[28] I. Csiszár and P. Narayan, “Common randomness and secret key genera-
tion with a helper,” IEEE Transactions on Information Theory, vol. 46,
pp. 344–366, March 2000.

[29] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE
Transactions on Information Theory, vol. 50, pp. 3047–3061, December 2004.

[30] I. Csiszár and P. Narayan, “Secrecy capacities for multiterminal channel mod-
els,” IEEE Transactions on Information Theory, Special Issue on Information
Theoretic Security, vol. 54, pp. 2437–2452, June 2008.

[31] H. Dennis and E. Kiltz, “Secure hybrid encryption from weakened key encap-
sulation,” in Proceedings of the 27th Annual International Cryptology Confer-
ence (CRYPTO), pp. 553–571, Santa Barbara, CA, USA, August 2007.

[32] Y. Desmedt, “Information-theoretic secure identification,” in Proceedings of
the IEEE International Symposium on Information Theory (ISIT), p. 296,
Cambridge, MA, USA, August 1998.

[33] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Amplify-and-forward
based cooperation for secure wireless communications,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Taipei, Taiwan, April 2009.

[34] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Cooperative jamming
for wireless physical layer security,” in Proceedings of the IEEE Workshop on
Statistical Signal Processing, Cardiff, Wales, UK, August-September 2009.

[35] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key predis-
tribution scheme for sensor networks using deployment knowledge,” IEEE
Communications Survey and Tutorials, vol. 3, pp. 62–77, January–March 2006.

[36] A. A. El Gamal, “Capacity of the product and sum of two unmatched broad-
cast channels,” Problems of Information Transmission, vol. 16, pp. 1–16,
January–March 1980.

[37] U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost) every-
thing,” IEEE Transactions on Information Theory, vol. 51, pp. 3401–3416,
October 2005.

[38] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed
sensor networks,” in Proceedings of the 9th ACM Conference on Computer
and Communications Security, pp. 41–47, Washington DC, USA, 2002.

Full text available at: http://dx.doi.org/10.1561/0100000036



224 References

[39] J. Feldman, T. Malkin, R. A. Servedio, and C. Stein, “On the capacity of secure
network coding,” in Proceedings of the 42nd Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, September
2004.

[40] C. Fragouli and E. Soljanin, “Network coding applications,” Foundations and
Trends in Networking, vol. 2, no. 2, pp. 135–269, 2007.

[41] C. Fragouli and E. Soljanin, “Network coding fundamentals,” Foundations
and Trends in Networking, vol. 2, no. 1, pp. 1–133, 2007.

[42] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random parame-
ters,” Problems of Control and Information Theory, vol. 9, no. 1, pp. 19–31,
1980.

[43] A. A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals — Part II: Channel model,” Preprint, Available
at http://www.eecs.berkeley.edu/∼aminzade/Channel Model.pdf. December
2007.

[44] A. A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals — Part I: Source model,” Preprint, Available
at http://www. eecs.berkeley.edu/∼aminzade/Source Model.pdf. December
2007.

[45] A. A. Gohari and V. Anantharam, “Communication for omniscience by a neu-
tral observer and information-theoretic key agreement of multiple terminals,”
in Proceedings of the IEEE International Symposium on Information Theory
(ISIT), Nice, France, June 2007.

[46] A. A. Gohari and V. Anantharam, “New bounds on the information-theoretic
key agreement of multiple terminals,” in Proceedings of the IEEE International
Symposium on Information Theory (ISIT), Toronto, Ontario, Canada, July
2008.

[47] A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side
information,” IEEE Transactions on Information Theory, vol. 43, pp. 1986–
1992, November 1997.

[48] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading
channels,” IEEE Transactions on Information Theory, vol. 54, pp. 4687–4698,
October 2008.

[49] J. Grubb, S. Vishwanath, Y. Liang, and H. V. Poor, “Secrecy capacity of
semi-deterministic wire-tap channels,” in Proceedings of the IEEE Informa-
tion Theory Workshop (ITW) on Information Theory for Wireless Networks,
Bergen, Norway, July 2007.
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