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Abstract

In this review, biometric systems are studied from an information theo-
retical point of view. In the first part biometric authentication systems
are studied. The objective of these systems is, observing correlated
enrollment and authentication biometric sequences, to generate or con-
vey as large as possible secret keys by interchanging a public message,
while minimizing privacy leakage. Here privacy leakage is defined as
the amount of information that this public message contains about the
biometric enrollment sequence. In this setting also the secrecy leakage,
that is, the amount of information the public message leaks about the
secret key, should be negligible. Next identification biometric systems
are investigated. These systems should be able to identify as many indi-
viduals as possible while being able to assign as large as possible secret
keys to each individual and again minimize the privacy leakage. To
realize these systems public reference data are stored in the database.
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Leakage is defined with respect to these reference data. For all these
biometric systems fundamental limits are determined in the current
work. Finally, a popular practical construction for biometric systems,
fuzzy commitment, is analyzed with respect to both its theoretical per-
formance and performance related to the code choice.
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1

Introduction

1.1 Access Control Systems and Biometrics

Nowadays people live in the era of large-scale computer networks
connecting huge numbers of electronic devices. These devices execute
applications that use networks for exchanging information. Sometimes
the information that is transmitted within these networks and stored by
the devices is sensitive to misuse. Moreover, the networks and devices
cannot always be trusted. This can lead to intrusions into the privacy of
users by, for example, hackers, commercial parties, or even by govern-
mental institutions. Also illegal copying of copyrighted content, illegal
use of e-payment systems, and identity theft can be foreseen. In order to
prevent all such malicious actions the security of networks and devices
should be adequate.

Traditional systems for access control, which are based on the
possession of secret knowledge (passwords, secret keys, etc.) or on a
physical token (ID card, smart-card, etc.), have the drawback that they
cannot guarantee that it is the legitimate user who, for example, enters

1
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2 Introduction

a password or presents a smart-card. Moreover, passwords can often be
guessed, since people tend to use passwords which are easy to remem-
ber. Physical tokens in their turn can be lost, stolen, or copied.

Biometric systems offer a solution to most of the problems men-
tioned above. They could be either substituted for traditional systems
or used to reinforce them. Biometric systems are based on physical
or behavioral characteristics of human beings, like faces, fingerprints,
voice, irises, gait, see Jain et al. [39]. The results of the measurement of
these characteristics are called biometric data. Biometric data have the
advantage that potentially they are unique identifiers of human beings,
as was argued by Clarke [13]. They provide therefore a closer bond with
the identity of their owner than a password or a token does. Moreover,
biometric data cannot be stolen or lost. They potentially contain a large
amount of information and therefore are hard to guess. All this makes
biometrics a good candidate for substitution of traditional passwords
and secret keys. A drawback of using biometrics is that the outcome of
their measurements is, in general, noisy due to intrinsic variability, vary-
ing measurement conditions, or due to the use of different hardware.
However, advanced signal-processing and error-correcting techniques
can be applied to guarantee reliable overall behavior.

The attractive property of uniqueness, that holds for biometrics,
also results in its major weakness. Unlike passwords and secret keys,
biometric information, if compromised once, cannot be canceled and
easily replaced by other biometric information, since people only have
limited resources of biometric data. Theft of biometric data results in a
partially stolen identity, and this is, in principle, irreversible. Therefore
requirements for biometric systems should include secure storage and
secure communication of biometric data in the applications where they
are used.

Although biometric data may provide solutions to the problems dis-
cussed above, there are situations when they cannot be used. There is,
for example, a small percentage of people whose fingerprints cannot be
used due to intrinsic bad quality, see Dorizzi [25]. Also DNA recognition
fails for identical twins. In such situations combination with standard
cryptographic tools is needed to provide additional security.
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1.2 From Traditional Biometric Systems to Biometric Secrecy Systems 3

1.2 From Traditional Biometric Systems to Biometric
Secrecy Systems

1.2.1 Traditional Biometric Systems

The terms “Biometrics” and “Biometry” have been used since the first
part of the 20th century to refer to the field of development of statis-
tical and mathematical methods applicable to data analysis problems
in biological sciences [8]. Relatively recently the term “Biometrics” has
also been used to refer to the field of technology devoted to automatic
identification of individuals using biological traits, such as those based
on retinal or iris scans, fingerprints, faces, signatures, etc. Such biolog-
ical traits are unique for individuals as noted in Jain et al. [39].

Traditionally, biometric recognition was used in forensic applica-
tions and performed by human experts. However, recent advantages in
automated recognition resulted in the spreading of biometric applica-
tions, now ranging from border control at airports to access control in
Walt Disney amusement parks (see Wayman et al. [83]).

A typical biometric system is essentially a pattern-recognition sys-
tem, which performs one or more identity checks based on specific phys-
iological or behavioral characteristics possessed by individuals. There
are two different ways to resolve an individual’s identity, that is, authen-
tication and identification. Authentication (Am I who I claim I to
be?) involves confirming or denying the individual’s claimed identity.
In identification, one has to establish the individual’s identity (Who
am I?). Each of these approaches has its own characteristics and could
probably be solved best by biometric systems.

All biometric technology systems have certain aspects in common.
All are dependent upon an accurate reference or enrollment data. If a
biometric system is to identify or to authenticate an individual, it first
must have these reference data positively linked to the subject. Modern
biometric identification systems, based on digital technologies, analyze
personal physical attributes at the time of enrollment and distill from
them a series of numbers. Once this reference sample or template is in
the system, future attempts to identify an individual rest on comparing
“live” data to the reference data.
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4 Introduction

A perfect system would always recognize an individual, and
always reject an impostor. However, biometric data are gathered from
individuals under environmental conditions that cannot always be con-
trolled, over equipment that may slowly be wearing out, and using
technologies and methods that vary in their level of precision. Conse-
quently, an ideal behavior of biometric systems cannot be realized in
practice. Traditionally, the probability that an authorized individual is
rejected by a biometric system is called False Rejection Rate (FRR),
and the probability that an unauthorized individual is accepted by a
biometric system is called False Acceptance Rate (FAR). There are
also other performance measures that characterize biometric systems.
For a complete overview and similar issues see Jain et al. [39], Maltoni
et al. [50], or Wayman et al. [83].

Although biometric technologies have their advantages when they
are applied in access control systems, privacy aspects of biometric data
should not be ignored. Identification and authentication require storage
of biometric reference data in some way. However, people feel uncom-
fortable with supplying their biometric information to a huge number
of seemingly secure databases for various reasons, since

• practice shows that one cannot fully trust implementations of
secure algorithms by third parties. Even governmental orga-
nizations that are typically trusted by the majority of the
population cannot always guarantee that important sensitive
data are securely stored;
• databases might be attacked from inside, which allows an

owner of a database to abuse biometric information, for
example, by selling it to third parties;
• people have limited resources of biometric data, that can be

conveniently used for access control. Therefore an “identity
theft” of biometric information has much more serious impli-
cations than a “simple” theft of a credit card. In the latter
case, one can simply block and replace this credit card, while
biometric information cannot be easily revoked and replaced
by other biometric information.

Full text available at: http://dx.doi.org/10.1561/0100000051



1.2 From Traditional Biometric Systems to Biometric Secrecy Systems 5

It is often argued that privacy need not be a real issue in biometric
systems, since biometric data are not secret and can easily be captured
(faces, irises) or left in public (fingerprints), see Schneier [64]. However,
this information, unlike the reference data, is typically of low quality
and therefore cannot be easily used for impersonation. Even if it was
of good quality, which might be the case with faces, connecting it to
the corresponding database is not always an easy task.

Another important point is, that obtaining biometric data of a spe-
cific person as well as any other secret information belonging to him,
is always possible when sufficient effort is exerted. In contrast, com-
promising a database, requires a comparable effort, but then provides
immediate access to the biometric data of large number of individuals.
Therefore, it makes sense to concentrate on protecting the database. It
would be ideal if, in case the database becomes public, the biometric
reference data could not be recovered.

1.2.2 Types of Security

To assess cryptographic protocols, two notions of security are com-
monly used, that is, information-theoretical security and computational
security.

Computationally secure protocols rely on such an assumption as
hardness of mathematical problems, for example, factoring and taking
discrete logarithms, and assume that an adversary has bounded com-
puting power. However, hardness of a problem is sometimes difficult to
prove, and in practice certain problems are “assumed” to be hard.

Protocols whose security does not rely on computational assump-
tions, that is, they are secure even when the adversary has unbounded
computing power, are called unconditionally or information-
theoretically secure. Information-theoretically secure protocols are
more desirable, but not always achievable. Therefore, in practice, cryp-
tographers mostly use computational security.

In this review, we will treat security from an information-theoretical
point of view. The key mathematical concept on which information
theory is built and which is also relevant for considering information-
theoretical security, is entropy. The notion of entropy comes from

Full text available at: http://dx.doi.org/10.1561/0100000051



6 Introduction

Shannon [67]. Entropy is a measure of the information contained
in a random variable. Although there are a number of alternative
entropy concepts, for example, Rényi and min-entropy (Rényi entropy
of order 2) [62], and smooth Rényi entropy [61], we will only use the clas-
sical (Shannon) notion of entropy here. Another Shannon-type concept
is that of mutual information. Mutual information measures by how
much the entropy of the first random variable decreases if access to
the second random variable is obtained, and this notion can be defined
in terms of entropies. For the exact definitions, properties and their
proofs of entropy and mutual information we refer to Shannon [67] or,
for example, Cover and Thomas [15].

An interesting special case of information-theoretical security is per-
fect security. This concept was introduced by Shannon [68]. He defined
a secrecy system to be perfect if the mutual information between plain-
text M and ciphertext C satisfies

I(M ;C) = 0, (1.1)

i.e., if a ciphertext C, which is a function of a plaintext M and a secret
key S, provides no information about the plaintext M , in other words,
if C and M are statistically independent. Shannon proved that per-
fect secrecy can only be achieved when the key-entropy and plaintext-
entropy satisfy

H(S) ≥ H(M). (1.2)

An example of a perfectly secure system is the one-time pad system,
also referred to as the Vernam cipher [80]. In one-time pad, a binary
plaintext is concealed by adding modulo-2 (XOR-ing) a random binary
secret key.

In practice it is quite possible and common for a secrecy system to
leak some information. Although such a system is not perfectly secure,
it can be information-theoretically secure up to a certain level.

1.2.3 Biometric Secrecy Systems with Helper Data

A perfect system for a secure biometric access control has to satisfy
three requirements. Biometric data have to be private, namely, the ref-
erence information stored in a database should not reveal the actual

Full text available at: http://dx.doi.org/10.1561/0100000051



1.2 From Traditional Biometric Systems to Biometric Secrecy Systems 7

biometric data. Reference data that are communicated from a database
to a point where access can be granted have to be resilient to eaves-
dropping. Reference data stored in a database have to be resilient to
guessing, that is, to brute-force attacks.

Consider a biometric authentication system. A simple naive
approach to satisfy both the first and the second requirements would be
to use the biometric data as a password in a UNIX-password authen-
tication scheme. In such a scheme, a user possesses a password x that
gives access to his account. There is a trusted server that stores some
information y = f(x) about the password. The user gains access to the
account only if he enters the password x′, such that f(x′) = y. The
scheme has the requirement that nobody can figure out the password
x from y in any way other than by guessing. To fulfill this require-
ment, a UNIX-password scheme relies on one-way functions. A one-
way function f(·) is a function that is easy to compute but “hard to
invert,” where “hard to invert” refers to the property that no prob-
abilistic polynomial-time algorithm can compute a pre-image of f(x)
with a better than negligible probability when x is chosen at random.

Thus, if we would use the UNIX-password authentication scheme
and apply a one-way function to the biometric data, the storage of
biometric data in the clear would be circumvented. However, there
are a number of problems that would arise if we use biometric data in
the UNIX scheme. First, the security properties that are guaranteed by
one-way functions rely on the assumption that x is truly uniform, while
we know that biometric data are far from uniform, although they do
contain randomness of course. Moreover, one-way functions, as all cryp-
tographic primitives, require their entries to be exactly reproducible for
positive authentication,1 while biometric data measurements are almost
never identical. Therefore additional processing (e.g., error-correction
and compression) is needed to realize a biometric UNIX-like authentica-
tion scheme that can tolerate a reasonable amount of errors in biometric
measurements and results in uniform entries to the one-way function.
One way of operating would be to use a collection of error-correcting

1 Positive authentication can also be a result of an entry that produces a collision. However,

here we do not consider collisions, since this is a problem associated with the design of
one-way functions and therefore beyond the scope of this review.
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8 Introduction

codes such that for each observed biometric enrollment template there
is a code that contains this template as a codeword. The index to this
code is then stored in the database as helper data. Upon observing the
individual for a second time, the helper can then be used to retrieve
the enrollment template from the authentication template. The error-
correcting code should be strong enough to correct the errors between
the enrollment and authentication templates. From this, we may con-
clude that error-correcting techniques and helper data can be applied
to combat errors. Subsequently compression methods can be used to
achieve almost uniform entries.

Now that we have argued that helper data could be used to create a
reliable system, the question arises what requirements ideal helper data
should satisfy. Since helper data need to be stored (and communicated)
for authentication, it would be advantageous if they could be made
publicly available without compromising or leaking any information
about the data that are used to get access to the system. We say that
secrecy leakage from the helper data has to be negligible. Note that
these data could be obtained using a one-way function as in the UNIX-
scheme, but better procedures may exist as well. On the other hand,
the helper data should leak as little information as possible about the
observed biometric enrollment template. This would reduce privacy-
related problems. Note that it might be impossible to make this leakage
negligible, since helper data should contain some information about the
biometric data in order to set up a reliable system. It will become clear
later in this review that a notion of secret-key sharing originated from
Information Theory, see Ahlswede and Csiszár [2], will be essential
in designing and analyzing biometric systems in which public helper
data are used. For these secret-key sharing systems, the problem of
maximizing the size of the extracted secrets (the data needed to get
access) was solved. This provides the solution for our third requirement,
resilience to guessing.

In what we have discussed up to now, we have always assumed
that keys were obtained as a result of a one-way operation on a pass-
word or on a biometric template. A biometric system would however be
more flexible if we could choose the keys ourselves. We will show that
the helper-data construction will make this possible. Therefore in this
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1.2 From Traditional Biometric Systems to Biometric Secrecy Systems 9

review, we will distinguish between generated-key systems and chosen-
key systems. Sometimes their performance will not differ that much,
but in other situations the differences can be dramatic.

1.2.4 Protocols

In this subsection, we discuss examples of protocols for biometric
authentication. Then we present two generic biometric models that
constitute a core of biometric authentication systems. We will focus on
these models and their modifications in our investigations of authen-
tication systems. Moreover, we also sketch a protocol for biometric
identification.

1.2.4.1 Protocols for Biometric Authentication

Protocol A

One of the typical protocols for secure authentication, also shown in
Figure 1.1, reads as follows.

During enrollment, the biometric data of a subject are captured
and analyzed, and the template XN is extracted. A secret S is chosen
or generated from these data. Then the template XN is linked to the

Fig. 1.1 Secure authentication. The dotted arrow indicates the possibility that the secret
key is chosen, not generated from XN .
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10 Introduction

key S via a helper message M. The key is encrypted using a one-way
function and stored in a database as f(S), together with an ID of the
subject and the helper message M.

During authentication, the subject claims his ID. His biometric data
are captured and preprocessed again, resulting in the template Y N .

The key Ŝ is estimated based on Y N and the helper message M that
corresponds to the claimed ID. This estimated key is encrypted and
then matched against the encrypted key f(S) corresponding to the
claimed ID. Only if f(Ŝ) is the same as f(S) the subject is positively
authenticated.

Protocol B

A variation of the first protocol is a protocol for biometric authenti-
cation with distributed storage. The first step of Protocol B is similar
to the enrollment procedure in Protocol A. Here, however, the secret
key is not stored anymore in the database, but on a smartcard. The
startcard is given to the individual.

During authentication the subject provides a measurement of his
biometrics. This measurement is preprocessed, resulting in a noisy tem-
plate Y N . The template and the helper message M are now used to
derive a key Ŝ. The key Ŝ is then compared to the secret key S on the
smartcard.

1.2.4.2 Two Generic Settings

From the discussions above we may conclude that in order to design
a good biometric secrecy system, we can focus on a number of generic
structures, that is, models that constitute the core of any biometric
secrecy system. These generic, secret-key sharing models can be sub-
divided into a class of models with generated keys, see Figure 1.2(a),
and a class of models with chosen keys, see Figure 1.2(b). This subdi-
vision also appears in the overview paper of Jain et al. [40]. In both
models S is a randomly generated/chosen secret key, XN and Y N are
biometric enrollment and authentication sequences having length N ,
M is a helper message, and Ŝ is an estimated secret key. The chan-
nel between an encoder and decoder is assumed to be public. We only

Full text available at: http://dx.doi.org/10.1561/0100000051



1.2 From Traditional Biometric Systems to Biometric Secrecy Systems 11

Fig. 1.2 Generic settings, generated and chosen keys.

assume that passive attacks are possible, namely, an attacker can see
all public information but cannot change it. The information leakage is
characterized in terms of mutual information, and the size of the secret
keys in terms of entropy. The generic models must satisfy the following
requirements

Pr(S 6= Ŝ) ≈ 0 (reliability),
1
N
H(S) ≈ 1

N
log2 |S| (secret uniformity),

1
N
H(S) is as large as possible (secret-key rate),

1
N
I(S;M) ≈ 0 (secrecy leakage),

1
N
I(XN ;M) is as small as possible (privacy leakage). (1.3)

1.2.4.3 Protocol for Biometric Identification

A typical protocol for identification systems, see Figure 1.3 consists of
the following steps.

During enrollment, the biometric data of |V| subjects are cap-
tured and analyzed, resulting into biometric templates XN (v),v =
1,2, . . . , |V|. Based on these templates, secure templates or helper data
M(1),M(2), . . . ,M(|V|) are extracted and then stored in the database
together with the subjects IDs.

During identification, a subject presents his biometric data, which
are captured and preprocessed again, resulting in the template Y N .

The identity label v̂ of the individual is estimated based on Y N and
all helper data M(1),M(2), . . . ,M(|V|) from the database. The result
of this step is ID-label v̂ of the subject or “no found” error.
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Fig. 1.3 Secure identification.

1.3 Modeling Biometric Data

Throughout this review, we will consider two types of biometric data.
First we assume that our biometric sequences (feature vectors) are
discrete, independent and identically distributed (i.i.d.). Fingerprints
and irises can be modeled as such biometric sources. A discrete repre-
sentation of other biometric modalities can be obtained using quantiza-
tion. Then we also consider systems based on Gaussian i.i.d. biometric
sequences. We may assume Gaussian biometric data distribution, since
it is well-known that most transmission channels can be modeled as
additive white Gaussian noise channels. The independence of biomet-
ric features is not unreasonable to assume, since Principal Components
Analysis (PCA), Linear Discriminant Analysis (LDA) and other trans-
forms, which are applied to biometric measurements during feature
extraction (see Wayman et al. [83]) result in more or less independent
features. In general, different components of biometric sequences may
have different ranges of correlation. However, for reasons of simplic-
ity we will only discuss i.i.d biometrics here. Finally, we assume that
biometric sequences are aligned.

1.4 Related Work

Privacy concerns related to the use of biometric data in various secrecy
systems were raised more than a two decade ago. Schneier [64] pointed
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out that biometric data are not standard secret keys and cannot be eas-
ily canceled. Ratha et al. [60] investigated the vulnerability points of
biometric secrecy systems. In Prabhakar et al. [56] security and privacy
concerns were raised. Linnartz and Tuyls [48] looked at the problem of
achieving biometric systems with no secrecy leakage. Finally, at the
DSP forum [81] secrecy- and privacy-protecting technologies were dis-
cussed. The extent to which secrecy and privacy problems were inves-
tigated in literature also received attention there.

Considerable interest in the topic of biometric secrecy systems
resulted in the proposal of various techniques. Recent developments in
the area of biometric secrecy systems led to methods grouped around
two classes: cancelable biometrics and “fuzzy encryption.” Detailed
summaries of these two approaches can be found in Uludag et al. [77]
and in Jain et al. [40]. These works concentrate on biometric authenti-
cation systems.

It is the objective of cancelable biometrics, introduced by Ratha
et al. [59, 60], Ang et al. [3], and Maiorana et al. [49], to avoid storage
of reference biometric data in the clear in biometric authentication sys-
tems. These methods are based on non-invertible transformations that
preserve the statistical properties of biometric data and rely on the
assumption that it is hard to exactly reconstruct biometric data from
the transformed data and applied transformation. However, hardness of
a problem is difficult to prove, and, in practice, the properties of these
schemes are assessed using brute-force attacks. Moreover, visual inspec-
tion shows that transformed data, for example, the distorted faces in
Ratha et al. [59], still contain a lot of biometric information. Therefore,
in this review we concentrate on the second class of systems.

The “fuzzy encryption” approach focuses on generation and binding
of secret keys from/to biometric data. These secret keys are used to reg-
ulate access to, for example, sensitive data, services, and environments
in key-based cryptographic applications and, in particular, in biometric
authentication systems (all referred to as biometric secrecy systems).
In biometric secrecy systems a secret key is generated/chosen during an
enrollment procedure in which biometric data are observed for the first
time. This key is to be reconstructed after these biometric data are
observed again during an attempt to obtain access (authentication).
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Since biometric measurements are typically noisy, reliable biometric
secrecy systems also extract so-called helper data from the biometric
observation at the time of enrollment. These helper data facilitate reli-
able reconstruction of the secret key in the authentication process. The
helper data are assumed to be public, and therefore they should not
contain information on the secret key. We say that the secrecy leak-
age should be negligible. Important parameters of a biometric secrecy
system include the size of the secret key and the information that the
helper data contain (leak) on the biometric observation. This latter
parameter is called privacy leakage. Ideally the privacy leakage should
be small, to avoid the biometric data of an individual to become com-
promised. Moreover, the secret-key length (also characterized by the
secret-key rate) should be large to minimize the probability that the
secret key is guessed and unauthorized access is granted.

Implementations of “fuzzy encryption” include methods based on
various forms of Shamir’s secret sharing [66]. These methods are used to
harden passwords with biometric data (Monrose et al. [52, 53]). Meth-
ods based on error-correcting codes, that bind uniformly distributed
secret keys to biometric data and that tolerate (biometric) errors in
these secret keys, were formally defined by Juels and Wattenberg [43].
Less formal approaches can be found in Davida et al. [20, 21]. Error-
correction based methods were extended to the set difference metric
developed by Juels and Sudan [42]. Some other approaches focus on
continuous biometric data and provide solutions which are based on
quantization of biometric data as in Linnartz and Tuyls [48], Denteneer
et al. [22] (with emphasis on reliable components), Teoh et al. [73], and
Buhan et al. [10].

Finally, a formal approach for designing secure biometric systems
for three metric distances (Hamming, edit and set), called fuzzy extrac-
tors, was introduced in Dodis et al. [24] and further elaborated in [23].
Dodis et al. [23, 24] were the first ones who addressed the problem of
code construction for biometric secret-key generation in a systematic
information-theoretical way. Although their works provide results on
the maximum secret-key rates in biometric secrecy systems, they also
give the corresponding results for the maximum privacy leakage. In
biometric setting, however, the goal is to minimize the privacy leakage.
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The need for quantifying the exact information leakage on biometric
data was also stated as an open question in Sutcu et al. [70].

Another branch of work on “fuzzy encryption” focuses on combi-
nation of biometric and cryptographic keys. Methods in this direc-
tion include attempts to harden the fuzzy vault scheme of Juels and
Sudan [42] with passwords by Nandakumar et al. [54] and dithering
techniques that were proposed by Buhan et al. [9].

Recently, Prabhakaran and Ramchandran [57], and Gündüz
et al. [30] studied source-coding problems where the issue of (biometric)
leakage was addressed. In their work, though, it is not the intention of
the users to produce a secret but to communicate a (biometric) source
sequence in a secure way from the first to the second terminal.

From information-theoretical point of view biometric identification
systems were studied by O’Sullivan and Schmid [55] and Willems
et al. [87]. They derived the corresponding identification capacity, that
is, the maximum number of individuals that a systems can reliably
identify. They assumed, however, storage of the biometric enrollment
sequences in the clear. Later Tuncel [74] analyzed the trade-off between
the capacity of a biometric identification system and the space required
to store the biometric templates. Tuncel’s method realizes a kind of
template protection.

1.5 Organization of This Review

In the current review, we study a number of problems related to the
design of biometric secrecy systems for both authentication and iden-
tification.

First, in Section 2 we review the problem of secret sharing in order
to set theoretical grounds for our investigation of secret-key rates and
privacy leakage in biometric secrecy systems. In this section, we revisit
the classical Ahlswede and Csiszár [1] and Maurer [51] problem of gen-
erating a secret from two dependent sequences but in the biometric
setting. In this section, the biometric source is assumed to be discrete
memoryless, however stationary ergodic biometric sources are also dis-
cussed there. Moreover, we investigated the question of which FRR and
FAR can be achieved with biometric secret generation systems.
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Next in Section 3 we continue to study secret-key rates and privacy
leakage. We concentrate on biometric authentication systems. In this
section we study a more general situation. One of the challenges in
designing biometric secrecy systems is to minimize the privacy leakage
for a given secret-key rate. Therefore, in Section 3, we focus on finding
the fundamental trade-off between secret-key rates and privacy leakage
for a number of biometric models. In this section we assume that our
biometric source is discrete memoryless. In Section 4 we extend the
results found in Section 3 to the Gaussian biometric sources.

The following section, Section 5, is devoted to biometric identi-
fication systems with protected templates. Since biometric data are
typically used for both identification and authentication purposes, we
determine there the trade-off between identification, secret-key and
privacy-leakage rates. In this section we again assume our biometric
source and channel to be discrete memoryless.

Next we turn to practical constructions. In Section 6 a popular
realization of binary biometric authentication systems with chosen
secret keys, called fuzzy commitment [43], is analyzed. There we present
theoretical performance analysis of the scheme. The following section
investigates how binary quantization of biometric sequences influences
the performance of biometric secrecy systems with respect to secret-key
rates and privacy leakage. Also there we study the effect of the code
choice and binary quantization in fuzzy commitment.

Section 8 concludes this review and present some discussions on the
future directions in the area of biometric secrecy systems.
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