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Abstract

Numerous voice, still image, audio, and video compression standards
have been developed over the last 25 years, and significant advances
in the state of the art have been achieved. However, in the more
than 50 years since Shannon’s seminal 1959 paper, no rate distortion
bounds for voice and video have been forthcoming. In this volume, we
present the first rate distortion bounds for voice and video that ac-
tually lower bound the operational rate distortion performance of the
best-performing voice and video codecs. The bounds indicate that im-
provements in rate distortion performance of approximately 50% over
the best-performing voice and video codecs are possible. Research di-
rections to improve the new bounds are discussed.

J. D. Gibson and J. Hu. Rate Distortion Bounds for Voice and Video. Foundations
and Trends R© in Communications and Information Theory, vol. 10, no. 4,
pp. 379–514, 2013.
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1

Introduction

Numerous voice, still image, audio, and video compression standards
have been developed over the last 25 years, and significant advances
in the state of the art have been achieved. There are several reasons
for researchers and standards bodies to consider developing new voice
or video codecs. One motivation might be a new application that has
different constraints than those imposed on prior codecs. For example,
a new application might require better quality, lower complexity, a dif-
ferent transmitted bit rate, or improved robustness to channel impair-
ments. A second motivation might be that the input source changes,
namely a different resolution for video, a requirement for 3D video, or
a different bandwidth and sampling rate for audio. A third motivation
might be that a particular codec is relatively old and that there is the
possibility of improving performance, perhaps by increasing complexity
because of advances due to Moore’s Law.

In each of these cases, it would seem natural to ask what is the
best possible performance theoretically achievable by a new codec? Or,
alternatively, given the operational rate distortion performance of a
particular codec, how close is the operational rate distortion perfor-
mance to the optimal performance theoretically achievable?

2
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3

To answer this question, one natural place to look in order to char-
acterize the best possible performance of any lossy source codec would
appear to be rate distortion theory. In particular, it would be of great
utility if the host of existing rate distortion theory results could be
applied to bounding the performance of practical codecs or if new rate
distortion bounds for such practical sources and their attendant per-
ceptual distortion measures could be obtained. However, no such appli-
cations of existing rate distortion theory results, nor any appropriate
new results, have been forthcoming. While there are many reasons for
this lack of progress, one main reason is that such an effort is not easy
– in fact, it is particularly difficult.

The particular challenges involved were anticipated by experts in In-
formation Theory very early. Specifically, Robert Gallager, in his classic
text on Information Theory [18], summarizes the challenges at the end
of his rate distortion theory chapter where he notes that information
theory has been more useful for channel coding than for source cod-
ing and that the reason, “. . . appears to lie in the difficulty of obtaining
reasonable probabilistic models and meaningful distortion measures for
sources of practical interest." He goes on to say, “. . . it is not clear at
all whether the theoretical approach here will ever be a useful tool in
problems such as speech digitization . . . " [18].

Finding suitable statistical models for video has been considered
a very difficult topic as well. In 1998, almost 40 years after Shan-
non’s landmark paper developing rate distortion theory [76], Ortega
and Ramchandran wrote, "‘Unfortunately, to derive bounds one needs
to first characterize the sources and this can be problematic for com-
plex sources such as video. Indeed, bounds are likely to be found only
for the simpler statistical models"’ [67].

Thus, like all rate distortion problems, the two primary challenges
are (1) finding good source models for speech and video, and (2) identi-
fying a distortion measure that is perceptually meaningful, yet compu-
tationally tractable. There have been only a few prior research efforts
in the last 25 years that have attempted to address various aspects of
this problem for either speech or video, and broad-based bounds of sig-
nificance have not been obtained. It is clear, however, that the utility
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4 Introduction

of such bounds would be substantial.
In this volume, we present our recent results on obtaining rate dis-

tortion functions for both voice and video sources. For both sources, we
overcome past limitations on source modeling by employing composite
source models to achieve more accurate modeling of the different voice
and video source modes. Although we use composite source models for
both voice and video, the treatments of the distortion measure for the
two sources are distinctly different. For speech, we devise a mapping
technique to extend existing MSE R(D) results to the perceptually
meaningful PESQ-MOS distortion measure. For video, no such map-
pings are developed and the MSE distortion measure, or equivalently
peak SNR (PSNR), is used directly to develop our video R(D) bounds.
This is because although MSE and PSNR are widely criticized as not
having a direct interpretation in terms of reconstructed video quality,
PSNR is known to order the performance of codecs in the same class
correctly. In fact, since optimizing MSE/PSNR often produces compet-
itive performance in terms of perceptual measures, and its limitations
are well known, it is still a dominant performance measure in video
codec standardization efforts.

For future progress, as well as for the development of future prac-
tical rate distortion results, it is critical to note from the above outline
of the approaches used here that there are two key elements in play
in order to obtain the rate distortion bounds presented in this volume.
These are (1) a grasp and fundamental understanding of key rate dis-
tortion theory results, and (2) a deep understanding of the real-world
sources and their codec performance evaluation methods. Either one
alone is not sufficient. Indeed, the first author has emphasized to his
students repeatedly over the past 30 years that in order to utilize sig-
nificant theoretical results for practical problems, one must also have
an understanding of the physical problem being addressed. This com-
bination is not often present, perhaps because, as noted by Berger and
Gibson [7], rate distortion theorists and voice and video codec designers
are mostly non-intersecting sets of researchers.

We summarize the contents of this volume for each source in the
following subsections.

Full text available at: http://dx.doi.org/10.1561/0100000061



1.1. Rate Distortion Functions for Speech Sources 5

1.1 Rate Distortion Functions for Speech Sources

We develop new rate distortion bounds for narrowband and wideband
speech coding based on composite source models for speech and percep-
tual PESQ-MOS/WPESQ distortion measures. It is shown that these
new rate distortion bounds do in fact lower bound the performance of
important standardized speech codecs, including, G.726, G.727, AMR-
NB, G.729, G.718, G.722, G.722.1, and AMR-WB.

Our approach is to calculate rate distortion bounds for mean
squared error (MSE) distortion measures using the classic eigenvalue
decomposition and reverse water-filling method for each of the sub-
source modes of the composite source model, and then use condi-
tional rate distortion theory to calculate the overall rate distortion
function for the composite source. While composite source models for
speech have been considered previously for obtaining R(D) functions
for speech, our method of choosing the subsources based on a knowledge
of speech signals and on successful multi-mode voice codecs, as well as
the inclusion of diverse subsources in the composite source models, are
new.

In order to develop R(D) bounds for speech in terms of a mean-
ingful distortion measure that still allows a tractable mathematical
calculation of the bounds required a new innovation as well. Mapping
functions are developed to map rate distortion curves based on MSE to
rate distortion curves subject to the perceptually meaningful distortion
measures PESQ-MOS and WPESQ. These final rate distortion curves
are then compared to the performance of the best known standardized
speech codecs based on the code-excited linear prediction paradigm.

In addition to the striking result that these new bounds do in fact
lower bound the best known narrowband and wideband standardized
speech codecs, the bounds are revealing in that performance compar-
isons show that current linear predictive codecs do a relatively good
job of coding voiced speech, but are much less effective for other sub-
sources, such as unvoiced speech, Onset, and Hangover modes. Equally
important is that the procedure used in developing our bounds can eas-
ily be reproduced by other researchers, and thus other, perhaps more
refined, rate distortion curves can be generated. For example, one could
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6 Introduction

utilize a different composite source model with the known MSE rate
distortion theory results outlined here, and then employ our mapping
functions to determine new bounds for the utterances considered in
this paper.

1.2 Rate Distortion Functions for Video Sources

For the video source we address the difficult task of modeling the corre-
lation in pixel values by first proposing a new spatial correlation model
for two close pixels in one frame of digitized natural video sequences
that is conditional on the local texture. This new spatial correlation
model is dependent upon five parameters whose optimal values are
calculated for a specific image or specific video frames. The new spa-
tial correlation model is simple, but it performs very well, as strong
agreement is discovered between the approximate correlation coeffi-
cients and the correlation coefficients calculated by the new correlation
model, with a mean absolute error (MAE) usually smaller than 5%.

Further, we extend the correlation coefficient modeling from pix-
els within one video frame to pixels that are located in nearby video
frames. We show that for two pixels located in nearby video frames,
their spatial correlation and their temporal correlation are approxi-
mately independent. Therefore the correlation coefficient of two pixels
in two nearby video frames, denoted by ρ, can be modeled as the prod-
uct of ρs, the texture dependent spatial correlation coefficient of these
two pixels, as if they were in the same frame, and ρt, a variable to
quantify the temporal correlation between these two video frames. ρt

does not depend on the textures of the blocks the two pixels are located
in and is a function of the indices of the two frames.

With the new block-based local-texture-dependent correlation
model, we first study the marginal rate distortion functions of the differ-
ent local textures. These marginal rate distortion functions are shown
to be quite distinct from each other. Classical results in information
theory are utilized to derive the conditional rate distortion function
when the universal side information of local textures is available at
both the encoder and the decoder. We demonstrate that by involving
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1.3. Conclusion 7

this side information, the lowest rate that is theoretically achievable
in intra-frame video compression can be as much as 1 bit per pixel
lower than that without the side information; and the lowest rate that
is theoretically achievable in inter-frame video compression can be as
much as 0.7 bit per pixel lower than that without the side information.
The rate distortion bounds with local texture information taken into
account while making no assumptions on coding, are shown indeed to
be valid lower bounds with respect to the operational rate distortion
curves of both intra-frame and inter-frame coding in Advanced Video
Coding (AVC/H.264) and in the newly standardized High Efficiency
Video Coding (HEVC/H.265).

The incorporation of the new correlation model into existing opera-
tional models of practical image and video compression systems is also
promising. We demonstrate this by studying the common “blocking”
scheme used in most video compression standards [32, 33, 34, 35], which
divides a video frame into 16 × 16 macroblocks (MB) or smaller blocks
before processing. With the block based nature of the new correlation
model, we study the penalty paid in average rate when the correlation
among the neighboring MBs or blocks is disregarded completely or is
incorporated partially through predictive coding. A constrained rate
distortion bound is calculated for the scenario when the texture infor-
mation is coded losslessly and optimal predictive coding is employed.
This lower bound is shown to be reasonably tight with respect to the
operational rate distortion curves of intra-frame coding in AVC/H.264.
Furthermore, it is near linear in terms of average bit rate per pixel
versus PSNR of a video frame and can easily be utilized in future video
codec designs.

1.3 Conclusion

In this volume, we present the first rate distortion bounds for voice
and video that actually lower bound the operational rate distortion
performance of the best-performing voice and video codecs. Members
of the Panel on “New Perspectives on Information Theory” held at
the IEEE Information Theory Workshop at Paraty, Brazil, on October
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8 Introduction

20, 2011, repeatedly expressed their concern about the gap between
lossy compression theory and practice [82]. The new rate distortion
bounds presented here, for the first time, make the gap specific for voice
and video, and as discussed later, aid in pointing the way forward to
improving the performance of practical voice and video codecs.
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