
Asymptotic Estimates in
Information Theory with

Non-Vanishing Error
Probabilities

Vincent Y. F. Tan
Department of Electrical and Computer Engineering

Department of Mathematics
National University of Singapore

Singapore 119077
Email: vtan@nus.edu.sg

Boston — Delft



Foundations and Trends® in Communications and
Information Theory
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

V. Y. F. Tan. Asymptotic Estimates in Information Theory with Non-Vanishing
Error Probabilities. Foundations and Trends® in Communications and Information
Theory, vol. 11, no. 1-2, pp. 1–184, 2014.

This Foundations and Trends® issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-853-9
© 2014 V. Y. F. Tan

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com



Foundations and Trends® in Communications
and Information Theory
Volume 11, Issue 1-2, 2014

Editorial Board
Editor-in-Chief

Sergio Verdú
Princeton University
United States

Editors

Venkat Anantharam
UC Berkeley
Helmut Bölcskei
ETH Zurich
Giuseppe Caire
USC
Daniel Costello
University of Notre Dame
Anthony Ephremides
University of Maryland
Alex Grant
University of South
Australia
Andrea Goldsmith
Stanford University
Albert Guillen i Fabregas
Pompeu Fabra University
Dongning Guo
Northwestern University
Dave Forney
MIT
Te Sun Han
University of Tokyo
Babak Hassibi
Caltech
Michael Honig
Northwestern University
Johannes Huber
University of Erlangen

Tara Javidi
UC San Diego
Ioannis Kontoyiannis
Athens University
of Economy and Business
Gerhard Kramer
TU Munich
Sanjeev Kulkarni
Princeton University
Amos Lapidoth
ETH Zurich
Bob McEliece
Caltech
Muriel Medard
MIT
Neri Merhav
Technion
David Neuhoff
University of Michigan
Alon Orlitsky
UC San Diego
Yury Polyanskiy
MIT
Vincent Poor
Princeton University
Maxim Raginsky
UIUC
Kannan Ramchandran
UC Berkeley

Shlomo Shamai
Technion
Amin Shokrollahi
EPF Lausanne
Yossef Steinberg
Technion
Wojciech Szpankowski
Purdue University
David Tse
UC Berkeley
Antonia Tulino
Alcatel-Lucent Bell Labs
Rüdiger Urbanke
EPF Lausanne
Emanuele Viterbo
Monash University
Tsachy Weissman
Stanford University
Frans Willems
TU Eindhoven
Raymond Yeung
CUHK
Bin Yu
UC Berkeley



Editorial Scope

Topics

Foundations and Trends® in Communications and Information Theory
publishes survey and tutorial articles in the following topics:

• Coded modulation

• Coding theory and practice

• Communication complexity

• Communication system design

• Cryptology and data security

• Data compression

• Data networks

• Demodulation and
Equalization

• Denoising

• Detection and estimation

• Information theory and
statistics

• Information theory and
computer science

• Joint source/channel coding

• Modulation and signal design

• Multiuser detection

• Multiuser information theory

• Optical communication
channels

• Pattern recognition and
learning

• Quantization

• Quantum information
processing

• Rate-distortion theory

• Shannon theory

• Signal processing for
communications

• Source coding

• Storage and recording codes

• Speech and Image
Compression

• Wireless Communications

Information for Librarians

Foundations and Trends® in Communications and Information Theory, 2014,
Volume 11, 4 issues. ISSN paper version 1567-2190. ISSN online version 1567-
2328. Also available as a combined paper and online subscription.



Foundations and Trends® in Communications and
Information Theory

Vol. 11, No. 1-2 (2014) 1–184
© 2014 V. Y. F. Tan
DOI: 10.1561/0100000086

Asymptotic Estimates in Information Theory
with Non-Vanishing Error Probabilities

Vincent Y. F. Tan
Department of Electrical and Computer Engineering

Department of Mathematics
National University of Singapore

Singapore 119077
Email: vtan@nus.edu.sg



Contents

I Fundamentals 2

1 Introduction 3
1.1 Motivation for this Monograph . . . . . . . . . . . . . . . 5
1.2 Preview of this Monograph . . . . . . . . . . . . . . . . . 7
1.3 Fundamentals of Information Theory . . . . . . . . . . . . 10
1.4 The Method of Types . . . . . . . . . . . . . . . . . . . . 13
1.5 Probability Bounds . . . . . . . . . . . . . . . . . . . . . 15

2 Binary Hypothesis Testing 22
2.1 Non-Asymptotic Quantities and Their Properties . . . . . 23
2.2 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . 28

II Point-To-Point Communication 33

3 Source Coding 34
3.1 Lossless Source Coding: Non-Asymptotic Bounds . . . . . 35
3.2 Lossless Source Coding: Asymptotic Expansions . . . . . . 37
3.3 Second-Order Asymptotics of Lossless Source Coding via

the Method of Types . . . . . . . . . . . . . . . . . . . . 39

ii



iii

3.4 Lossy Source Coding: Non-Asymptotic Bounds . . . . . . . 42
3.5 Lossy Source Coding: Asymptotic Expansions . . . . . . . 46
3.6 Second-Order Asymptotics of Lossy Source Coding via the

Method of Types . . . . . . . . . . . . . . . . . . . . . . 48

4 Channel Coding 52
4.1 Definitions and Non-Asymptotic Bounds . . . . . . . . . . 53
4.2 Asymptotic Expansions for Discrete Memoryless Channels . 58
4.3 Asymptotic Expansions for Gaussian Channels . . . . . . . 71
4.4 A Digression: Third-Order Asymptotics vs Error Exponent

Prefactors . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Joint Source-Channel Coding . . . . . . . . . . . . . . . . 78

III Network Information Theory 83

5 Channels with Random State 84
5.1 Random State at the Decoder . . . . . . . . . . . . . . . 85
5.2 Random State at the Encoder and Decoder . . . . . . . . 87
5.3 Writing on Dirty Paper . . . . . . . . . . . . . . . . . . . 90
5.4 Mixed Channels . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Quasi-Static Fading Channels . . . . . . . . . . . . . . . . 101

6 Distributed Lossless Source Coding 105
6.1 Definitions and Non-Asymptotic Bounds . . . . . . . . . . 106
6.2 Second-Order Asymptotics . . . . . . . . . . . . . . . . . 107
6.3 Second-Order Asymptotics of Slepian-Wolf Coding via the

Method of Types . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Other Fixed Error Asymptotic Notions . . . . . . . . . . . 117

7 A Special Class of Gaussian Interference Channels 120
7.1 Definitions and Non-Asymptotic Bounds . . . . . . . . . . 123
7.2 Second-Order Asymptotics . . . . . . . . . . . . . . . . . 126
7.3 Proof Sketch of the Main Result . . . . . . . . . . . . . . 129

8 A Special Class of Gaussian Multiple Access Channels 136
8.1 Definitions and Non-Asymptotic Bounds . . . . . . . . . . 139



iv

8.2 Second-Order Asymptotics . . . . . . . . . . . . . . . . . 141
8.3 Proof Sketches of the Main Results . . . . . . . . . . . . . 148
8.4 Difficulties in the Fixed Error Analysis for the MAC . . . . 156

9 Summary, Other Results, Open Problems 158
9.1 Summary and Other Results . . . . . . . . . . . . . . . . 158
9.2 Open Problems and Challenges Ahead . . . . . . . . . . . 163

Acknowledgements 167

References 169



Abstract

This monograph presents a unified treatment of single- and multi-user
problems in Shannon’s information theory where we depart from the
requirement that the error probability decays asymptotically in the
blocklength. Instead, the error probabilities for various problems are
bounded above by a non-vanishing constant and the spotlight is shone
on achievable coding rates as functions of the growing blocklengths.
This represents the study of asymptotic estimates with non-vanishing
error probabilities.

In Part I, after reviewing the fundamentals of information theory,
we discuss Strassen’s seminal result for binary hypothesis testing where
the type-I error probability is non-vanishing and the rate of decay of the
type-II error probability with growing number of independent observa-
tions is characterized. In Part II, we use this basic hypothesis testing
result to develop second- and sometimes, even third-order asymptotic
expansions for point-to-point communication. Finally in Part III, we
consider network information theory problems for which the second-
order asymptotics are known. These problems include some classes of
channels with random state, the multiple-encoder distributed lossless
source coding (Slepian-Wolf) problem and special cases of the Gaussian
interference and multiple-access channels. Finally, we discuss avenues
for further research.

V. Y. F. Tan. Asymptotic Estimates in Information Theory with Non-Vanishing
Error Probabilities. Foundations and Trends® in Communications and Information
Theory, vol. 11, no. 1-2, pp. 1–184, 2014.
DOI: 10.1561/0100000086.



Part I

Fundamentals



1
Introduction

Claude E. Shannon’s epochal “A Mathematical Theory of Communi-
cation” [141] marks the dawn of the digital age. In his seminal paper,
Shannon laid the theoretical and mathematical foundations for the ba-
sis of all communication systems today. It is not an exaggeration to say
that his work has had a tremendous impact in communications engi-
neering and beyond, in fields as diverse as statistics, economics, biology
and cryptography, just to name a few.

It has been more than 65 years since Shannon’s landmark work
was published. Along with impressive research advances in the field
of information theory, numerous excellent books on various aspects of
the subject have been written. The author’s favorites include Cover
and Thomas [33], Gallager [56], Csiszár and Körner [39], Han [67], Ye-
ung [189] and El Gamal and Kim [49]. Is there sufficient motivation to
consolidate and present another aspect of information theory system-
atically? It is the author’s hope that the answer is in the affirmative.

To motivate why this is so, let us recapitulate two of Shannon’s ma-
jor contributions in his 1948 paper. First, Shannon showed that to reli-
ably compress a discrete memoryless source (DMS) Xn = (X1, . . . , Xn)
where each Xi has the same distribution as a common random vari-

3



4 Introduction

able X, it is sufficient to use H(X) bits per source symbol in the limit
of large blocklengths n, where H(X) is the Shannon entropy of the
source. By reliable, it is meant that the probability of incorrect decod-
ing of the source sequence tends to zero as the blocklength n grows.
Second, Shannon showed that it is possible to reliably transmit a mes-
sage M ∈ {1, . . . , 2nR} over a discrete memoryless channel (DMC) W

as long as the message rate R is smaller than the capacity of the chan-
nel C(W ). Similarly to the source compression scenario, by reliable, one
means that the probability of incorrectly decoding M tends to zero as
n grows.

There is, however, substantial motivation to revisit the criterion of
having error probabilities vanish asymptotically. To state Shannon’s
source compression result more formally, let us define M∗(P n, ε) to be
the minimum code size for which the length-n DMS P n is compressible
to within an error probability ε ∈ (0, 1). Then, Theorem 3 of Shan-
non’s paper [141], together with the strong converse for lossless source
coding [49, Ex. 3.15], states that

lim
n→∞

1
n

log M∗(P n, ε) = H(X), bits per source symbol. (1.1)

Similarly, denoting M∗
ave(W n, ε) as the maximum code size for which it

is possible to communicate over a DMC W n such that the average error
probability is no larger than ε, Theorem 11 of Shannon’s paper [141],
together with the strong converse for channel coding [180, Thm. 2],
states that

lim
n→∞

1
n

log M∗
ave(W n, ε) = C(W ), bits per channel use. (1.2)

In many practical communication settings, one does not have the luxury
of being able to design an arbitrarily long code, so one must settle for
a non-vanishing, and hence finite, error probability ε. In this finite
blocklength and non-vanishing error probability setting, how close can
one hope to get to the asymptotic limits H(X) and C(W )? This is, in
general a difficult question because exact evaluations of log M∗(P n, ε)
and log M∗

ave(W n, ε) are intractable, apart from a few special sources
and channels.

In the early years of information theory, Dobrushin [45], Kemper-
man [91] and, most prominently, Strassen [152] studied approxima-
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tions to log M∗(P n, ε) and log M∗
ave(W n, ε). These beautiful works were

largely forgotten until recently, when interest in so-called Gaussian ap-
proximations were revived by Hayashi [75, 76] and Polyanskiy-Poor-
Verdú [122, 123].1 Strassen showed that the limiting statement in (1.1)
may be refined to yield the asymptotic expansion

log M∗(P n, ε) = nH(X) −
√

nV (X)Φ−1(ε) − 1
2 log n + O(1), (1.3)

where V (X) is known as the source dispersion or the varentropy,
terms introduced by Kostina-Verdú [97] and Kontoyiannis-Verdú [95].
In (1.3), Φ−1 is the inverse of the Gaussian cumulative distribution
function. Observe that the first-order term in the asymptotic expan-
sion above, namely H(X), coincides with the (first-order) fundamental
limit shown by Shannon. From this expansion, one sees that if the error
probability is fixed to ε < 1

2 , the extra rate above the entropy we have
to pay for operating at finite blocklength n with admissible error prob-
ability ε is approximately

√
V (X)/n Φ−1(1 − ε). Thus, the quantity

V (X), which is a function of P just like the entropy H(X), quantifies
how fast the rates of optimal source codes converge to H(X). Similarly,
for well-behaved DMCs, under mild conditions, Strassen showed that
the limiting statement in (1.2) may be refined to

log M∗
ave(W n, ε) = nC(W ) +

√
nVε(W )Φ−1(ε) + O(log n) (1.4)

and Vε(W ) is a channel parameter known as the ε-channel dispersion,
a term introduced by Polyanskiy-Poor-Verdú [123]. Thus the backoff
from capacity at finite blocklengths n and average error probability ε

is approximately
√

Vε(W )/n Φ−1(1 − ε).

1.1 Motivation for this Monograph

It turns out that Gaussian approximations (first two terms of (1.3)
and (1.4)) are good proxies to the true non-asymptotic fundamental lim-
its (log M∗(P n, ε) and log M∗

ave(W n, ε)) at moderate blocklengths and
1Some of the results in [122, 123] were already announced by S. Verdú in his

Shannon lecture at the 2007 International Symposium on Information Theory (ISIT)
in Nice, France.
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moderate error probabilities for some channels and sources as shown by
Polyanskiy-Poor-Verdú [123] and Kostina-Verdú [97]. For error prob-
abilities that are not too small (e.g., ε ∈ [10−6, 10−3]), the Gaussian
approximation is often better than that provided by traditional error
exponent or reliability function analysis [39, 56], where the code rate
is fixed (below the first-order fundamental limit) and the exponential
decay of the error probability is analyzed. Recent refinements to error
exponent analysis using exact asymptotics [10, 11, 135] or saddlepoint
approximations [137] are alternative proxies to the non-asymptotic fun-
damental limits. The accuracy of the Gaussian approximation in prac-
tical regimes of errors and finite blocklengths gives us motivation to
study refinements to the first-order fundamental limits of other single-
and multi-user problems in Shannon theory.

The study of asymptotic estimates with non-vanishing error
probabilities—or more succinctly, fixed error asymptotics—also uncov-
ers several interesting phenomena that are not observable from studies
of first-order fundamental limits in single- and multi-user information
theory [33, 49]. This analysis may give engineers deeper insight into
the design of practical communication systems. A non-exhaustive list
includes:

1. Shannon showed that separating the tasks of source and channel
coding is optimal rate-wise [141]. As we see in Section 4.5.2 (and
similarly to the case of error exponents [35]), this is not the case
when the probability of excess distortion of the source is allowed
to be non-vanishing.

2. Shannon showed that feedback does not increase the capacity of
a DMC [142]. It is known, however, that variable-length feed-
back [125] and full output feedback [8] improve on the fixed error
asymptotics of DMCs.

3. It is known that the entropy can be achieved universally for fixed-
to-variable length almost lossless source coding of a DMS [192],
i.e., the source statistics do not have to be known. The redun-
dancy has also been studied for prefix-free codes [27]. In the fixed
error setting (a setting complementary to [27]), it was shown by
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Kosut and Sankar [100, 101] that universality imposes a penalty
in the third-order term of the asymptotic expansion in (1.3).

4. Han showed that the output from any source encoder at the op-
timal coding rate with asymptotically vanishing error appears
almost completely random [68]. This is the so-called folklore the-
orem. Hayashi [75] showed that the analogue of the folklore the-
orem does not hold when we consider the second-order terms in
asymptotic expansions (i.e., the second-order asymptotics).

5. Slepian and Wolf showed that separate encoding of two correlated
sources incurs no loss rate-wise compared to the situation where
side information is also available at all encoders [151]. As we shall
see in Chapter 6, the fixed error asymptotics in the vicinity of a
corner point of the polygonal Slepian-Wolf region suggests that
side-information at the encoders may be beneficial.

None of the aforementioned books [33, 39, 49, 56, 67, 189] focus exclu-
sively on the situation where the error probabilities of various Shannon-
theoretic problems are upper bounded by ε ∈ (0, 1) and asymptotic
expansions or second-order terms are sought. This is what this mono-
graph attempts to do.

1.2 Preview of this Monograph

This monograph is organized as follows: In the remaining parts of this
chapter, we recap some quantities in information theory and results
in the method of types [37, 39, 74], a particularly useful tool for the
study of discrete memoryless systems. We also mention some probabil-
ity bounds that will be used throughout the monograph. Most of these
bounds are based on refinements of the central limit theorem, and are
collectively known as Berry-Esseen theorems [17, 52]. In Chapter 2, our
study of asymptotic expansions of the form (1.3) and (1.4) begins in
earnest by revisiting Strassen’s work [152] on binary hypothesis test-
ing where the probability of false alarm is constrained to not exceed a
positive constant. We find it useful to revisit the fundamentals of hy-
pothesis testing as many information-theoretic problems such as source
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and channel coding are intimately related to hypothesis testing.
Part II of this monograph begins our study of information-theoretic

problems starting with lossless and lossy compression in Chapter 3. We
emphasize, in the first part of this chapter, that (fixed-to-fixed length)
lossless source coding and binary hypothesis testing are, in fact, the
same problem, and so the asymptotic expansions developed in Chap-
ter 2 may be directly employed for the purpose of lossless source coding.
Lossy source coding, however, is more involved. We review the recent
works in [86] and [97], where the authors independently derived asymp-
totic expansions for the logarithm of the minimum size of a source code
that reproduces symbols up to a certain distortion, with some admis-
sible probability of excess distortion. Channel coding is discussed in
Chapter 4. In particular, we study the approximation in (1.4) for both
discrete memoryless and Gaussian channels. We make it a point here
to be precise about the third-order O(log n) term. We state conditions
on the channel under which the coefficient of the O(log n) term can be
determined exactly. This leads to some new insights concerning opti-
mum codes for the channel coding problem. Finally, we marry source
and channel coding in the study of source-channel transmission where
the probability of excess distortion in reproducing the source is non-
vanishing.

Part III of this monograph contains a sparse sampling of fixed er-
ror asymptotic results in network information theory. The problems we
discuss here have conclusive second-order asymptotic characterizations
(analogous to the second terms in the asymptotic expansions in (1.3)
and (1.4)). They include some channels with random state (Chap-
ter 5), such as Costa’s writing on dirty paper [30], mixed DMCs [67,
Sec. 3.3], and quasi-static single-input-multiple-output (SIMO) fading
channels [18]. Under the fixed error setup, we also consider the second-
order asymptotics of the Slepian-Wolf [151] distributed lossless source
coding problem (Chapter 6), the Gaussian interference channel (IC) in
the strictly very strong interference regime [22] (Chapter 7), and the
Gaussian multiple access channel (MAC) with degraded message sets
(Chapter 8). The MAC with degraded message sets is also known as the
cognitive [44] or asymmetric [72, 167, 128] MAC (A-MAC). Chapter 9
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1 2

3

4

6

5

7

8

1. Introduction
2. Hypothesis Testing
3. Source Coding
4. Channel Coding
5. Channels with State
6. Slepian-Wolf
7. Gaussian IC
8. Gaussian A-MAC

Figure 1.1: Dependence graph of the chapters in this monograph. An arrow from
node s to t means that results and techniques in Chapter s are required to understand
the material in Chapter t.

concludes with a brief summary of other results, together with open
problems in this area of research. A dependence graph of the chapters
in the monograph is shown in Fig. 1.1.

This area of information theory—fixed error asymptotics—is vast
and, at the same time, rapidly expanding. The results described herein
are not meant to be exhaustive and were somewhat dependent on the
author’s understanding of the subject and his preferences at the time of
writing. However, the author has made it a point to ensure that results
herein are conclusive in nature. This means that the problem is solved
in the information-theoretic sense in that an operational quantity is
equated to an information quantity. In terms of asymptotic expansions
such as (1.3) and (1.4), by solved, we mean that either the second-order
term is known or, better still, both the second- and third-order terms
are known. Having articulated this, the author confesses that there are
many relevant information-theoretic problems that can be considered
solved in the fixed error setting, but have not found their way into this
monograph either due to space constraints or because it was difficult
to meld them seamlessly with the rest of the story.



10 Introduction

1.3 Fundamentals of Information Theory

In this section, we review some basic information-theoretic quantities.
As with every article published in the Foundations and Trends in Com-
munications and Information Theory, the reader is expected to have
some background in information theory. Nevertheless, the only prereq-
uisite required to appreciate this monograph is information theory at
the level of Cover and Thomas [33]. We will also make extensive use
of the method of types, for which excellent expositions can be found
in [37, 39, 74]. The measure-theoretic foundations of probability will
not be needed to keep the exposition accessible to as wide an audience
as possible.

1.3.1 Notation

The notation we use is reasonably standard and generally follows the
books by Csiszár-Körner [39] and Han [67]. Random variables (e.g.,
X) and their realizations (e.g., x) are in upper and lower case respec-
tively. Random variables that take on finitely many values have al-
phabets (support) that are denoted by calligraphic font (e.g., X ). The
cardinality of the finite set X is denoted as |X |. Let the random vec-
tor Xn be the vector of random variables (X1, . . . , Xn). We use bold
face x = (x1, . . . , xn) to denote a realization of Xn. The set of all
distributions (probability mass functions) supported on alphabet X is
denoted as P(X ). The set of all conditional distributions (i.e., chan-
nels) with the input alphabet X and the output alphabet Y is denoted
by P(Y|X ). The joint distribution induced by a marginal distribution
P ∈ P(X ) and a channel V ∈ P(Y|X ) is denoted as P × V , i.e.,

(P × V )(x, y) := P (x)V (y|x). (1.5)

The marginal output distribution induced by P and V is denoted as
PV , i.e.,

PV (y) :=
∑
x∈X

P (x)V (y|x). (1.6)

If X has distribution P , we sometimes write this as X ∼ P .
Vectors are indicated in lower case bold face (e.g., a) and matrices

in upper case bold face (e.g., A). If we write a ≥ b for two vectors a
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and b of the same length, we mean that aj ≥ bj for every coordinate
j. The transpose of A is denoted as A′. The vector of all zeros and
the identity matrix are denoted as 0 and I respectively. We sometimes
make the lengths and sizes explicit. The �q-norm (for q ≥ 1) of a vector
v = (v1, . . . , vk) is denoted as ‖v‖q := (

∑k
i=1 |vi|q)1/q.

We use standard asymptotic notation [29] in this monograph:
an ∈ O(bn) if and only if (iff) lim supn→∞

∣∣an/bn

∣∣ < ∞; an ∈ Ω(bn)
iff bn ∈ O(an); an ∈ Θ(bn) iff an ∈ O(bn) ∩ Ω(bn); an ∈ o(bn) iff
lim supn→∞

∣∣an/bn

∣∣ = 0; and an ∈ ω(bn) iff lim infn→∞
∣∣an/bn

∣∣ = ∞.
Finally, an ∼ bn iff limn→∞ an/bn = 1.

1.3.2 Information-Theoretic Quantities

Information-theoretic quantities are denoted in the usual way [39, 49].
All logarithms and exponential functions are to the base 2. The entropy
of a discrete random variable X with probability distribution P ∈
P(X ) is denoted as

H(X) = H(P ) := −
∑
x∈X

P (x) log P (x). (1.7)

For the sake of clarity, we will sometimes make the dependence on
the distribution P explicit. Similarly given a pair of random variables
(X, Y ) with joint distribution P × V ∈ P(X × Y), the conditional
entropy of Y given X is written as

H(Y |X) = H(V |P ) := −
∑
x∈X

P (x)
∑
y∈Y

V (y|x) log V (y|x). (1.8)

The joint entropy is denoted as

H(X, Y ) := H(X) + H(Y |X), or (1.9)
H(P × V ) := H(P ) + H(V |P ). (1.10)

The mutual information is a measure of the correlation or dependence
between random variables X and Y . It is interchangeably denoted as

I(X; Y ) := H(Y ) − H(Y |X), or (1.11)
I(P, V ) := H(PV ) − H(V |P ). (1.12)
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Given three random variables (X, Y, Z) with joint distribution P ×V ×
W where V ∈ P(Y|X ) and W ∈ P(Z|X × Y), the conditional mutual
information is

I(Y ; Z|X) := H(Z|X) − H(Z|XY ), or (1.13)

I(V, W |P ) :=
∑
x∈X

P (x)I
(
V (·|x), W (·|x, ·)

)
. (1.14)

A particularly important quantity is the relative entropy (or
Kullback-Leibler divergence [102]) between P and Q which are distribu-
tions on the same finite support set X . It is defined as the expectation
with respect to P of the log-likelihood ratio log P (x)

Q(x) , i.e.,

D(P‖Q) :=
∑
x∈X

P (x) log P (x)
Q(x) . (1.15)

Note that if there exists an x ∈ X for which Q(x) = 0 while P (x) > 0,
then the relative entropy D(P‖Q) = ∞. If for every x ∈ X , if Q(x) = 0
then P (x) = 0, we say that P is absolutely continuous with respect to
Q and denote this relation by P � Q. In this case, the relative entropy
is finite. It is well known that D(P‖Q) ≥ 0 and equality holds if and
only if P = Q. Additionally, the conditional relative entropy between
V, W ∈ P(Y|X ) given P ∈ P(X ) is defined as

D(V ‖W |P ) :=
∑
x∈X

P (x)D
(
V (·|x)‖W (·|x)

)
. (1.16)

The mutual information is a special case of the relative entropy. In
particular, we have

I(P, V ) = D(P × V ‖P × PV ) = D(V ‖PV |P ). (1.17)
Furthermore, if UX is the uniform distribution on X , i.e., UX (x) =
1/|X | for all x ∈ X , we have

D(P‖UX ) = −H(P ) + log |X |. (1.18)
The definition of relative entropy D(P‖Q) can be extended to the

case where Q is not necessarily a probability measure. In this case non-
negativity does not hold in general. An important property we exploit
is the following: If μ denotes the counting measure (i.e., μ(A) = |A| for
A ⊂ X ), then similarly to (1.18)

D(P‖μ) = −H(P ). (1.19)
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1.4 The Method of Types

For finite alphabets, a particularly convenient tool in information the-
ory is the method of types [37, 39, 74]. For a sequence x = (x1, . . . , xn) ∈
X n in which |X | is finite, its type or empirical distribution is the prob-
ability mass function

Px(x) = 1
n

n∑
i=1

11{xi = x}, ∀ x ∈ X . (1.20)

Throughout, we use the notation 11{clause} to mean the indicator func-
tion, i.e., this function equals 1 if “clause” is true and 0 otherwise. The
set of types formed from n-length sequences in X is denoted as Pn(X ).
This is clearly a subset of P(X ). The type class of P , denoted as TP ,
is the set of all sequences of length n for which their type is P , i.e.,

TP := {x ∈ X n : Px = P} . (1.21)

It is customary to indicate the dependence of TP on the blocklength n

but we suppress this dependence for the sake of conciseness throughout.
For a sequence x ∈ TP , the set of all sequences y ∈ Yn such that (x, y)
has joint type P × V is the V -shell, denoted as TV (x). In other words,

TV (x) := {y ∈ Yn : Px,y = P × V } . (1.22)

The conditional distribution V is also known as the conditional type of
y given x. Let Vn(Y; P ) be the set of all V ∈ P(Y|X ) for which the
V -shell of a sequence of type P is non-empty.

We will often times find it useful to consider information-theoretic
quantities of empirical distributions. All such quantities are denoted
using hats. So for example, the empirical entropy of a sequence x ∈ X n

is denoted as
Ĥ(x) := H(Px). (1.23)

The empirical conditional entropy of y ∈ Yn given x ∈ X n where
y ∈ TV (x) is denoted as

Ĥ(y|x) := H(V |Px). (1.24)

The empirical mutual information of a pair of sequences (x, y) ∈ X n ×
Yn with joint type Px,y = Px × V is denoted as

Î(x ∧ y) := I(Px, V ). (1.25)
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The following lemmas form the basis of the method of types. The
proofs can be found in [37, 39].

Lemma 1.1 (Type Counting). The sets Pn(X ) and Vn(Y; P ) for P ∈
Pn(X ) satisfy

|Pn(X )| ≤ (n + 1)|X |, and |Vn(Y; P )| ≤ (n + 1)|X ||Y|. (1.26)

In fact, it is easy to check that |Pn(X )| =
(n+|X |−1

|X |−1
)

but (1.26) or
its slightly stronger version

|Pn(X )| ≤ (n + 1)|X |−1 (1.27)

usually suffices for our purposes in this monograph. This key property
says that the number of types is polynomial in the blocklength n.

Lemma 1.2 (Size of Type Class). For a type P ∈ Pn(X ), the type class
TP ⊂ X n satisfies

|Pn(X )|−1 exp
(
nH(P )

)
≤ |TP | ≤ exp

(
nH(P )

)
. (1.28)

For a conditional type V ∈ Vn(Y; P ) and a sequence x ∈ TP , the V -shell
TV (x) ⊂ Yn satisfies

|Vn(Y; P )|−1 exp
(
nH(V |P )

)
≤ |TV (x)| ≤ exp

(
nH(V |P )

)
. (1.29)

This lemma says that, on the exponential scale,

|TP | ∼= exp
(
nH(P )

)
, and |TV (x)| ∼= exp

(
nH(V |P )

)
, (1.30)

where we used the notation an
∼= bn to mean equality up to a polyno-

mial, i.e., there exists polynomials pn and qn such that an/pn ≤ bn ≤
qnan. We now consider probabilities of sequences. Throughout, for a
distribution Q ∈ P(X ), we let Qn(x) be the product distribution, i.e.,

Qn(x) =
n∏

i=1
Q(xi), ∀ x ∈ X n. (1.31)

Lemma 1.3 (Probability of Sequences). If x ∈ TP and y ∈ TV (x),

Qn(x) = exp
(

− nD(P‖Q) − nH(P )
)

and (1.32)
W n(y|x) = exp

(
− nD(V ‖W |P ) − nH(V |P )

)
. (1.33)



1.5. Probability Bounds 15

This, together with Lemma 1.2, leads immediately to the final
lemma in this section.

Lemma 1.4 (Probability of Type Classes). For a type P ∈ Pn(X ),

|Pn(X )|−1 exp
(

− nD(P‖Q)
)

≤ Qn(TP ) ≤ exp
(

− nD(P‖Q)
)
. (1.34)

For a conditional type V ∈ Vn(Y; P ) and a sequence x ∈ TP , we have

|Vn(Y; P )|−1 exp
(

− nD(V ‖W |P )
)

≤ W n(TV (x)|x)
≤ exp

(
− nD(V ‖W |P )

)
. (1.35)

The interpretation of this lemma is that the probability that a ran-
dom i.i.d. (independently and identically distributed) sequence Xn gen-
erated from Qn belongs to the type class TP is exponentially small with
exponent D(P‖Q), i.e.,

Qn(TP ) ∼= exp
(

− nD(P‖Q)
)
. (1.36)

The bounds in (1.35) can be interpreted similarly.

1.5 Probability Bounds

In this section, we summarize some bounds on probabilities that we
use extensively in the sequel. For a random variable X, we let E[X]
and Var(X) be its expectation and variance respectively. To emphasize
that the expectation is taken with respect to a random variable X with
distribution P , we sometimes make this explicit by using a subscript,
i.e., EX or EP .

1.5.1 Basic Bounds

We start with the familiar Markov and Chebyshev inequalities.

Proposition 1.1 (Markov’s inequality). Let X be a real-valued non-
negative random variable. Then for any a > 0, we have

Pr(X ≥ a) ≤ E[X]
a

. (1.37)

If we let X above be the non-negative random variable (X −E[X])2,
we obtain Chebyshev’s inequality.
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Proposition 1.2 (Chebyshev’s inequality). Let X be a real-valued ran-
dom variable with mean μ and variance σ2. Then for any b > 0, we
have

Pr
(
|X − μ| ≥ bσ

)
≤ 1

b2 . (1.38)

We now consider a collection of real-valued random variables that
are i.i.d. In particular, let Xn = (X1, . . . , Xn) be a collection of inde-
pendent random variables where each Xi has distribution P with zero
mean and finite variance σ2.

Proposition 1.3 (Weak Law of Large Numbers). For every ε > 0, we
have

lim
n→∞

Pr
(∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣ > ε

)
= 0. (1.39)

Consequently, the average 1
n

∑n
i=1 Xi converges to 0 in probability.

This follows by applying Chebyshev’s inequality to the random vari-
able 1

n

∑n
i=1 Xi. In fact, under mild conditions, the convergence to zero

in (1.39) occurs exponentially fast. See, for example, Cramer’s theorem
in [43, Thm. 2.2.3].

1.5.2 Central Limit-Type Bounds

In preparation for the next result, we denote the probability density
function (pdf) of a univariate Gaussian as

N (x; μ, σ2) = 1√
2πσ2

e−(x−μ)2/(2σ2). (1.40)

We will also denote this as N (μ, σ2) if the argument x is unnecessary.
A standard Gaussian distribution is one in which the mean μ = 0 and
the standard deviation σ = 1. In the multivariate case, the pdf is

N (x; μ, Σ) = 1√
(2π)k|Σ|

e− 1
2 (x−μ)′Σ−1(x−μ) (1.41)

where x ∈ R
k. A standard multivariate Gaussian distribution is one in

which the mean is 0k and the covariance is the identity matrix Ik×k.
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Figure 1.2: Plots of Φ(y) and Φ−1(ε)

For the univariate case, the cumulative distribution function (cdf)
of the standard Gaussian is denoted as

Φ(y) :=
∫ y

−∞
N (x; 0, 1) dx. (1.42)

We also find it convenient to introduce the inverse of Φ as

Φ−1(ε) := sup
{
y ∈ R : Φ(y) ≤ ε

}
(1.43)

which evaluates to the usual inverse for ε ∈ (0, 1) and extends con-
tinuously to take values ±∞ for ε outside (0, 1). These monotonically
increasing functions are shown in Fig. 1.2.

If the scaling in front of the sum in the statement of the law of large
numbers in (1.39) is 1√

n
instead of 1

n , the resultant random variable
1√
n

∑n
i=1 Xi converges in distribution to a Gaussian random variable.

As in Proposition 1.3, let Xn be a collection of i.i.d. random variables
where each Xi has zero mean and finite variance σ2.

Proposition 1.4 (Central Limit Theorem). For any a ∈ R, we have

lim
n→∞

Pr
(

1
σ

√
n

n∑
i=1

Xi < a

)
= Φ(a). (1.44)
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In other words,
1

σ
√

n

n∑
i=1

Xi
d−→ Z (1.45)

where d−→ means convergence in distribution and Z is the standard
Gaussian random variable.

Throughout the monograph, in the evaluation of the non-
asymptotic bounds, we will use a more quantitative version of the cen-
tral limit theorem known as the Berry-Esseen theorem [17, 52]. See
Feller [54, Sec. XVI.5] for a proof.

Theorem 1.5 (Berry-Esseen Theorem (i.i.d. Version)). Assume that the
third absolute moment is finite, i.e., T := E

[
|X1|3

]
< ∞. For every

n ∈ N, we have

sup
a∈R

∣∣∣∣∣Pr
(

1
σ

√
n

n∑
i=1

Xi < a

)
− Φ(a)

∣∣∣∣∣ ≤ T

σ3√
n

. (1.46)

Remarkably, the Berry-Esseen theorem says that the convergence
in the central limit theorem in (1.44) is uniform in a ∈ R. Furthermore,
the convergence of the distribution function of 1√

n

∑n
i=1 Xi to the Gaus-

sian cdf occurs at a rate of O( 1√
n

). The constant of proportionality in
the O(·)-notation depends only on the variance and the third absolute
moment and not on any other statistics of the random variables.

There are many generalizations of the Berry-Esseen theorem. One
which we will need is the relaxation of the assumption that the random
variables are identically distributed. Let Xn = (X1, . . . , Xn) be a col-
lection of independent random variables where each random variable
has zero mean, variance σ2

i := E[X2
i ] > 0 and third absolute moment

Ti := E
[
|Xi|3

]
< ∞. We respectively define the average variance and

average third absolute moment as

σ2 := 1
n

n∑
i=1

σ2
i , and T := 1

n

n∑
i=1

Ti. (1.47)

Theorem 1.6 (Berry-Esseen Theorem (General Version)). For every n ∈
N, we have

sup
a∈R

∣∣∣∣∣Pr
(

1
σ

√
n

n∑
i=1

Xi < a

)
− Φ(a)

∣∣∣∣∣ ≤ 6 T

σ3√
n

. (1.48)
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Observe that as with the i.i.d. version of the Berry-Esseen theorem,
the remainder term scales as O( 1√

n
).

The proof of the following theorem uses the Berry-Esseen theorem
(among other techniques). This theorem is proved in Polyanskiy-Poor-
Verdú [123, Lem. 47]. Together with its variants, this theorem is useful
for obtaining third-order asymptotics for binary hypothesis testing and
other coding problems with non-vanishing error probabilities.

Theorem 1.7. Assume the same setup as in Theorem 1.6. For any
γ ≥ 0, we have

E
[
exp

(
−

n∑
i=1

Xi

)
11
{ n∑

i=1
Xi > γ

}]
≤ 2

( log 2√
2π

+ 12T

σ2

) exp(−γ)
σ

√
n

.

(1.49)

It is trivial to see that the expectation in (1.49) is upper bounded by
exp(−γ). The additional factor of (σ

√
n)−1 is crucial in proving coding

theorems with better third-order terms. Readers familiar with strong
large deviation theorems or exact asymptotics (see, e.g., [23, Thms. 3.3
and 3.5] or [43, Thm. 3.7.4]) will notice that (1.49) is in the same spirit
as the theorem by Bahadur and Ranga-Rao [13]. There are two advan-
tages of (1.49) compared to strong large deviation theorems. First, the
bound is purely in terms of σ2 and T , and second, one does not have
to differentiate between lattice and non-lattice random variables. The
disadvantage of (1.49) is that the constant is worse but this will not
concern us as we focus on asymptotic results in this monograph, hence
constants do not affect the main results.

For multi-terminal problems that we encounter in the latter parts of
this monograph, we will require vector (or multidimensional) versions
of the Berry-Esseen theorem. The following is due to Götze [63].

Theorem 1.8 (Vector Berry-Esseen Theorem I). Let Xk
1 , . . . , Xk

n be in-
dependent R

k-valued random vectors with zero mean. Let

Sk
n = 1√

n

n∑
i=1

Xk
i . (1.50)
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Assume that Sk
n has the following statistics

Cov(Sk
n) = E

[
Sk

n(Sk
n)′] = Ik×k, and ξ := 1

n

n∑
i=1

E
[
‖Xk

i ‖3
2
]
. (1.51)

Let Zk be a standard Gaussian random vector, i.e., its distribution is
N (0k, Ik×k). Then, for all n ∈ N, we have

sup
C ∈Ck

∣∣∣Pr
(
Sk

n ∈ C
)

− Pr
(
Zk ∈ C

)∣∣∣ ≤ ck ξ√
n

, (1.52)

where Ck is the family of all convex subsets of Rk, and where ck is a
constant that depends only on the dimension k.

Theorem 1.8 can be applied for random vectors that are indepen-
dent but not necessarily identically distributed. The constant ck can be
upper bounded by 400 k1/4 if the random vectors are i.i.d., a result by
Bentkus [15]. However, its precise value will not be of concern to us in
this monograph. Observe that the scalar versions of the Berry-Esseen
theorems (in Theorems 1.5 and 1.6) are special cases (apart from the
constant) of the vector version in which the family of convex subsets is
restricted to the family of semi-infinite intervals (−∞, a).

We will frequently encounter random vectors with non-identity co-
variance matrices. The following modification of Theorem 1.8 is due to
Watanabe-Kuzuoka-Tan [177, Cor. 29].

Corollary 1.9 (Vector Berry-Esseen Theorem II). Assume the same setup
as in Theorem 1.8, except that Cov(Sk

n) = V, a positive definite matrix.
Then, for all n ∈ N, we have

sup
C ∈Ck

∣∣∣Pr
(
Sk

n ∈ C
)

− Pr
(
Zk ∈ C

)∣∣∣ ≤ ck ξ

λmin(V)3/2√
n

, (1.53)

where λmin(V) > 0 is the smallest eigenvalue of V.

The final probability bound is a quantitative version of the so-called
multivariate delta method [174, Thm. 5.15]. Numerous similar state-
ments of varying generalities have appeared in the statistics literature
(e.g., [24, 175]). The simple version we present was shown by Molavian-
Jazi and Laneman [112] who extended ideas in Hoeffding and Robbins’
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paper [81, Thm. 4] to provide rates of convergence to Gaussianity un-
der appropriate technical conditions. This result essentially says that
a differentiable function of a normalized sum of independent random
vectors also satisfies a Berry-Esseen-type result.

Theorem 1.10 (Berry-Esseen Theorem for Functions of i.i.d. Random Vec-
tors). Assume that Xk

1 , . . . , Xk
n are R

k-valued, zero-mean, i.i.d. random
vectors with positive definite covariance Cov(Xk

1 ) and finite third abso-
lute moment ξ := E[‖Xk

1 ‖3
2]. Let f(x) be a vector-valued function from

R
k to R

l that is also twice continuously differentiable in a neighbor-
hood of x = 0. Let J ∈ R

l×k be the Jacobian matrix of f(x) evaluated
at x = 0, i.e., its elements are

Jij = ∂fi(x)
∂xj

∣∣∣∣
x=0

, (1.54)

where i = 1, . . . , l and j = 1, . . . , k. Then, for every n ∈ N, we have

sup
C ∈Cl

∣∣∣∣∣Pr
(

f
( 1

n

n∑
i=1

Xk
i

)
∈ C

)
− Pr

(
Z l ∈ C

)∣∣∣∣∣ ≤ c√
n

(1.55)

where c > 0 is a finite constant, and Z l is a Gaussian random vector
in R

l with mean vector and covariance matrix respectively given as

E[Z l] = f(0), and Cov(Z l) = J Cov(Xk
1 )J′

n
. (1.56)

In particular, the inequality in (1.55) implies that

√
n

(
f
( 1

n

n∑
i=1

Xk
i

)
− f(0)

)
d−→ N

(
0, J Cov(Xk

1 )J′
)

, (1.57)

which is a canonical statement in the study of the multivariate delta
method [174, Thm. 5.15].

Finally, we remark that Ingber-Wang-Kochman [87] used a result
similar to that of Theorem 1.10 to derive second-order asymptotic re-
sults for various Shannon-theoretic problems. However, they analyzed
the behavior of functions of distributions instead of functions of random
vectors as in Theorem 1.10.
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