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ABSTRACT

Index coding is a canonical problem in network informa-
tion theory that studies the fundamental limit and optimal
coding schemes for broadcasting multiple messages to re-
ceivers with different side information. The index coding
problem provides a simple yet rich model for several im-
portant engineering tasks such as satellite communication,
content broadcasting, distributed caching, device-to-device
relaying, and interference management. This monograph
aims to provide a broad overview of this fascinating sub-
ject, focusing on the simplest form of multiple-unicast in-
dex coding. A unified treatment on coding schemes based
on graph-theoretic, algebraic, and information-theoretic ap-
proaches is presented. Although the problem of characteriz-
ing the optimal communication rate is open in general, sev-
eral bounds and structural properties are established. The
relationship to other problems such as network coding and
distributed storage is also discussed.

Fatemeh Arbabjolfaei and Young-Han Kim (2018), “Fundamentals of Index Coding”,
Foundations and Trends R© in Communications and Information Theory: Vol. 14, No.
3-4, pp 163–346. DOI: 10.1561/0100000094.
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1
Introduction

1.1 Motivation

We open our discussion with a simple example. Consider the wireless
communication system consisting of one server and three receivers, as
depicted in Figure 1.1. The server has three distinct messages x1, x2,
and x3. Receiver i ∈ {1, 2, 3} is interested in message xi and has some
of the other messages as side information. In particular, receiver 1 has
message x2 as side information, receiver 2 has x1 and x3, and receiver 3
has x1. The server wishes to communicate all the messages to their
designated receivers using the minimum possible number of broadcast
transmissions.

The most naive strategy for the server to achieve this goal is to
send one message at a time, which takes overall three transmissions.
Alternatively, if the server transmits two coded messages x1 + x2 and
x3 (assuming that the messages can be represented in an alphabet
with well-defined addition), then each receiver can recover its desired
message using the received coded messages and its side information.
Indeed, receiver 1 can recover x1 from the received message x1 + x2
and its side information x2. Similarly, receiver 2 can recover x2 from
x1 +x2 and x1. Receiver 3 can trivially recover x3. This simple example

2

Full text available at: http://dx.doi.org/10.1561/0100000094



1.1. Motivation 3

?
?

?

x1

x1

x1

x2

x2

x3

x3

Figure 1.1: An index coding example with three receivers.

illustrates that sending coded messages may decrease the number of
broadcast transmissions.

Generalizing our initial example, we study the communication prob-
lem depicted in Figure 1.2, which is commonly referred to as index cod-
ing. In this canonical problem in network information theory, a server
has a tuple of n messages

xn := (x1, . . . , xn)

and broadcasts a coded message y generated from xn to n receivers.
Each receiver i ∈ [n] := {1, 2, . . . , n} wishes to recover the message xi

from y and a set of other messages

x(Ai) := (xj , j ∈ Ai), Ai ⊆ [n] \ {i}
it already has as side information. Assuming that the side information
sets A1, . . . , An are known prior to the communication, we are inter-
ested in devising a coding scheme that exploits the side information at
the receivers and broadcasts the messages reliably with the minimum
amount of transmissions.

The index coding problem was introduced by Birk and Kol [26,
27] in the context of satellite communication. Related formulations
were studied earlier by Celebiler and Stette [40], Wyner, Wolf, and

Full text available at: http://dx.doi.org/10.1561/0100000094
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x1, . . . , xn y
Encoder

Decoder 1

Decoder 2

Decoder n

x1

x2

xn

x(A1)

x(A2)

x(An)

Figure 1.2: The index coding problem.

Willems [157, 161], and Yeung [163]. The term “index coding” is due to
Bar-Yossef, Birk, Jayram, and Kol [22], who compared the index coding
problem to the problem of zero-error source coding with side informa-
tion studied by Witsenhausen [158] and contrasted the fact that in the
index coding problem the receiver wishes to recover a single component
of the source, the index of which is unknown to the sender. Hence, as
for compound channels [28, 54, 159], the sender can proactively encode
its transmission and broadcast to the receiver in all possible configu-
rations [49]. In addition to satellite communication, index coding has
applications in diverse areas such as multimedia distribution [117], in-
terference management [83], coded caching [106, 84], and distributed
computing [96]. This problem is also closely related to many other
important problems such as network coding [125, 62, 60], locally recov-
erable distributed storage [111, 132, 13], guessing games on directed
graphs [125, 167, 13], matroid theory [62], and zero-error capacity of
channels [135]. Due to this significance, the index coding problem has
been broadly studied over the past two decades. Tools from various dis-
ciplines including graph theory, coding theory, and information theory
have been utilized to propose numerous nontrivial coding schemes [26,
104, 23, 44, 117, 30, 8, 107, 83, 134, 7, 9, 153, 119, 82, 145, 150, 167],
as well as performance bounds [165, 23, 56, 29, 18, 145].
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1.2 Formal Definition of the Problem

We formulate the problem more precisely. A (t1, . . . , tn, r) index code is
defined by

• n messages, where the i-th message xi = (xi1, . . . , xiti) takes val-
ues from X ti for some common finite alphabet X ,

• an encoder φ :
∏n

i=1 X ti → X r that maps the message n-tuple xn

to an index y = (y1, . . . , yr) ∈ X r, and

• n decoders, where the decoder at receiver i ∈ [n], ψi : X r ×∏
j∈Ai

X tj → X ti , maps the received index y = φ(xn) and the
side information x(Ai) back to xi.

Thus, for every xn ∈ ∏n
i=1 X ti ,

ψi(φ(xn), x(Ai)) = xi, i ∈ [n].

A (t, . . . , t, r) code will be written simply as a (t, r) code.
Suppose that X is an alphabet over which linear operations are well-

defined, for example, a finite field Fq or a ring (see, for example, [48]).
If the encoder of a code is a linear function of xn = (xt1

1 , . . . , xtn
n ) =

(x11, . . . , x1t1 , . . . , xn1, . . . , xntn) and the decoders are also linear func-
tions of xn (and y = (y1, . . . , yr)), then the code is referred to as a
linear index code. If ti = 1 for all i ∈ [n], then the linear index code
is said to be a scalar linear index code. Otherwise, the code is a vector
linear index code.

As an example, for the 3-message index coding problem in Fig-
ure 1.1, a (1, 1, 1, 2) index code with X = F2, the encoder defined by

y1 = x1 + x2 and y2 = x3,

and the decoders defined by

x1 = y1 + x2, x2 = y1 + x3, and x3 = y2,

where in both cases the addition operations are in F2, is a scalar linear
code.

Full text available at: http://dx.doi.org/10.1561/0100000094



6 Introduction

A tuple (R1, . . . , Rn) ∈ Rn
≥0 of nonnegative real numbers is said to

be an achievable rate tuple for the index coding problem if there exists
a (t1, . . . , tn, r) index code such that

Ri ≤ ti

r
, i ∈ [n].

The capacity region C of the index coding problem is defined as the
closure of the set of all achievable rate tuples. The ultimate goal of
studying the index coding problem is to characterize the capacity region
of a general index coding problem and develop a simple coding scheme
that achieves or approximates the capacity region.

Remark 1.1. Our definition of capacity region, with the stringent re-
quirement of perfect, zero-error recovery of the messages, should be
distinguished from the more common definition of vanishing-error ca-
pacity region in network information theory that allows for arbitrarily
small probability of error. It can be shown, however, that these two
capacity regions coincide; see Appendix 1.A for details.

The definition of the capacity region depends on the alphabet X on
which the messages are defined and one may well denote it by CX to
emphasize this dependence. As we will prove in Appendix 1.B, however,
the choice of X is irrelevant to the actual capacity region itself.

Lemma 1.1. For any two finite alphabets X and X ′,

CX = CX ′ .

Consequently, we assume without loss of generality that X = F2 for
a general index code and consequently that the base of logarithm is 2
throughout, unless specified otherwise.

By limiting our attention to linear codes, we can similarly define
linearly achievable rate tuple and linear capacity region L . In contrast
to the capacity region, the linear capacity region of the index coding
problem may depend on the chosen alphabet X and indeed does so
[104] (see Section 6.7).

The capacity region, linear or nonlinear, is closed by definition.
Based on the standard time-sharing argument (see, for example, [61,
Sec. 4.4]), it can be readily checked to be convex.

Full text available at: http://dx.doi.org/10.1561/0100000094



1.2. Formal Definition of the Problem 7

In many cases, it is convenient to focus on a single performance
metric instead of a multidimensional region. Let μ = (μ1, . . . , μn) ∈
Rn

≥0 be a tuple of nonnegative real numbers. The μ-directed capacity of
the index coding problem is defined as

C(μ) = max{R : Rμ ∈ C }.

Remark 1.2. The capacity region can be written in terms of μ-directed
capacities as

C =
⋃
μ

{(R1, . . . , Rn) : Ri ≤ C(μ)μi, i ∈ [n]}. (1.1)

Note that if μ = cμ′ for some constant c, then C(μ)μ = C(μ′)μ′ and
thus in (1.1), it suffices to take the union only over normalized vectors,
e.g., over μ such that

∑n
i=1 μi = n.

The 1-directed capacity of the index coding problem is referred to
as the symmetric capacity (or the capacity in short), that is,

Csym = C(1) = max{R : (R, . . . , R) ∈ C }.

The symmetric capacity can be equivalently defined as

Csym = sup
r

sup
(t,r) codes

t

r
= lim

r→∞ sup
(t,r) codes

t

r
,

where the equality between the supremum and the limit follows by
Fekete’s lemma [69] and the superadditivity

sup
(t,r1+r2) codes

t ≥ sup
(t1,r1) codes

t1 + sup
(t2,r2) codes

t2.

The reciprocal of the symmetric capacity,

β = 1
Csym

,

is referred to as the broadcast rate, which can be alternatively defined
as

β = inf
t

inf
(t,r) codes

r

t
= lim

t→∞ inf
(t,r) codes

r

t
. (1.2)

Full text available at: http://dx.doi.org/10.1561/0100000094



8 Introduction

The linear broadcast rate is similarly defined as

λ = inf
t

inf
(t,r) linear codes

r

t
= lim

t→∞ inf
(t,r) linear codes

r

t
.

As with the linear capacity region L , the linear broadcast rate depends
on the underlying alphabet X and will be sometimes denoted λX to
emphasize this dependence. For any X , β ≤ λX .

Note that the capacity region C of the index coding problem in-
cludes the simplex {(R1, . . . , Rn) : R1 + · · · + Rn = 1, Ri ≥ 0, i ∈ [n]}
and is included in the hypercube {(R1, . . . , Rn) : 0 ≤ Ri ≤ 1, i ∈ [n]}.
Consequently, the capacity and the broadcast rate are bounded as
1/n ≤ Csym ≤ 1 and 1 ≤ β ≤ n, respectively. Similar bounds hold
for L and λ as well.

Any instance of the index coding problem is fully determined by
the side information sets A1, . . . , An, and is represented compactly by
a sequence (i|Ai), i ∈ [n]. For example, the 3-message index coding
problem with A1 = {2}, A2 = {1, 3}, and A3 = {1} in Figure 1.1 is
represented as

(1|2), (2|1, 3), (3|1).

Each instance of the index coding problem can be equivalently spec-
ified by a directed graph G = (V, E) with n vertices, referred to as the
side information graph [27, 44]. Each vertex of G corresponds to a re-
ceiver (and its associated message) and there is a directed edge j → i

if and only if (iff) receiver i knows message xj as side information, i.e.,
j ∈ Ai (see Figure 1.3). The reader is cautioned that in the literature
the opposite convention is sometimes used to describe the availability
of side information, in which there is a directed edge i → j if j ∈ Ai.

1

2 3

Figure 1.3: The graph representation for the index coding problem with A1 =
{2, 3}, A2 = {1}, and A3 = {1, 2}.
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1.2. Formal Definition of the Problem 9

Either way, the number of index coding problems with n messages
is 2n(n−1), which blows up quickly with n. Even when we remove iso-
morphic (i.e., symmetric up to vertex relabeling) instances and con-
centrate on nonisomorphic instances, the number of such problems is
equal to that of nonisomorphic directed graphs with n vertices [151,
Seq. A000273], which grows superexponentially. Throughout the mono-
graph, we identify an instance of the index coding problem with its
side information graph G and often write “index coding problem G.”
We also denote the broadcast rate and the capacity region of problem
G with β(G) and C (G), respectively, when this dependence is to be
emphasized.

The index coding problem can be also formulated as a special case
of the multiple-unicast network coding problem [2, 164]; see Section 10
for a self-contained description of the latter. For example, the index
coding problem with A1 = {2}, A2 = {1, 3}, and A3 = {1} can be
represented as a network coding problem depicted in Figure 1.4. In this
network coding graph, each edge (solid line) represents a link of unit
capacity and each vertex represents a node. There are three messages
communicated from source nodes on the left to destination nodes on
the right (depicted by dashed lines). Each source node is connected
to the top left node, which encodes the messages into an index (coded
message) and communicates it to the top right node (under the capacity
constraint). The top right node is connected to each destination node
and forwards (broadcasts) the index to all of them. The remaining edges
connect source nodes and destination nodes directly according to the
availability pattern of side information. The essence of each problem

x1

x2

x3

x1

x2

x3

Figure 1.4: The network coding representation of the index coding problem with
A1 = {2}, A2 = {1, 3}, and A3 = {1}.
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10 Introduction

instance is captured by such direct connections between the source and
destination nodes. If we consider the subgraph consisting of only source
and destination nodes and overlap each source–destination pair, then
we recover the side information graph in Figure 1.3.

1.3 Objectives and the Organization

As mentioned earlier, our main objectives in studying the index cod-
ing problem are to characterize the capacity region for a general index
coding instance in a computable expression and to develop the coding
scheme that can achieve it. Despite their simplicity, these two closely
related questions are extremely difficult and precise answers to them,
after twenty years of vigorous investigation, are still in terra incognita.
There are, nonetheless, many elegant results that shed light on the fun-
damental challenges in multiple-unicast network communication and
expose intriguing interplay between coding theory, graph theory, and
information theory. This monograph thus aims to provide a concise
survey of these results in a unified framework.

To facilitate the development of this framework, the rest of the
monograph is organized as follows. Section 2 reviews some known re-
sults in graph theory that will be recalled frequently throughout. Our
main story starts with Section 3, which presents a few noncomputable
characterizations of the capacity of a general index coding problem in
graph-theoretic and information-theoretic expressions. As a main appli-
cation of these characterizations, we present basic structural properties
of index coding capacity in Section 4. The next two sections develop
upper and lower bounds on the capacity. In Section 5, we establish a
few capacity upper bounds and the relationships among them. In Sec-
tion 6, we develop several coding schemes based on algebraic, graph-
theoretic, and information-theoretic tools along with the corresponding
lower bounds on the capacity. Section 7 is devoted to the notion of crit-
icality, namely, whether the side information graph cannot be reduced
without lowering the capacity, and presents necessary and sufficient
conditions for an index coding problem to be critical. In Section 8,
we combine the results in Sections 4 through 7 to characterize the
capacity of several classes of the index coding problem. The capacity
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approximation results beyond these classes of problems are presented
in Section 9. The next two sections explore the connection between in-
dex coding and other related problems. In Section 10, we relate index
coding to the well-known multiple-unicast network coding problem. In
Section 11, we present the intriguing duality between index coding, lo-
cally recoverable distributed storage, and guessing games. We conclude
our discussion in Section 12 by pointing out numerous variations and
extensions of the basic index coding problem presented thus far. Some
technical proofs are relegated to the end of each section.

1.A Capacity Region Under Average Error Probability Criterion

Let Xi and X̂i be random variables representing the i-th message and
its estimate, respectively. Suppose that (X1, . . . , Xn) is uniformly dis-
tributed over X t1 ×· · ·×X tn , i.e., the messages are uniformly distributed
and independent of each other. A rate tuple (R1, . . . , Rn) is said to be
vanishing-error achievable if for every ε > 0, there exists a (t1, . . . , tn, r)
code with Ri ≤ ti/r, i ∈ [n], such that the average probability of error

Pe = P{(X̂1, . . . , X̂n) �= (X1, . . . , Xn)} ≤ ε. (1.3)

Equivalently, a rate tuple (R1, . . . , Rn) is vanishing-error achievable
if there exists a sequence of (�rR1	, . . . , �rRn	, r) index codes such
that the average probability of error Pe converges to 0 as r → ∞.
The vanishing-error capacity region C ∗ of the index coding problem
is the closure of the set of all vanishing-error achievable rate tuples
(R1, . . . , Rn).

For a general network communication problem, the vanishing-error
capacity region and the (zero-error) capacity region are not the same
[59, 154]. For a network with a single sender that broadcasts multi-
ple messages, however, these two regions can be shown to be identical
[156] (see also [61, Problem 8.11]), which was rediscovered by Chan and
Grant [42], and Langberg and Effros [92] in the context of index coding
and single-sender network coding problems.

Lemma 1.2. For any index coding problem, C = C ∗.
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The proof is delegated to Appendix 1.C. One can similarly define
vanishing-error linearly achievability. The vanishing-error linear capac-
ity region L ∗ is then defined to be the closure of the set of all vanishing-
error achievable rate tuples, which is also the same as the (zero-error)
linear capacity region.

Lemma 1.3. For any X = Fq, L = L ∗.

To prove Lemma 1.3, we establish the following stronger result.

Lemma 1.4. For any linear index code, if the probability of error Pe <

1/2, then Pe = 0.

Proof. Let tΣ =
∑n

i=1 ti. Every linear encoder φ is specified by a matrix
Φ ∈ Fr×tΣ

q such that y = φ(xn) = Φxn. Assume by contradiction that
0 < Pe < 1/2. Since the probability of error is nonzero, there exist
distinct x̃n, z̃n ∈ FtΣ

q such that Φx̃n = Φz̃n and x̃(Ai) = z̃(Ai) for some
i ∈ [n], or equivalently, Φen = 0 and e(Ai) = 0, where en = x̃n − z̃n.
Now for every xn, since the code is linear, there exists zn = xn + en for
which Φxn = Φzn and x(Ai) = z(Ai) for some i. Therefore, at most one
of xn and zn can be recovered correctly and consequently the average
probability of error Pe ≥ 1/2, which contradicts the assumption.

We are now ready to prove Lemma 1.3. Clearly L ⊆ L ∗. Thus, it
suffices to show that L ∗ ⊆ L . Let (R1, . . . , Rn) be a vanishing error lin-
early achievable rate tuple. Then, by definition, there exists a sequence
of (�rR1	, . . . , �rRn	, r) index codes for which (1.3) is satisfied. There-
fore, there exists a sufficiently large r such that the error probability of
the index code (�rR1	, . . . , �rRn	, r) is less than 1/2. By Lemma 1.4,
the error probability of this code is zero and thus, (R1, . . . , Rn) is also
a (zero-error) linearly achievable rate tuple. Hence, we have L ∗ ⊆ L ,
which completes the proof.

1.B Proof of Lemma 1.1

Let I and I ′ be index coding instances defined over finite alphabets
X and X ′, respectively, and let A and A ′ be the associated sets of
achievable rate tuples. We consider two cases.
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Case 1. log|X | |X ′| is a rational number, i.e., log|X | |X ′| = a/b for
some a, b ∈ N. To show that the capacity regions are equal, it suffices
to show A = A ′. Suppose that R = (R1, . . . , Rn) ∈ A . Then, by
definition, there exists a (t, r) = (t1, . . . , tn, r) code for problem I such
that Ri ≤ ti/r, i ∈ [n]. Repeat the (t, r) code a times to construct
an (at, ar) index code for problem I. Since the two instances are both
defined on the same set of side information, and |X |a = |X ′|b, this leads
to a (bt, br) code for problem I ′. Therefore, R ∈ A ′, and thus A ⊆ A ′.
By similar steps we can show A ′ ⊆ A , which completes the proof.

Case 2. log|X | |X ′| is irrational. First, we show that A ′ ⊆ CX . Sup-
pose that R ∈ A ′. Then, by definition, there exists a (t, r) index code
for problem I ′ such that Ri ≤ ti/r, i ∈ [n]. For any b ∈ N sufficiently
large, there exists a ∈ N such that a/b < log|X | |X ′| < (a + 1)/b. Con-
struct a (bt, br) index code for problem I ′ by repeating the (t, r) code b

times. Since |X |a < |X ′|b < |X |a+1 and the two problems are defined on
the same set of side information, a (at, (a+1)r) code for problem I can
be constructed from the (bt, br) code for problem I ′. Letting b → ∞
(and hence a → ∞) proves that R ∈ CX , and thus A ′ ⊆ CX . Since CX
is closed, we have CX ′ ⊆ CX . By similar steps we can show CX ⊆ CX ′ ,
which completes the proof.

1.C Proof of Lemma 1.2

We adapt Telatar’s simplification of the classical proof by Willems [156]
on the invariance of the broadcast channel capacity region under the
average and maximal error probability criteria that appeared in [61,
Problem 8.11].

It is trivial to see that C ⊆ C ∗. We thus prove the other direction.
Let (R1, . . . , Rn) ⊆ C ∗. Then for every ε > 0, there exists a sequence
of (t1, . . . , tn, r) codes with ti = �rRi	, i ∈ [n], such that the average
probability of error Pe ≤ ε for r sufficiently large. Assume without
loss of generality that Ri > 0, i ∈ [n]. (Otherwise, the message xi of
zero rate Ri = 0 is fixed and can be ignored.) We will identify the set
{0, 1}t of all t-bit sequences with the set [2t] = {1, . . . , 2t} of integers
throughout. Then the set of codewords of the (t1, . . . , tn, r) index code
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can be expressed as

C = {φ(xn) ∈ [2r] : xn ∈ [2t1 ] × · · · × [2tn ]},

which will be referred to as the codebook. For each message tuple xn,
we define its probability of error as

Pe(xn) = P{Xn �= X̂n | Xn = xn}. (1.4)

Note that Pe(xn) is either 0 or 1 for any index code. We say that a
codeword φ(xn) is said to be “bad” if the corresponding Pe(xn) = 1.
Since the average probability of error is

ε =
1

2tΣ

∑
xn

Pe(xn),

there are 2tΣε “bad” codewords φ(xn), where tΣ =
∑n

i=1 ti. Randomly
and independently permute the messages x1, . . . , xn to generate a new
codebook C that consists of codewords φ(π1(x1), . . . , π(xn)), where
π1, . . . , πn denote the independent random permutations.

We now proceed with the multicoding technique by Marton [108]
originally developed for broadcast channels. We partition the codebook
C into subcodebooks C(x′

1, . . . , x′
n) for a new set of message tuples

(x′
1, . . . , x′

n) ∈ [2t1/r2] × · · · × [2tn /r2], each subcodebook consisting of
r2 ×· · ·×r2 = r2n codewords of length r. We will show that there exists
a new encoder φ′(x′

1, . . . , x′
n) that maps each message tuple (x′

1, . . . , x′
n)

to some codeword in the corresponding subcodebook C(x′
1, . . . , x′

n), so
that every codeword φ′(x′

1, . . . , x′
n) is “good” (= not “bad”) and hence

distinguishable from the rest with zero error. Since the rate of the new
code is R′

i = (ti−2 log r)/r = (�rRi	−2 log r)/r, which converges to the
original rate Ri as r → ∞, there is no asymptotic rate loss for achieving
the zero error probability. Details on the existence of φ′(x′

1, . . . , x′
n) are

as follows.
First note that every subcodebook has the same distribution as the

set
{φ(π1(x1), . . . , πn(xn)) : x1, . . . , xn ∈ [r2]}.

The probability that all r2n codewords in this set are “bad” is upper
bounded by the probability that all r2 “diagonal” codewords, that is,
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all codewords in

{φ(π1(x), . . . , πn(x)) : x ∈ [r2]},

are “bad.” Since the permutations are independent and there are 2tΣε

“bad” codewords, the probability that all “diagonal” codewords are
“bad” is upper bounded by

2tΣε∏n
i=1 2ti

· 2tΣε − 1∏n
i=1(2ti − 1)

· 2tΣε − 2∏n
i=1(2ti − 2)

· · · 2tΣε − (r2 − 1)∏n
i=1(2ti − (r2 − 1))

≤
( n∏

i=1

2ti

2ti − (r2 − 1)

)r2

εr2
,

which is further upper bounded by (2ε)r2 for r sufficiently large (since
2ti/(2ti − (r2 − 1)) → 1 as r → ∞).

Next, since every subcodebook has the same distribution, the ex-
pected number of subcodebooks for which all of their constituent code-
words are “bad” is upper bounded by

2tΣ

r2n
(2ε)r2

,

which is the product of the number of all subcodebooks and the prob-
ability bound of (2ε)r2 we computed above. Since this bound tends to
zero as r → ∞, there exists at least one permutation tuple (π1, . . . , πn)
such that every subcodebook has at least one codeword that is “good.”
Hence, we can define the new encoder φ′(x′

1, . . . , x′
n) that maps each

message tuple (x′
1, . . . , x′

n) ∈ [2t1 /r2] × · · · × [2tn /r2] to a “good” code-
word in the subcodebook C(x′

1, . . . , x′
n). This completes the proof of

Lemma 1.2.
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