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ABSTRACT
The present monograph focuses on the detection problem in ad-
versarial setting. When framed in an adversarial setting, classical
detection theory can not be applied any more, since, in order to
make a correct decision, the presence of an adversary must be
taken into account when designing the detector. In particular,
the interplay between the Defender (D), wishing to carry out the
detection task, and the Attacker (A ), aiming at impeding it, must
be investigated. The purpose of this monograph is to lay out the
foundations of a general theory of adversarial detection, taking
into account the impact that the presence of the adversary has
on the design of the optimal detector. We do so by casting the
adversarial detection problem into a game theoretical framework,
which is then studied by relying on typical methods of information
theory. As a final result, the theory allows to state the conditions
under which both the false positive and false negative error prob-
abilities tend to zero exponentially fast, and to relate the error
exponents of the two kinds of errors to the distortion the attacker
can introduce into the test sequence.

Mauro Barni and Benedetta Tondi (2021), “Theoretical Foundations of Adversarial
Binary Detection”, Foundations and TrendsR© in Communications and Information
Theory: Vol. 18, No. 1, pp 1–172. DOI: 10.1561/0100000102.
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1
Introduction

Security-oriented applications of signal processing have received increas-
ing attention in the last decades; digital watermarking, steganography
and steganalysis, multimedia forensics, biometrics, network intrusion
detection, spam filtering, traffic monitoring, video surveillance are just
some examples of such an interest. All these fields are characterized by
a unifying feature: the presence of one or more adversaries aiming at
making the system fail.

Although each adversarial scenario has its own peculiarities, there are
some fundamental questions whose solution under a unified framework
would ease the understanding of the underlying security problems and
the development of effective and general solutions. Such an observation
has prompted the birth of a new discipline, namely adversarial signal
processing [1], whose final aim is to design signal processing tools
which retain their effectiveness even in the presence of an adversary.
Within such a framework, classical methods can no longer be applied,
since the presence of two contenders with opposite goals and their
mutual interaction must be properly taken into account. The goal
of this monograph is to present a coherent theory of the most recent

2
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1.1. Application Areas 3

findings regarding the single most common problem in adversarial signal
processing, namely binary detection in adversarial setting.

The monograph originates from the research activity carried out
by the authors over the last six years, with particular reference to the
results proven in [2]–[5]. Other related papers have been published
by the same authors and by other researchers, however they are not
discussed in this monograph to let the reader focus on the core theory.
A brief overview of related works is given in Section 1.3 to introduce the
reader to the most interesting extensions of the results presented here.

1.1 Application Areas

Binary detection, sometimes referred to as binary decision or a particular
kind of binary hypothesis testing, is a ubiquitous problem in virtually all
branches of science and technology. In many cases, binary detection must
be carried out in a setting wherein the presence of an adversary aiming
at inducing a wrong decision can not be ruled out. Upon restricting the
attention to signal processing and data science applications, examples of
binary detection problems that, by their nature, are required to work in
an adversarial setting include: network monitoring, intrusion detection,
spoofing detection in biometric recognition systems, watermarking,
steganography and steganalysis, multimedia forensics, spam filtering,
video surveillance, anomaly detection, malware detection and many
others.

In network monitoring applications, for instance, a common binary
detection problem consists in detecting if there is an on-going Denial of
Service (DoS) attack. In the simplest case, the presence of the attack can
be detected by relying on a few traffic characteristics like the traffic rate,
the provenance of data packets and the frequency of traffic bursts [6]. In
the likely case that the hacker responsible for the DoS attack is aware
of the presence of a network monitoring service, he will try to shape the
traffic resulting from the attack in such a way that its characteristics
are as close as possible to those of the benign traffic loading the network
in the absence of attacks (while of course retaining the effectiveness of
the attack). In this way, the hacker is going to alter the statistics of the
observed traffic in the presence of the attack, thus impacting heavily
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4 Introduction

the performance of the monitoring service in case the service had been
designed without taking into account the presence of the attacker. Of
course, the designer of the monitoring service does not know exactly
how the hacker will shape the traffic. In turn, the hacker may not know
the exact features the traffic monitoring service is going to rely on to
make his decision. This uncertainty, or lack of knowledge, characterizing
both the network analyst and the hacker, must be properly taken into
account by both parties to optimise the actions they are going to take.
It is the goal of adversarial detection theory to model the interplay
between the analyst and the hacker to suggest the best way for them to
reach their (opposite) goals, and derive the performance the monitoring
service can achieve despite the presence of the adversary.

A similar situation occurs in spam filtering applications [7], [8]. Even
in this case, the spammer and the filter designer engage in a struggle
wherein the designer of the spam filtering service looks for a reliable way
to distinguish normal e-mails from spam, while the spammer does its
best to convey the intended malevolent payload letting spam messages
resemble normal e-mails, or, in a similar but not equivalent way, by
avoiding that they are recognized as spam. Once again, designing the
filter without taking into account the possible efforts made by the
spammer to evade detection would result in poor filtering performance.
In the same way, creating spam e-mails neglecting the presence of the
anti-spam filter would result in most of the spam being filtered out.

Another relevant scenario, even closer to the theory presented in this
monograph, is Multimedia Forensics (MF) [9]. Most problems in MF
can be formulated as a binary detection or hypothesis testing problem.
For instance, the MF analyst may be asked to distinguish between
synthetic and natural images, or to decide if a given image has been
captured by a specific device or not. In other cases, the analysis aims at
deciding if an image or a video has been compressed once or multiple
times, since the compression history of the image/video may reveal
important aspects of the processing chain the image/video has been
subject to. In yet other cases, binary detection requires understanding
if a certain media has been manipulated since it has been captured or
not. Since the very first days of MF research, it has been recognised
that forensic analysis had to cope with the opposite effort, usually
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1.1. Application Areas 5

referred to as counter-forensics, made by a counterfeiter [10]. From this
perspective, counter-forensics can then be defined as a way to degrade
the performance of the hypothesis test envisaged by the analyst. In an
attempt to avoid a never-ending loop wherein new defenses and attacks
are developed iteratively, and to an extent anticipating the theory
developed here, the authors of [10] argued that the Kullback–Leibler
distance between the probability density functions of the observed
signals after the application of the counter-forensic attack is a proper
way to measure the effectiveness of the attack itself. Noticeably, such
measure does not depend on the particular technique adopted by the
analyst. Even though the formulation in [10] does not explicitly use
the game-theoretic approach, this can be seen as the first step towards
the definition of the equilibrium point of a general multimedia forensics
game.

Prior to multimedia forensics, the arguments used in [10] had al-
ready been adopted to model the interplay between steganography and
steganalysis. In steganography, the steganographer modifies a cover
media, usually an image, to hide within it a hidden message. The re-
sulting image, referred to as a stego image, is sent to the intended
receiver of the hidden message in such a way that an external observer
does not notice the presence of the hidden message, thus creating a
cover channel between the steganographer and the receiver [11]. The
goal of the steganalyzer is to observe the communication between the
sender and the receiver, trying to distinguish between the cover and
stego images. As in the previous examples, the task of the steganalyzer
corresponds to a binary detection problem (detecting stego images),
taking into account the opposite effort of the steganalyzer who aims
at making the cover and stego images indistinguishable. Interestingly,
the mathematical model used to describe the interplay between the
steganographer and the steganalyzer is very similar to that used in [10],
with the steganographer playing the role of the counterfeiter and the
steganalyzer the role of the forensic analyst [12].

Biometric authentication is yet another discipline which is often faced
with binary decision in settings wherein the presence of an adversary
cannot be ignored. In biometric-based user verification, for instance, the
authenticating system must decide whether a biometric template (a face
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6 Introduction

image, a fingerprint, an iris image or any other biometric trait) belongs
to a certain individual, despite the opposite efforts of an attacker aiming
at building a fake template that passes the authentication test. In other
cases, the owner of the biometric template modifies the template to avoid
being recognized [13]. In both cases, the distortion introduced within
the template as a consequence of the attack should be minimal impede
the detection of the attack. Another problem pertaining to biometric
security that is naturally modelled as an adversarial binary detection
problem, is anti-spoofing. A spoofing attack refers to a situation wherein
the attacker attempts to impersonate the target by presenting to the
authentication system a synthetic copy of the biometric signal used for
authentication. In the case of face-based authentication, for instance, a
spoofing attack is easily implemented by showing to the authentication
system the face of the victim displayed on the screen of a mobile phone
(rebroadcast attack). In this framework, the goal of the anti-spoofing
system is to distinguish between natural and rebroadcast images. In
his turn, the attacker will try to generate the image or video to be
rebroadcast in such a way that it is judged as a natural one by the
spoofing detection system. In doing so, the attacker must preserve the
quality of the displayed image/video since otherwise it would fail to be
recognized as the victim of the attack [14].

In all the examples described so far, the attack is carried out at test
time. The situation is rather different in applications entailing the use
of machine learning tools, since in such cases the attacker may already
act during the training phase [15]. With such detectors, the different
distributions of samples observed under the two hypotheses being tested
is not known through statistical models, rather, they are learnt during
the training phase in which examples of data produced under the two
hypotheses are shown to the system. If the attacker can interfere with
the training phase, he can try to modify the training data to facilitate
a subsequent attack carried out at test time. Many examples of the
effectiveness of this kind of attacks have been published recently, due
to the ever-increasing popularity of machine learning techniques [16].
In Chapter 6, while addressing the problem of binary detection with
corrupted training data, we touch upon attacks carried out at training
time.
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1.2. Scope of the Theory 7

1.2 Scope of the Theory

The main idea behind adversarial detection theory (and adversarial
signal processing in general) consists in casting the detection problem
into a game-theoretic framework, which permits to rigorously define
the goals and the actions available to the two contenders, namely, the
designer of the detector, hereafter referred to as Defender (D), and the
adversary, referred to as the Attacker (A ).

In the following, we introduce the general adversarial binary detec-
tion problem addressed in this monograph, which is a binary hypothesis
testing problem.1

Let X ∼ PX and Y ∼ PY be two discrete sources belonging to the
class of the discrete memoryless sources (DMS) C, with alphabet X . The
goal of the Defender, D , is to decide whether a test sequence zn ∈ X n

has been generated by X (hypothesis H0) or Y (hypothesis H1). As a
result of the test, X n is partitioned into two complementary regions
Λn and Λ̄n, such that for zn ∈ Λn, D decides in favor of H0, while for
zn ∈ Λ̄n, H1 is preferred. We have a Type-I, or false positive, error when
D decides for H1 and H0 is true, and a Type-II, or false negative, error
when the decision is in favor for H0 while H1 occurs. We indicate the
probability of a Type-I, or false positive error as PFP and the probability
of a Type-II or false negative error as PFN. Our goal is to design a
hypothesis test that encompasses the presence of an attacker aiming
at impeding a correct decision. A Neyman–Pearson (NP) setup [17,
Chapter 3, p. 63] is considered for the decision test. Accordingly, D must
choose the decision regions Λn and Λ̄n in such a way as to ensure that
the Type-I error probability is lower than a certain prescribed value.
The Attacker, A , takes a sequence yn generated by Y and transforms it
into a sequence zn so that when presented with the modified sequence,
D still accepts H0. In doing so, A must respect a distortion constraint,
limiting the amount of modifications that can be introduced into the
sequence. In such a scenario, the goal of the Attacker is to cause a false
negative decision error. Therefore, A aims at maximizing the Type-II
error probability, while D ’s goal is to minimize it by taking into account

1For an introduction on the statistical method of hypothesis testing, the reader
is referred to [17].
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8 Introduction

Figure 1.1: General setup of the adversarial binary decision test. PX and PY govern
the generation of the test sequence under H0 and H1 respectively. PX also underlies
the generation of the training sequences tND and tKA for the case of binary decision
based on training data.

the presence of A . The above scenario provides a suitable model for
the detection problems found in many practical applications, where the
rejection of H0 corresponds to raising some kind of alarms and A aims
at preventing it (e.g., to avoid that an anomalous situation is detected,
or to allow the access to a system or service to a unauthorized user).

A schematic representation of the adversarial binary detection test
in its general form is depicted in Figure 1.1. The continuous line drawing
refers to the most basic scenario. Let xn ∈ X n, resp. yn ∈ X n, be a
sequence drawn from X, resp. Y , and let zn ∈ X n denote the sequence
observed by the D . We then have zn = xn under H0, whereas, under
H1, zn is a modified version of yn produced by A in the attempt to
deceive D . In the rest of this monograph, we assume that X and Y are
discrete memoryless sources (DMS).

In this monograph, we address several variants of the above problem,
depending on the knowledge available to the Defender and the Attacker
about the statistical characterization of the system under the two
hypotheses, which can be full or based on training data, and on the
capability of the adversary, who may attack the system at test time
only or both during the training and testing phases.

Below, we summarize the setups of the adversarial binary decision
test considered in this monograph.

Full text available at: http://dx.doi.org/10.1561/0100000102
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1.2.1 Adversarial Binary Detection Setups

In the simplest setup, referred to as binary detection with known sources,
the Defender and the Attacker have full knowledge of the statistics
characterizing the system, i.e., they know the probability mass func-
tion ruling the emission of the test sequence under H0. The scheme
illustrating this setup is the one corresponding to the continuous-line
drawing in Figure 1.1. Binary detection with known sources is studied
in Chapters 3 and 4. The second setup studied in this monograph con-
siders the more realistic case in which the sources are not fully known
to the Defender and the Attacker. In this case, D and A obtain their
knowledge about X through the observation of a training sequence.
This setup is schematized in Figure 1.1 (solid and dashed line drawing).
In the most general case, the training sequences observed by D and A ,
namely tND and tKA , are different and have different length (N 6= K).
Such a setup is referred to as binary detection with training data, and
is studied in Chapter 5. We also consider a setup that accounts for the
possibility that the Attacker corrupts part of the training data available
to the Defender. This corresponds to a more complicated situation,
since the action of the Attacker also affects the decision under H0, thus
impacting on both Type-I and Type-II error probabilities (while in the
previous cases, the action of the attack had an impact on H1 only). This
setup, referred to as binary detection with corrupted training, is studied
in Chapter 6. More specifically, two different scenarios are considered
in Chapter 6, one corresponding to the case where the attacker can
only add some samples to the training sequence, and the other to the
case where he replaces a percentage of samples of the training sequence.
A schematic representation of the adversarial detection test in the cor-
rupted training setup is reported in Figure 1.2. With reference to the
notation in the figure, the original training sequence tKA is corrupted
by A producing tmA . The corrupted training sequence tmA is the one
observed by D , upon which he bases the decision. Such a sequence has
length m > K in the case of sample addition, while in the scenario of
sample replacement, m = K. The scheme presented in Figure 1.2 is a
very general one. A more detailed representation for each of the two
scenarios with corrupted training is provided in Chapter 6. The two
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10 Introduction

Figure 1.2: Setup of the adversarial binary decision test with corruption of the
training set. PX and PY rule the generation of the test sequence under H0 and H1
respectively. PX also rules the generation of the training sequence tKA .

Table 1.1: Summary of the adversarial binary detection tests addressed in this
monograph

Defender Adversary

Source Source
Setup Knowledge Goal Knowledge Goal Capability

Known sources PX

minPFN
2

PX

maxPFN

Modify yn

Detection with
tND tKA Modify yn

training data

Corrupted training
tmA tKA

Modify yn and tKA
(sample addition
or replacement)

variants of the game corresponding to sample addition and replacement
are discussed in Sections 6.3 and 6.6, respectively.

Table 1.1 summarizes the three adversarial detection setups consid-
ered in this monograph.

In all the setups, the game between the Defender and the Attacker
is solved by relying on information-theoretic methods, notably on the
method of types, under some limiting, yet reasonable, assumptions on
the statistics used by the Defender to make a decision. The analysis
starts with a formal definition of the game, and proceeds by looking
for the equilibrium point and with the evaluation of the payoff at
the equilibrium. The analysis of the payoff permits one to draw some
conclusions about the outcome of the games. From the analysis of

2The minimization of PFN is subject to a constraint on PFP.
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1.3. Related Work 11

the achievable performance of the various games, and by drawing a
parallelism with optimal transport theory, we are also able to define a
measure of statistical distinguishability of information sources under
adversarial conditions.

In fact, it turns out that as long as the distortion the adversary
is allowed to introduce is smaller than a certain quantity, called Se-
curity Margin (SM), at the equilibrium both the false positive and
false negative error probabilities tend to zero exponentially fast (hence
ensuring strictly positive error exponents). On the other hand, if the
allowed distortion is larger than SM, the error probabilities can not
tend to zero simultaneously. The exact value of SM depends on the
probability density functions governing the emission of the test sequence
under H0 and H1 and the particular version of the game played by A

and D . Comparing the Security Margin to the distortion introduced by
the attacker permits one to anticipate the results of the race of arms
between D and A for a given strength of the attack when the length of
the observed sequence tends to infinity.

1.3 Related Work

In this monograph, we focus on the core of adversarial binary detection
theory, paying particular attention to the game-theoretic framework
wherein such a theory is cast, and prove theorems stating the most
important results of the theory. We do so by analyzing first the basic
binary detection game under the assumption that the sources underlying
the two hypotheses being tested are known, then we extend the analysis
to the more complicate case of sources known through the observation of
(possibly corrupted) training data. The theory presented in this mono-
graph, however, does not exhaust the problems addressed and the results
proven in the last years pertaining to the general field of adversarial de-
tection. Several extensions of the basic theory have been published both
by the authors of this monograph and by other researchers, and several
related problems have been addressed as described in the following.

One recent extension of the theory concerns the case of a fully active
attacker, that is an attacker that acts also when the null hypothesis
holds. In many cases, it is reasonable to assume that the attacker
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is active under both hypotheses with the goal of causing both false
positive and false negative detection errors. As an example, we may
consider the case of a radar target detection system, where the defender
wishes to distinguish between the presence and the absence of a target,
by considering the presence of a hostile jammer. To maximize the
damage caused by his actions, the jammer may decide to act under
both hypotheses: when H1 holds, to avoid that the defender detects the
presence of the target, and in the H0 case, to increase the number of
false alarms inducing a waste of resources deriving from the adoption
of possibly expensive countermeasures even when they are not needed.
In a completely different scenario, we may consider an image forensic
system aiming at deciding whether a certain image has been shot by
a given camera, for instance because the image is involved in a legal
procedure. Even in this case, the attacker may be interested in causing
a missed detection event, or induce a false alarm to accuse an innocent
party. The binary detection game with a fully active adversary is studied
extensively in [18], where various versions of the game are considered
according to whether the attacker is aware of the real status of the
observed system.

A different adversarial hypothesis testing game is introduced in [19].
In this work, the price the attacker has to pay to modify the distribution
of samples emitted under H1 is expressed as a cost added to the payoff of
the game, rather than as a hard constraint on the admissible attacking
strategies. This results in a non-zero sum game admitting a Nash
equilibrium point, for which the authors derive exponential rates of
convergence of classification errors.

Another extension of the theory presented in this monograph con-
cerns the case of binary detection based on multiple observations. This
scenario is relevant in several applications, including multimedia foren-
sics, data fusion, distributed hypothesis testing and detection, sensor
networks, and cognitive radio networks. In all these cases, a fusion
center has to take a binary decision about the status of a system by
relying on a number of observations made available by different sensors
or a number of traces detected by different investigation tools. In many
situations, it is possible that an attacker corrupts the observations or
deliberately provides misleading data to induce a decision error at the
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fusion center. The binary detection game with multiple observations
studied in [20] models several situations that can be traced back to the
above general formulation, accounting for attackers altering a different
number of observations and with different attacking capabilities.

Data fusion with corrupted observations is itself a widely studied
topic. Such a problem, often referred to as distributed binary detection
in the presence of Byzantines [21], deals with a situation wherein a
fusion center must make a decision about the status of a system based on
the reports submitted by local agents observing the system at different
locations or under different conditions. In particular, binary detection
must be carried out despite the possible presence of corrupted agents
(referred to as Byzantines) submitting possibly corrupted reports with
the goal of inducing a decision error. The Byzantines must satisfy
two opposite requirements: (i) maximize the error probability at the
fusion center and (ii) avoid being identified. To accomplish this, they
can choose among many corruption strategies, however they must do
so without knowing the precise detection strategy adopted by the
fusion center. In its turn the fusion center must select its detection
strategy without knowing the exact attack strategy implemented by
the Byzantines. This is a typical dilemma encountered in adversarial
binary detection games, thus opening the way to the study of the
data fusion problem with corrupted reports via the game-theoretic
methods discussed in this monograph (see [22], [23, Chapter 5] for
specific examples). Other approaches to distributed binary detection
with Byzantines are discussed in [24]–[26]. An example of distributed
estimation in the presence of tampered sensors can be found in [27]. For
a thorough review of distributed inference in the presence of Byzantines
readers are referred to [28].

As a last remark, we mention interesting relationships – deserving
further investigation – between adversarial binary detection with train-
ing data and the vast body of research devoted to studying the security
of Machine Learning (ML) [29], [30]. Despite the difficulty of applying
the theory described in this monograph to practical applications, due to
the difficulty of building precise statistical models to describe the kind
of data ML systems usually involve, such a theory can be conveniently
used to get useful insights about the security level that can be reached
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by binary detectors in practice. An example of such an analysis applied
to image forensics is described in [31]. The theoretical framework be-
hind Generative Adversarial Networks (GANs) also presents interesting
connections to adversarial detection with training data. As explained in
the seminal work by Goodfellow et al. [32], GANs are based on a game
played by a generator and a discriminator, the former aiming at generat-
ing samples that mimic those of a certain class (e.g., natural images), in
such a way that the discriminator can not distinguish between natural
samples and samples produced by the generator. The generator, in turn,
iteratively updates its decision strategy by learning the characteristics
of the samples output by the generator. Interestingly, [32] shows that
the equilibrium point of the game is reached when the data produced by
the generator minimizes the Jensen–Shannon divergence between the
distributions of natural and synthetic samples, which is by any means
equivalent to the generalized log-likelihood ratio function appearing
in Theorem 5.3 defining the equilibrium point of the binary detection
game with training data.

1.4 Outline of the Monograph

This monograph is organized as follows: in Chapter 2 we review the
basic tools required to derive and understand the results of our analysis.
In Chapter 3, we define and study the simple case of binary detection
when the statistical characterization of the observed system is known
to both the Defender and the Attacker. The achievable performance of
this game are studied in Chapter 4 where we also introduce the source
distinguishability concept. The analysis of Chapters 3 and 4 is extended
in Chapter 5 to the case in which the statistics of the observed system
are known through training data. Then, in Chapter 6, we generalize
the adversarial setup studied in Chapter 5 by considering a version of
the game in which the adversary can corrupt part of the training data
available to the Defender. A summary of the main contributions of the
theory and a discussion of its possible extensions are given in Chapter 7.

For a good comprehension of the theory treated in the monograph,
the reader is assumed to have a solid background in information theory.
Some basic knowledge of classical detection theory is also required.
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