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Abstract

Methods for Approximate Query Processing (AQP) are essential for
dealing with massive data. They are often the only means of provid-
ing interactive response times when exploring massive datasets, and are
also needed to handle high speed data streams. These methods proceed
by computing a lossy, compact synopsis of the data, and then execut-
ing the query of interest against the synopsis rather than the entire
dataset. We describe basic principles and recent developments in AQP.
We focus on four key synopses: random samples, histograms, wavelets,
and sketches. We consider issues such as accuracy, space and time effi-
ciency, optimality, practicality, range of applicability, error bounds on
query answers, and incremental maintenance. We also discuss the trade-
offs between the different synopsis types.
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1

Introduction

A synopsis of a massive dataset captures vital properties of the original
data while typically occupying much less space. For example, suppose
that our data consists of a large numeric time series. A simple summary
allows us to compute the statistical variance of this series: we maintain
the sum of all the values, the sum of the squares of the values, and
the number of observations. Then the average is given by the ratio of
the sum to the count, and the variance is ratio of the sum of squares
to the count, less the square of the average. An important property of
this synopsis is that we can build it efficiently. Indeed, we can find the
three summary values in a single pass through the data.

However, we may need to know more about the data than merely its
variance: how many different values have been seen? How many times
has the series exceeded a given threshold? What was the behavior in
a given time period? To answer such queries, our three-value summary
does not suffice, and synopses appropriate to each type of query are
needed. In general, these synopses will not be as simple or easy to com-
pute as the synopsis for variance. Indeed, for many of these questions,
there is no synopsis that can provide the exact answer, as is the case
for variance. The reason is that for some classes of queries, the query

1
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2 Introduction

answers collectively describe the data in full, and so any synopsis would
effectively have to store the entire dataset.

To overcome this problem, we must relax our requirements. In many
cases, the key objective is not obtaining the exact answer to a query,
but rather receiving an accurate estimate of the answer. For example,
in many settings, receiving an answer that is within 0.1% of the true
result is adequate for our needs; it might suffice to know that the true
answer is roughly $5 million without knowing that the exact answer is
$5,001,482.76. Thus we can tolerate approximation, and there are many
synopses that provide approximate answers. This small relaxation can
make a big difference. Although for some queries it is impossible to
provide a small synopsis that provides exact answers, there are many
synopses that provide a very accurate approximation for these queries
while using very little space.

1.1 The Need for Synopses

The use of synopses is essential for managing the massive data that
arises in modern information management scenarios. When handling
large datasets, from gigabytes to petabytes in size, it is often impractical
to operate on them in full. Instead, it is much more convenient to build a
synopsis, and then use this synopsis to analyze the data. This approach
captures a variety of use-cases:

• A search engine collects logs of every search made, amount-
ing to billions of queries every day. It would be too slow, and
energy-intensive, to look for trends and patterns on the full
data. Instead, it is preferable to use a synopsis that is guar-
anteed to preserve most of the as-yet undiscovered patterns
in the data.
• A team of analysts for a retail chain would like to study the

impact of different promotions and pricing strategies on sales
of different items. It is not cost-effective to give each analyst
the resources needed to study the national sales data in full,
but by working with synopses of the data, each analyst can
perform their explorations on their own laptops.

Full text available at: http://dx.doi.org/10.1561/1900000004



1.1 The Need for Synopses 3

• A large cellphone provider wants to track the health of
its network by studying statistics of calls made in different
regions, on hardware from different manufacturers, under dif-
ferent levels of contention, and so on. The volume of infor-
mation is too large to retain in a database, but instead the
provider can build a synopsis of the data as it is observed
live, and then use the synopsis off-line for further analysis.

These examples expose a variety of settings. The full data may reside
in a traditional data warehouse, where it is indexed and accessible, but
is too costly to work on in full. In other cases, the data is stored as flat-
files in a distributed file system; or it may never be stored in full, but
be accessible only as it is observed in a streaming fashion. Sometimes
synopsis construction is a one-time process, and sometimes we need
to update the synopsis as the base data is modified or as accuracy
requirements change. In all cases though, being able to construct a high
quality synopsis enables much faster and more scalable data analysis.

From the 1990s through today, there has been an increasing demand
for systems to query more and more data at ever faster speeds. Enter-
prise data requirements have been estimated [173] to grow at 60% per
year through at least 2011, reaching 1,800 exabytes. On the other hand,
users — weaned on Internet browsers, sophisticated analytics and sim-
ulation software with advanced GUIs, and computer games — have
come to expect real-time or near-real-time answers to their queries.
Indeed, it has been increasingly realized that extracting knowledge
from data is usually an interactive process, with a user issuing a query,
seeing the result, and using the result to formulate the next query,
in an iterative fashion. Of course, parallel processing techniques can
also help address these problems, but may not suffice on their own.
Many queries, for example, are not embarrassingly parallel. More-
over, methods based purely on parallelism can be expensive. Indeed,
under evolving models for cloud computing, specifically “platform as a
service” fee models, users will pay costs that directly reflect the com-
puting resources that they use. In this setting, use of Approximate
Query Processing (AQP) techniques can lead to significant cost savings.
Similarly, recent work [15] has pointed out that approximate processing
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4 Introduction

techniques can lead to energy savings and greener computing. Thus
AQP techniques are essential for providing, in a cost-effective manner,
interactive response times for exploratory queries over massive data.

Exacerbating the pressures on data management systems is the
increasing need to query streaming data, such as real time financial
data or sensor feeds. Here the flood of high speed data can easily over-
whelm the often limited CPU and memory capacities of a stream pro-
cessor unless AQP methods are used. Moreover, for purposes of network
monitoring and many other applications, approximate answers suffice
when trying to detect general patterns in the data, such as a denial-of-
service attack. AQP techniques are thus well suited to streaming and
network applications.

1.2 Survey Overview

In this survey, we describe basic principles and recent developments in
building approximate synopses (i.e., lossy, compressed representations)
of massive data. Such synopses enable AQP, in which the user’s query
is executed against the synopsis instead of the original data. We focus
on the four main families of synopses: random samples, histograms,
wavelets, and sketches.

A random sample comprises a “representative” subset of the data
values of interest, obtained via a stochastic mechanism. Samples can
be quick to obtain, and can be used to approximately answer a wide
range of queries.

A histogram summarizes a dataset by grouping the data values into
subsets, or “buckets,” and then, for each bucket, computing a small set
of summary statistics that can be used to approximately reconstruct the
data in the bucket. Histograms have been extensively studied and have
been incorporated into the query optimizers of virtually all commercial
relational DBMSs.

Wavelet-based synopses were originally developed in the context
of image and signal processing. The dataset is viewed as a set of
M elements in a vector — that is, as a function defined on the set
{0,1,2, . . . ,M − 1} — and the wavelet transform of this function is
found as a weighted sum of wavelet “basis functions.” The weights,
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1.3 Outline 5

or coefficients, can then be “thresholded,” for example, by eliminating
coefficients that are close to zero in magnitude. The remaining small
set of coefficients serves as the synopsis. Wavelets are good at capturing
features of the dataset at various scales.

Sketch summaries are particularly well suited to streaming data.
Linear sketches, for example, view a numerical dataset as a vector or
matrix, and multiply the data by a fixed matrix. Such sketches are mas-
sively parallelizable. They can accommodate streams of transactions in
which data is both inserted and removed. Sketches have also been used
successfully to estimate the answer to COUNT DISTINCT queries, a
notoriously hard problem.

Many questions arise when evaluating or using synopses.

• What is the class of queries that can be approximately
answered?
• What is the approximation accuracy for a synopsis of a given

size?
• What are the space and time requirements for constructing

a synopsis of a given size, as well as the time required to
approximately answer the query?
• How should one choose synopsis parameters such as the num-

ber of histogram buckets or the wavelet thresholding value?
Is there an optimal, that is, most accurate, synopsis of a given
size?
• When using a synopsis to approximately answer a query, is

it possible to obtain error bounds on the approximate query
answer?
• Can the synopsis be incrementally maintained in an efficient

manner?
• Which type of synopsis is best for a given problem?

We explore these issues in subsequent chapters.

1.3 Outline

It is possible to read the discussion of each type of synopsis in isolation,
to understand a particular summarization approach. We have tried to
use common notation and terminology across all chapters, in order to
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6 Introduction

facilitate comparison of the different synopses. In more detail, the topics
covered by the different chapters are given below.

1.3.1 Sampling

Random samples are perhaps the most fundamental synopses for AQP,
and the most widely implemented. The simplicity of the idea — exe-
cuting the desired query against a small representative subset of the
data — belies centuries of research across many fields, with decades
of effort in the database community alone. Many different methods of
extracting and maintaining samples of data have been proposed, along
with multiple ways to build an estimator for a given query. This chap-
ter introduces the mathematical foundations for sampling, in terms
of accuracy and precision, and discusses the key sampling schemes:
Bernoulli sampling, stratified sampling, and simple random sampling
with and without replacement.

For simple queries, such as basic SUM and AVERAGE queries, it is
straightforward to build unbiased estimators from samples. The more
general case — an arbitrary SQL query with nested subqueries — is
more daunting, but can sometimes be solved quite naturally in a pro-
cedural way.

For small tables, drawing a sample can be done straightforwardly.
For larger relations, which may not fit conveniently in memory, or may
not even be stored on disk in full, more advanced techniques are needed
to make the sampling process scalable. For disk-resident data, sam-
pling methods that operate at the granularity of a block rather than a
tuple may be preferred. Existing indices can also be leveraged to help
the sampling. For large streams of data, considerable effort has been
put into maintaining a uniform sample as new items arrive or exist-
ing items are deleted. Finally, “online aggregation” algorithms enhance
interactive exploration of massive datasets by exploiting the fact that
an imprecise sampling-based estimate of a query result can be incre-
mentally improved simply by collecting more samples.

1.3.2 Histograms

The histogram is a fundamental object for summarizing the frequency
distribution of an attribute or combination of attributes. The most

Full text available at: http://dx.doi.org/10.1561/1900000004



1.3 Outline 7

basic histograms are based on a fixed division of the domain
(equi-width), or using quantiles (equi-depth), and simply keep statistics
on the number of items from the input which fall in each such bucket.
But many more complex methods have been designed, which aim to
provide the most accurate summary possible within a limited space
budget. Schemes differ in how the buckets are chosen, what statistics
are stored, how estimates are extracted, and what classes of query are
supported. They are quantified based on the space and time require-
ments used to build them, and the resulting accuracy guarantees that
they provide.

The one-dimensional case is at the heart of histogram construction,
since higher dimensions are typically handled via extensions of one-
dimensional ideas. Beyond equi-width and equi-depth, end biased and
high biased, maxdiff and other generalizations have been proposed. For
a variety of approximation-error metrics, dynamic programming (DP)
methods can be used to find histograms — notably the “v-optimal
histograms” — that minimize the error, subject to an upper bound on
the allowable histogram size. Approximate methods can be used when
the quadratic cost of DP is not practical. Many other constructions,
both optimal and heuristic, are described, such as lattice histograms,
STHoles, and maxdiff histograms. The extension of these methods
to higher dimensions adds complexity. Even the two-dimensional case
presents challenges in how to define the space of possible bucketings.
The cost of these methods also rises exponentially with the dimen-
sionality of the data, inspiring new approaches that combine sets of
low-dimensional histograms with high-level statistical models.

Histograms most naturally answer range–sum queries — for exam-
ple, “compute total sales between July and September for adults from
age 25 through 40” — and their variations. They can also be used to
approximate more general classes of queries, such as aggregations over
joins. Various negative theoretical and empirical results indicate that
one should not expect histograms to give accurate answers to arbitrary
queries. Nevertheless, due to their conceptual simplicity, histograms can
be effectively used for a broad variety of estimation tasks, including set-
valued queries, real-valued data, and aggregate queries over predicates
more complex than simple ranges.

Full text available at: http://dx.doi.org/10.1561/1900000004



8 Introduction

1.3.3 Wavelets

The wavelet synopsis is conceptually close to the histogram summary.
The central difference is that, whereas histograms primarily produce
buckets that are subsets of the original data-attribute domain, wave-
let representations transform the data and seek to represent the most
significant features in a wavelet (i.e., “frequency”) domain, and can
capture combinations of high and low frequency information. The most
widely discussed wavelet transformation is the Haar-wavelet transform
(HWT), which can, in general, be constructed in time linear in the
size of the underlying data array. Picking the B largest HWT coeffi-
cients results in a synopsis that provides the optimal L2 (sum-squared)
error for the reconstructed data. Extending from one-dimensional to
multi-dimensional data, as with histograms, provides more definitional
challenges. There are multiple plausible choices here, as well as algo-
rithmic challenges in efficiently building the wavelet decomposition.

The core AQP task for wavelet summaries is to estimate the answer
to range sums. More general SPJ (select, project, join) queries can also
be directly applied on relation summaries, to generate a summary of
the resulting relation. This is made possible through an appropriately-
defined AQP algebra that operates entirely in the domain of wavelet
coefficients.

Recent research into wavelet representations has focused on error
guarantees beyond L2. These include L1 (sum of errors) or L∞
(maximum error), as well as relative-error versions of these measures.
A fundamental choice here is whether to restrict the possible coef-
ficient values to those arising under the basic wavelet transform, or
to allow other (unrestricted) coefficient values, specifically chosen to
reduce the target error metric. The construction of such (restricted or
unrestricted) wavelet synopses optimized for non-L2 error metrics is a
challenging problem.

1.3.4 Sketches

Sketch techniques have undergone extensive development over the
past few years. They are especially appropriate for streaming data,
in which large quantities of data flow by and the sketch summary must
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1.3 Outline 9

continually be updated quickly and compactly. Sketches, as presented
here, are designed so that the update caused by each new piece of data
is largely independent of the current state of the summary. This design
choice makes them faster to process, and also easy to parallelize.

“Frequency based sketches” are concerned with summarizing the
observed frequency distribution of a dataset. From these sketches, accu-
rate estimations of individual frequencies can be extracted. This leads
to algorithms for finding approximate “heavy hitters” — items that
account for a large fraction of the frequency mass — and quantiles
such as the median and its generalizations. The same sketches can also
be used to estimate the sizes of (equi)joins between relations, self-join
sizes, and range queries. Such sketch summaries can be used as prim-
itives within more complex mining operations, and to extract wavelet
and histogram representations of streaming data.

A different style of sketch construction leads to sketches for
“distinct-value” queries that count the number of distinct values in
a given multiset. As mentioned above, using a sample to estimate the
answer to a COUNT DISTINCT query may give highly inaccurate
results. In contract, sketching methods that make a pass over the entire
dataset can provide guaranteed accuracy. Once built, these sketches
estimate not only the cardinality of a given attribute or combination
of attributes, but also the cardinality of various operations performed
on them, such as set operations (union and difference), and selections
based on arbitrary predicates.

In the final chapter, we compare the different synopsis methods.
We also discuss the use of AQP within research systems, and discuss
challenges and future directions.

In our discussion, we often use terminology and examples that
arise in classical database systems, such as SQL queries over relational
databases. These artifacts partially reflect the original context of the
results that we survey, and provide a convenient vocabulary for the var-
ious data and access models that are relevant to AQP. We emphasize
that the techniques discussed here can be applied much more generally.
Indeed, one of the key motivations behind this survey is the hope that
these techniques — and their extensions — will become a fundamental
component of tomorrow’s information management systems.
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