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Abstract

Different notions of provenance for database queries have been pro-
posed and studied in the past few years. In this article, we detail three
main notions of database provenance, some of their applications, and
compare and contrast amongst them. Specifically, we review why, how,
and where provenance, describe the relationships among these notions
of provenance, and describe some of their applications in confidence
computation, view maintenance and update, debugging, and annota-
tion propagation.
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1

Introduction

Provenance information describes the origins and the history of data
in its life cycle. Such information (also called lineage) is important to
many data management tasks. Historically, databases and other elec-
tronic information sources were trusted because they were under cen-
tralized control: it was assumed that trustworthy and knowledgeable
people were responsible for the integrity of data in databases or repos-
itories. As argued by Lynch [49], this assumption is no longer valid for
online data. Today, data is often made available on the Internet with
no centralized control over its integrity: data is constantly being cre-
ated, copied, moved around, and combined indiscriminately. Because
information sources (or different parts of a single large source) may
vary widely in terms of quality, it is essential to provide provenance
and other context information which can help end users judge whether
query results are trustworthy.

Data warehouses [17] and curated databases [10] are typical exam-
ples where provenance information is essential. In both data warehouses
and curated databases, tremendous (and often manual) effort is usually
expended in the construction of the resulting database — in the for-
mer, in specifying the extract-transform-load (ETL) process and in the

1
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2 Introduction

latter, in incrementally adding and updating the database. In a sense,
provenance adds value to the data by explaining how it was obtained.
Hence, it is of utmost importance to understand the provenance of data
in the resulting database, in order to check the correctness of an ETL
specification or assess the quality and trustworthiness of curated data.

Provenance has been studied in several different areas of data man-
agement, such as scientific data processing [8, 29, 53] and database
management systems [15, 57]. We focus on provenance for data residing
in a database management system. A number of notions of provenance
in databases have been proposed in the literature. The most common
forms of database provenance describe relationships between data in
the source and in the output, for example, by explaining where output
data came from in the input [58, 13], showing inputs that explain why
an output record was produced [27, 13] or describing in detail how an
output record was produced [43]. Besides being interesting in their own
right for understanding the behavior of queries, these forms of prove-
nance have been used in the study of classical database problems, such
as view update [14] and the expressiveness of update languages [11].
More recently, they have also been used in the study of annotation
propagation [7, 11, 58] and updates across peer-to-peer systems [42].

In this article, we focus on these three existing notions of why-, how-
and where-provenance in databases. We shall describe them, discuss
their applications, and compare and contrast these different notions in
the subsequent sections. In the rest of this introductory section, we pro-
vide a high-level overview of these different notions of provenance, and
introduce notation that will be used throughout the rest of the article.
Sections 2, 3 and 4 focus on why-, how- and where-provenance, respec-
tively, including formal details and applications. Section 5 discusses
the relationships among the approaches, including proofs or disproofs
of some “folklore” properties which have been stated in the literature
but not (to our knowledge) carefully formalized and proved. Finally,
Section 6 concludes with a brief discussion of additional related work
and research challenges.

We emphasize that there are numerous other notions of provenance
that are not described in this article. For example, provenance is also
an active topic of research in scientific workflow management system
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1.1 Why, How and Where: An Overview 3

community and in the file and storage systems community. This article
focuses on provenance within databases, and we refer the interested
reader to the surveys [8, 53], and a recent tutorial [29] for a discussion on
provenance research in general, as well as in the workflow community.
Recent workshops [33, 35] also provide insight into the different views
of provenance by diverse research communities.

Even in database settings, there is work that does not fit neatly
into the why-, where- and how-provenance framework we focus on here,
including early work such as Wang and Madnick’s Polygen model [58]
and Woodruff and Stonebraker’s work on lineage [61], as well as Cui
et al.’s lineage model [27] and more recent work on the Trio system [6].
We have chosen to focus on the why-, where-, and how-provenance
framework because there is now enough related research on these
models area to justify a critical review and comparison. We have recast
lineage and a simplification of the Trio model as instances of our frame-
work, but the Polygen, Woodruff–Stonebraker, and full Trio models
seem to resist this categorization. Our classification should therefore
be viewed as a preliminary attempt towards a full understanding of
provenance in databases. We return to this issue in Section 6.

1.1 Why, How and Where: An Overview

1.1.1 Why-Provenance

Cui et al. [27] were among the first to formalize a notion of provenance,
of data in the context of relational databases, called lineage. They asso-
ciated each tuple t present in the output of a query with a set of tuples
present in the input, called the lineage of t. Intuitively, the lineage of
t is meant to collect all of the input data that “contributed to” t or
helped to “produce” t. To illustrate, we use a simple example database
of an online travel portal shown in Figure 1.1, where the labels t1, . . . , t8
are used to identify the tuples. Consider the query Q1

1 shown below,
which asks for all travel agencies that offer external boat tours and their
corresponding phone numbers by joining Agencies with ExternalTours

1 Throughout the paper, we use SQL, relational algebra, and Datalog notation interchange-
ably, as convenient.

Full text available at: http://dx.doi.org/10.1561/1900000006



4 Introduction

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone

BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate
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1.1 Why, How and Where: An Overview 5

tuples — (BayTours, San Francisco, 415-2000, Santa Cruz, boat, $100)
and (BayTours, San Francisco, 415-2000, Monterey, boat, $250) —
before the projection operator is applied on name and phone. The union
of the lineage of these two intermediate tuples gives {Agencies(t1),
ExternalTours(t5,t6)}. Observe that this lineage representation is not
as precise as one may like as it does not specify that t5 and t6 do not
need to coexist together in order to witness the BayTours output tuple.
Indeed, {t1, t5} and respectively, {t1, t6} are two different witnesses for
the BayTours tuple. This illustrates that not every tuple in the lineage
is “necessary” for the output (BayTours, 415-1200) to be produced.

This intuition was formalized by Buneman et al. [13] who intro-
duced the notion of why-provenance that captures the different wit-
nesses. Their work is in the context of a semi-structured data model
with a query language that is appropriate for that data model, but we
shall restrict our discussion to the relational model with select–project–
join queries here.

Like lineage, why-provenance is based on the idea of providing infor-
mation about the witnesses to a query. Recall that a witness is a subset
of the database records that is sufficient to ensure that a given record is
in the output. There may be a large number of such witnesses because
many records are “irrelevant” to the presence of an output record of
interest. In fact, the number of witnesses can easily be exponential in
the size of the input database. To avoid this problem, the definition of
why-provenance restricts attention to a smaller number of witnesses.
According to [13], the why-provenance of an output tuple t in the result
of a query Q applied to a database D is defined as the witness basis of t
according to Q. The witness basis is a particular set of witnesses which
can be calculated efficiently from Q and D. This is generally much
smaller than the full witness set. However, every witness contains an
element of the witness basis, so the witness basis can be viewed as a
compact representation of the set of all witnesses.

Going back to our example, the why-provenance of (BayTours, 415-
1200) in the result of Q1 is the set {{t1, t5}, {t1, t6}}. There are two
witnesses, corresponding to {t1, t5} and {t1, t6}, respectively. Intu-
itively, this tells us that the output tuple is witnessed by source tuples
in two different ways according to Q1: the first uses the tuples t1 and

Full text available at: http://dx.doi.org/10.1561/1900000006



6 Introduction

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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1.1 Why, How and Where: An Overview 7

minimal witness since {t} is a subinstance of it and it is a witness to
(1,2). Hence, the minimal witness basis is {{t}} for this example. In a
subsequent work by [14], minimal witnesses were used in the study of
variants of the view deletion problem, which is that of finding source
tuples to remove in order to delete a tuple from the view for select-
project–join–union queries.

1.1.2 How-Provenance

Why-provenance describes the source tuples that witness the existence
of an output tuple in the result of the query. However, it leaves out
some information about how an output tuple is derived according to
the query. To illustrate, consider the query Q2 of Figure 1.4 which asks
for all cities where tours are offered (assuming all agencies offer tours
in the city they are headquartered). The result of Q2 on the example
database in Figure 1.1 is shown in the right of Figure 1.4. (Ignore the
additional tags on the output tuples for now.) For the output tuple
(San Francisco, 415-1200) in the result of Q2, its why-provenance is
{{t1}, {t1,t3}}. This description tells us that t1 alone, and t1 with t3 are
each sufficient to witness the existence of the output tuple according to
Q2. However, it does not tell us about the structure of the proof that
t1 (as well as t1 and t3) help witness the output tuple according to Q2.
Although arguably obvious from the description of the query Q2, the
why-provenance does not tell us that the source tuple t1 contributes
twice to the output tuple: (1) t1 contributes to the intermediary result
of the inner query, and (2) it combines with that intermediary result
to witness the output tuple. This intuition is formalized in [43] using

Q2:

SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,

based in AS destination
FROM Agencies a

UNION
SELECT name, destination
FROM ExternalTours ) e

WHERE a.name = e.name

Result of Q2:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)

Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)

Monterey 415-1200 t1 · t6
Monterey 831-3000 t1 · t7
Carmel 831-3000 t1 · t8

Fig. 1.4 A query and its output tagged with semiring provenance.

Full text available at: http://dx.doi.org/10.1561/1900000006



8 Introduction

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B how
1 2 t
1 3 t′

4 2 t′′

Output of
Q′(I)

A B how
1 2 t2 + t · t′
1 3 (t′)2 + t · t′
4 2 (t′′)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

provenance semirings. Intuitively, the provenance of the output tuple
(San Francisco, 415-1200) is represented as a polynomial, which for
this example is t21 + t1 × t3. The polynomials for each output tuple are
shown on the right of the result of Q2. The polynomial hints at the
structure of the proofs by which the output tuple is derived. In this
example, the polynomial describes that the output tuple is witnessed
in two distinct ways: once using t1 twice, and the other using t1 and t3.
As we shall show, one can derive the why-provenance of an output tuple
from its how-provenance polynomial. However, this example shows that
the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-
mulations, since how-provenance is more general than why-provenance.
Going back to our example queries shown on the top of Figure 1.2,
Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in
the output of Q(I) is t according to Q, and respectively, t2 + t × t′
according to Q′.

Green et al. [43] formalize a notion of how-provenance for relational
algebra in terms of an appropriate “provenance semiring”, and extend
their approach to handle recursive datalog. Subsequently, an interest-
ing application of how-provenance appears in the context of ORCHES-
TRA [42, 44], a collaborative data sharing system in a network of peers
interconnected through schema mappings. An extension of the semiring
model of Green et al. [43] to schema mappings is used in ORCHESTRA
to efficiently support trust-based filtering of updates, and incremental
maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over
schema mappings called routes [21], and used it as a basis for SPIDER,
a system for debugging schema mappings [3]. Given a schema mapping
that relates a source and a target schema, routes describe how data in
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1.1 Why, How and Where: An Overview 9

the source instance is related to data in the target instance through
the schema mapping. Hence, in retrospect, routes can be classified as
a form of how-provenance over schema mappings.

1.1.3 Where-Provenance

Why-provenance describes all combinations of source tuples that wit-
ness the existence of an output tuple in the result of a query. In turn,
how-provenance describes how the source tuples witness the output
tuple. Buneman et al. also introduced a different notion of provenance,
called where-provenance [13]. Intuitively, where-provenance describes
where a piece of data is copied from. While why-provenance is about
the relationship between source and output tuples, where-provenance
describes the relationship between source and output locations. In the
relational setting, a location is simply a column of a tuple in a relation,
which precisely refers to a “cell” in a relation. The where-provenance
of a value that resides in some location l in Q(D) consists of locations
of D from which the value in l was copied according to Q. Naturally,
this requires that all the values that reside in the source locations of
the where-provenance of l are equal to the value that resides at l. For
example, the where-provenance of the value “HarborCruz” in the sec-
ond output tuple in the result of Q1 is the location (Agencies, t2, name)
(or simply, (t2, name)) in our example database, since “HarborCruz”
was copied from the name attribute of the tuple t2 in the Agencies
relation, according to Q1.

Where-provenance is also not invariant under equivalent queries.
To illustrate, consider the queries Q1 (repeated from earlier) and Q′1.
The only difference between Q1 and Q′1 is in the select clause. The first
attribute of the select clause of Q1 is a.name, whereas the first attribute
of the select clause of Q′1 is e.name.

Q1:
SELECT a.name, a.phone

FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Q′1:

SELECT e.name, a.phone

FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Full text available at: http://dx.doi.org/10.1561/1900000006



10 Introduction

Clearly, the queries Q1 and Q′1 are equivalent in that they pro-
duce the same resulting tuples for any given input database. However,
the where-provenance of the output value “HarborCruz” is different
under the two queries. As explained earlier, the where-provenance of
“HarborCruz” in the output according to Q1 is the location (t2, name),
since “HarborCruz” is copied from the name attribute of the tuple t2 in
Agencies. With Q′1, however, the where-provenance of “HarborCruz”
is (t7, name), since “HarborCruz” is copied from the name attribute
of t7 in ExternalTours. Arguably, the where-provenance of “Harbor-
Cruz” according to Q1 and Q′1 is identical once we take the equality
“a.name = e.name” into consideration in Q1. However, as we shall dis-
cuss later with DBNotes, where-provenance is still not invariant under
equivalent queries even after such “equality checks” are incorporated.

According to Buneman et al.’s definition of why and where-
provenance [13], if a value v of a location of an output tuple t is not
constructed by a query Q, then it must have been copied from values
that reside in some source locations of a witness of t according to Q.
As a consequence, the where-provenance of v consists of locations that
can be found in tuples of the why-provenance of t. (We prove this more
carefully in Section 5, Proposition 5.11.) For example, consider Q′1 that
was described earlier and the output tuple (BayTours, 415-1200), which
we denote as t. The why-provenance of t according to Q′1 is {{t1, t5},
{t1, t6}}. The where-provenance of the value “BayTours” at location
(t, name) consists of two locations (t5, name) and (t6, name). Indeed,
these two locations are among the locations of tuples in the witnesses
of t. Observe that although t1 is part of every witness for t according
to Q′1, the locations of t1 are not among the locations in the where-
provenance of (t, name). On the other hand, the where-provenance of
(t1, phone) is (t, phone). But in general, it is possible for the why-
provenance to contain tuples whose locations contribute nothing to the
where-provenance of any part of the output.

One interesting application of where-provenance has been in the
study of annotation–propagation and update languages [7, 14, 58].
Annotation–propagation is closely related to provenance: a given notion
of provenance can be viewed as a method for propagating annotations
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1.1 Why, How and Where: An Overview 11

from the input to the output, whereas a given annotation–propagation
semantics can be viewed as a form of provenance by placing distinct
annotations on each part of the input and observing where they end
up in the output.

The idea of forwarding provenance information during query exe-
cution was first explored in the Polygen system [58]. In Polygen, oper-
ational rules for forwarding information about the source databases,
as well as the intermediate databases that contributed to the creation
of an output piece of data, are defined for basic relational operators.
The where-provenance propagation rules are similar to the rules that
propagate origin source tags (i.e., references to original sources) in
Polygen [58].

In Buneman et al.’s work on annotation propagation [14], as imple-
mented in DBNotes [7], the where-provenance of a location in the result
of a query determines the set of all annotations in the source database to
be associated with that output location. This approach assumes queries
involve select, project, join, and union only; the where-provenance of
an output location is described through a set of propagation rules,
one for each relational operator (i.e., select, project, join, union). In
contrast to Polygen, these approaches propagate arbitrary annotations
through a query, and not only information about source and interme-
diary databases.

DBNotes [7, 22] is an annotation management system for relational
databases which builds upon previous ideas in where-provenance and
Polygen. DBNotes propagates annotations from source locations to
output locations based on where-provenance. Queries in DBNotes are
also select–project–join–union queries except that they are expressed in
declarative SQL-like expressions, and not relational operators as in [14].
Like [14], every location can be associated with zero or more annota-
tions and these annotations are propagated to the output when a query
is executed. The default annotation–propagation behavior of queries
in DBNotes forwards annotations to an output location based on the
where-provenance of that output location. For a simple example, con-
sider the annotated relation Ia shown in Figure 1.6 and the queries Q
and Q′ from Figure 1.2. Each of the six locations of Ia is associated
with one annotation, denoted as ai, where 1 ≤ i ≤ 6. The execution of
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Annotated
instance Ia:

R
A B

t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)

(DEFAULT

propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)

(DEFAULT

propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)

(DEFAULT-ALL

propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries ofQ. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates
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both annotations with the value “2”. In fact, given Q, DBNotes gen-
erates a finite set of equivalent queries (in this case, {Q,Q′,Q′′}) that
captures all the relevant annotations that would be propagated by any
equivalent query of Q.

1.2 Approaches in Computing Provenance: Eager vs Lazy

Along with our discussion of the three notions of provenance, we shall
also give an overview of a few recent systems where provenance is an
integral component, and describe the algorithms for computing prove-
nance implemented in these systems. Figure 1.7(c) illustrates a classi-
fication of the systems we shall discuss in some detail in this paper,
based on the approach each takes in computing provenance. There are
two approaches for computing provenance: the eager approach and the
lazy approach. In this article, we describe the basic ideas behind the two
approaches, and defer the discussion of system implementation details
to Sections 2–4.

(a) (b)

Eager Approach Lazy Approach

Why-provenance WHIPS (i.e., lineage) [25, 27]

How-provenance ORCHESTRA [42, 44] SPIDER [3, 21]
Trio [2, 5, 52]

Where-provenance DBNotes [7, 22]

(c)

Fig. 1.7 Approaches in computing data provenance: (a) the eager approach; (b) the lazy

approach. (c) A classification of recent systems for computing data provenance.
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Figures 1.7(a) and 1.7(b) illustrate the two possible approaches
for computing provenance. In the eager approach (also known as the
bookkeeping or annotation approach), the query is re-engineered so
that extra annotations are carried over to the output database dur-
ing the transformation, to help answer provenance. As a consequence,
the provenance of a piece of output data can usually be derived by
examining the output database and the extra information. In the
lazy approach (also known as non-annotation approach), provenance
is computed when needed — by examining the source data, the output
data, and the transformation. In contrast to the eager approach, the
lazy approach does not require the re-engineering of the transforma-
tion for the purpose of carrying additional information to the output
database.

Both approaches have advantages, as well as disadvantages, and
they are appropriate in different scenarios. Since additional informa-
tion is carried over and stored along with actual data in the output
database, an eager approach involves a performance overhead during
the execution of the transformation, as well as a space overhead for
storing the extra information in the output. Recently, various schemes
aimed at reducing the amount of extra information stored have been
investigated in [31, 38, 54], and the problem of compressing or approxi-
mating provenance has been explored in [9, 16, 50]. However, the eager
approach has the advantage that if the right additional information
is propagated, provenance may be derived directly from the output
database and the extra information, without examining the source
database. Hence, an eager approach is useful in scenarios where the
source data may become unavailable after the transformation. The
lazy approach does not require the re-engineering of the transforma-
tion. Hence, it has the advantage that it can be readily deployed on an
existing system without changes to the system, and furthermore, it does
not incur any performance or storage overhead during the execution of
the transformation. Thus, a lazy approach is useful when storage space
is an issue, or, when it is not possible to modify the implementation
of the query execution system. A disadvantage of the lazy approach
is that deriving provenance usually involves sophisticated techniques
for reasoning about the source database, the output database, and the
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transformation. Hence, the lazy approach cannot be used if the source
data becomes unavailable.

Although most existing work takes a distinctively eager or lazy
approach, it might be interesting to consider hybrid approaches that
take advantage of the best characteristics of both the approaches. In
fact, the WHIPS lineage-tracking system [25, 27] combines eager and
lazy ideas in its handling of queries involving negation and aggregation.

1.3 Notational Preliminaries

In this section, we introduce (largely standard) notation we shall use
in the rest of the paper.

Let D be a finite domain of data values {d1, . . . ,dn} and U a collec-
tion of field names (or attribute names). We will use the symbols U,V
for (finite) subsets of U . A record (or tuple) t, t1, t2, t′,u, . . . is a func-
tion U →D, written as (A1:d1, . . . ,An:dn). A tuple assigning values
to each field name in U is called U -tuple; e.g. (A1:d1, . . . ,An:dn) is a
{A1, . . . ,An}-tuple. We write Tuple for the set of all tuples and U -Tuple
for the set of all U -tuples. We write t •A for the value of the A-field of
t, t[U ] for the restriction of tuple t over V ⊇ U to field names in U , and
t[A 7→ B] for the result of renaming field A to B in t (assuming B is
not already present in t). We sometimes write (A:e(A))A∈U to define
a tuple t:U such that t •A = e(A) for each A ∈ U .2 Here, e(A) is an
expression parameterized by an unknown field name A. For example,
if t:V then we can express the projection t[U ] using this notation as
(A: t •A)A∈U .

A relation or table r:U is a finite set of tuples over U . Let R
be a finite collection of relation names. A schema R is a mapping
(R1:U1, . . . ,Rn:Un) from R to finite subsets of U . A database (or
instance) I: (R1:U1, . . . ,Rn:Un) is a function mapping each Ri:Ui ∈R
to a relation ri over Ui.

We also define tuple locations as tuples tagged with relation names,
written (R,t). We write TupleLoc =R × Tuple for the set of all tagged
tuples. We can view a database instance I equivalently as a finite set

2 For readers familiar with lambda-calculus notation for function definition, note that
(A:e(A))A∈U is equivalent to λA ∈ U · e(A).
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{(R,t) | t ∈ I(R)} ⊆ TupleLoc of such tagged tuples according to a stan-
dard translation. We will also sometimes consider field locations that
refer to a particular field of a tagged tuple. Formally, such a location is
just a triple (R,t,A) ∈ R × Tuple × U . We write FieldLoc for the set
of all locations.

We will use the following notation for (monotone) relational algebra
queries:

Q ::= R | {t} | σθ(Q) | πU (Q) | Q1 1 Q2 | Q1 ∪ Q2 | ρA7→B(Q)

Here, {t} is a singleton constant {t}. Selections σθ filter a relation
by retaining tuples satisfying some predicate θ. We leave the form of
predicates unspecified (but typically include field equality tests A = B

and A = d). Projections πU (Q) replace each tuple t in a relation with
t[U ], discarding any other fields. Join (or natural join) and union are
standard; renaming is written ρA7→B(Q).

The precise semantics Q(I) of a query Q evaluated against an
instance I is described below. We review this standard definition only
because we will be considering a number of variations on it later.

({t})(I) = {t}
R(I) = I(R)

(σθ(Q))(I) = {t ∈ Q(I) | θ(t)}
(πU (Q))(I) = {t[U ] | t ∈ Q(I)}

(Q1 1 Q2)(I) = {t | t[U1] ∈ Q1(I), t[U2] ∈ Q2(I)}
(Q1 ∪ Q2)(I) = Q1(I) ∪ Q2(I)

(ρA7→B(Q))(I) = {t[A 7→ B] | t ∈ Q(I)}

Here, we assume that Q has the set of attributes V , denoted as Q:V ,
that U ⊆ V in the case of projection, and that Q1:U1,Q2:U2 in the case
of join.

As mentioned earlier, when convenient we also employ Datalog
notation using nameless tuples, and assume familiarity with the
standard translation between SPJRU queries and unions of conjunc-
tive Datalog queries. For example, the query {(A(x,y) :− R(x,y),
S(x,z)),(A(x,x) :− R(x,x))} is equivalent to (R 1 S) ∪ σA=B(R),
where we assume schema R(A,B) and S(A,C).
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We also employ the following convention regarding partial functions
(which is standard in, for example, programming language semantics).
Formally, we can view a partial function f :X → Y as a total func-
tion f :X → Y ∪ {⊥}, where ⊥ is a special, fresh constant not already
present in Y , called “undefined”. We write Y⊥ to abbreviate Y ∪ {⊥},
and we define dom(f) = {x ∈ X |f(x) 6= ⊥}.

One advantage of this convention is that it permits unambiguous
definitions of operations with different behavior regarding undefined-
ness. For example, we will later make use of strict and lazy union
operations. Strict union ∪S is defined as the union of two sets if both
are defined, and undefined otherwise (that is, X ∪S ⊥ = ⊥), whereas
lazy union ∪L differs from strict union in that it is undefined only if
both sets are undefined (that is, X ∪L ⊥ = X). We will define these
operations more carefully later.

The various provenance semantics we shall consider will be defined
by interpreting the language of relational queries over other classes
of structures besides relations. A familiar example of this technique
is interpreting queries over bags (multisets) instead of set relations.
The semiring provenance semantics discussed earlier directly general-
izes both relation and multiset semantics, and several other provenance
semantics are instances of the semiring semantics.
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