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Abstract

Timely and cost-effective analytics over “big data” has emerged as a
key ingredient for success in many businesses, scientific and engineering
disciplines, and government endeavors. Web clicks, social media, scien-
tific experiments, and datacenter monitoring are among data sources
that generate vast amounts of raw data every day. The need to convert
this raw data into useful information has spawned considerable inno-
vation in systems for large-scale data analytics, especially over the last
decade. This monograph covers the design principles and core features
of systems for analyzing very large datasets using massively-parallel
computation and storage techniques on large clusters of nodes. We
first discuss how the requirements of data analytics have evolved since
the early work on parallel database systems. We then describe some of
the major technological innovations that have each spawned a distinct
category of systems for data analytics. Each unique system category
is described along a number of dimensions including data model and
query interface, storage layer, execution engine, query optimization,
scheduling, resource management, and fault tolerance. We conclude
with a summary of present trends in large-scale data analytics.

S. Babu and H. Herodotou. Massively Parallel Databases and MapReduce Systems.
Foundations and TrendsR© in Databases, vol. 5, no. 1, pp. 1–104, 2012.
DOI: 10.1561/1900000036.
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1
Introduction

Organizations have always experienced the need to run data analyt-
ics tasks that convert large amounts of raw data into the information
required for timely decision making. Parallel databases like Gamma
[75] and Teradata [188] were some of the early systems to address this
need. Over the last decade, more and more sources of large datasets
have sprung up, giving rise to what is popularly called big data. Web
clicks, social media, scientific experiments, and datacenter monitoring
are among such sources that generate vast amounts of data every day.

Rapid innovation and improvements in productivity necessitate
timely and cost-effective analysis of big data. This need has led to
considerable innovation in systems for large-scale data analytics over
the last decade. Parallel databases have added techniques like columnar
data storage and processing [39, 133]. Simultaneously, new distributed
compute and storage systems like MapReduce [73] and Bigtable [58]
have been developed. This monograph is an attempt to cover the de-
sign principles and core features of systems for analyzing very large
datasets. We focus on systems for large-scale data analytics, namely,
the field that is called Online Analytical Processing (OLAP) as opposed
to Online Transaction Processing (OLTP).

2
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1.1. Requirements of Large-scale Data Analytics 3

We begin in this chapter with an overview of how we have organized
the overall content. The overview first discusses how the requirements
of data analytics have evolved since the early work on parallel database
systems. We then describe some of the major technological innovations
that have each spawned a distinct category of systems for data ana-
lytics. The last part of the overview describes a number of dimensions
along which we will describe and compare each of the categories of
systems for large-scale data analytics.

The overview is followed by four chapters that each discusses one
unique category of systems in depth. The content in the following chap-
ters is organized based on the dimensions that will be identified in this
chapter. We then conclude with a summary of present trends in large-
scale data analytics.

1.1 Requirements of Large-scale Data Analytics

The Classic Systems Category: Parallel databases—which consti-
tute the classic system category that we discuss—were the first sys-
tems to make parallel data processing available to a wide class of users
through an intuitive high-level programming model. Parallel databases
were based predominantly on the relational data model. The declara-
tive SQL was used as the query language for expressing data processing
tasks over data stored as tables of records.

Parallel databases achieved high performance and scalability by
partitioning tables across the nodes in a shared-nothing cluster. Such a
horizontal partitioning scheme enabled relational operations like filters,
joins, and aggregations to be run in parallel over different partitions of
each table stored on different nodes.

Three trends started becoming prominent in the early 2000s that
raised questions about the superiority of classic parallel databases:

• More and more companies started to store as much data as they
could collect. The classic parallel databases of the day posed ma-
jor hurdles in terms of scalability and total cost of ownership as
the need to process these ever-increasing data volumes arose.

• The data being collected and stored by companies was diverse in

Full text available at: http://dx.doi.org/10.1561/1900000036



4 Introduction

structure. For example, it became a common practice to collect
highly structured data such as sales data and user demographics
along with less structured data such as search query logs and web
page content. It was hard to fit such diverse data into the rigid
data models supported by classic parallel databases.

• Business needs started to demand shorter and shorter intervals
between the time when data was collected (typically in an OLTP
system) and the time when the results of analyzing the data were
available for manual or algorithmic decision making.

These trends spurred two types of innovations: (a) innovations aimed
at addressing the deficiencies of classic parallel databases while pre-
serving their strengths such as high performance and declarative query
languages, and (b) innovations aimed at creating alternate system ar-
chitectures that can support the above trends in a cost-effective man-
ner. These innovations, together with the category of classic parallel
database systems, give the four unique system categories for large-scale
data analytics that we will cover. Table 1.1 lists the system categories
and some of the systems that fall under each category.

1.2 Categorization of Systems

The Columnar Systems Category: Columnar systems pioneered
the concept of storing tables by collocating entire columns together
instead of collocating rows as done in classic parallel databases. Systems
with columnar storage and processing, such as Vertica [133], have been
shown to use CPU, memory, and I/O resources more efficiently in large-
scale data analytics compared to row-oriented systems. Some of the
main benefits come from reduced I/O in columnar systems by reading
only the needed columns during query processing. Columnar systems
are covered in Chapter 3.

The MapReduce Systems Category: MapReduce is a program-
ming model and an associated implementation of a run-time system
that was developed by Google to process massive datasets by harness-
ing a very large cluster of commodity nodes [73]. Systems in the classic

Full text available at: http://dx.doi.org/10.1561/1900000036



1.2. Categorization of Systems 5

Category Example Systems in this Category
Classic Aster nCluster [25, 92], DB2 Parallel Edition [33],

Gamma [75], Greenplum [99], Netezza [116], SQL
Server Parallel Data Warehouse [177], Teradata [188]

Columnar Amazon RedShift [12], C-Store [181], Infobright [118],
MonetDB [39], ParAccel [164], Sybase IQ [147], Vec-
torWise [206], Vertica [133]

MapReduce Cascading [52], Clydesdale [123], Google MapReduce
[73], Hadoop [192, 14], HadoopDB [5], Hadoop++
[80], Hive [189], JAQL [37], Pig [94]

Dataflow Dremel [153], Dryad [197], Hyracks [42], Nephele [34],
Pregel [148], SCOPE [204], Shark [195], Spark [199]

Table 1.1: The system categories that we consider, and some of the systems that
fall under each category.

category have traditionally struggled to scale to such levels. MapReduce
systems pioneered the concept of building multiple standalone scalable
distributed systems, and then composing two or more of these systems
together in order to run analytic tasks on large datasets. Popular sys-
tems in this category, such as Hadoop [14], store data in a standalone
block-oriented distributed file-system, and run computational tasks in
another distributed system that supports the MapReduce programming
model. MapReduce systems are covered in Chapter 4.

The Dataflow Systems Category: Some deficiencies in MapReduce
systems were identified as these systems were used for a large number
of data analysis tasks. The MapReduce programming model is too re-
strictive to express certain data analysis tasks easily, e.g., joining two
datasets together. More importantly, the execution techniques used by
MapReduce systems are suboptimal for many common types of data
analysis tasks such as relational operations, iterative machine learn-
ing, and graph processing. Most of these problems can be addressed
by replacing MapReduce with a more flexible dataflow-based execution
model that can express a wide range of data access and communication
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6 Introduction

patterns. Various dataflow-based execution models have been used by
the systems in this category, including directed acyclic graphs in Dryad
[197], serving trees in Dremel [153], and bulk synchronous parallel pro-
cessing in Pregel [148]. Dataflow systems are covered in Chapter 5.

Other System Categories: It became clear over time that new sys-
tems can be built by combining design principles from different system
categories. For example, techniques used for high-performance process-
ing in classic parallel databases can be used together with techniques
used for fine-grained fault tolerance in MapReduce systems [5]. Each
system in this coalesced category exposes a unified system interface
that provides a combined set of features that are traditionally associ-
ated with different system categories. We will discuss coalesced systems
along with the other system categories in the respective chapters.

The need to reduce the gap between the generation of data and the
generation of analytics results over this data has required system devel-
opers to constantly raise the bar in large-scale data analytics. On one
hand, this need saw the emergence of scalable distributed storage sys-
tems that provide various degrees of transactional capabilities. Support
for transactions enables these systems to serve as the data store for on-
line services while making the data available concurrently in the same
system for analytics. The same need has led to the emergence of par-
allel database systems that support both OLTP and OLAP in a single
system. We put both types of systems into the category called mixed
systems because of their ability to run mixed workloads—workloads
that contain transactional as well as analytics tasks—efficiently. We
will discuss mixed systems in Chapter 6 as part of recent trends in
massively parallel data analytics.

1.3 Categorization of System Features

We have selected eight key system features along which we will describe
and compare each of the four categories of systems for large-scale data
analytics.

Data Model and Interfaces: A data model provides the definition
and logical structure of the data, and determines in which manner data
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1.3. Categorization of System Features 7

can be stored, organized, and manipulated by the system. The most
popular example of a data model is the relational model (which uses
a table-based format), whereas most systems in the MapReduce and
Dataflow categories permit data to be in any arbitrary format stored in
flat files. The data model used by each system is closely related to the
query interface exposed by the system, which allows users to manage
and manipulate the stored data.

Storage Layer: At a high level, a storage layer is simply responsible
for persisting the data as well as providing methods for accessing and
modifying the data. However, the design, implementation and features
provided by the storage layer used by each of the different system cat-
egories vary greatly, especially as we start comparing systems across
the different categories. For example, classic parallel databases use in-
tegrated and specialized data stores that are tightly coupled with their
execution engines, whereas MapReduce systems typically use an inde-
pendent distributed file-system for accessing data.

Execution Engine: When a system receives a query for execution,
it will typically convert it into an execution plan for accessing and
processing the query’s input data. The execution engine is the entity
responsible for actually running a given execution plan in the system
and generating the query result. In the systems that we consider, the
execution engine is also responsible for parallelizing the computation
across large-scale clusters of machines, handling machine failures, and
setting up inter-machine communication to make efficient use of the
network and disk bandwidth.

Query Optimization: In general, query optimization is the process a
system uses to determine the most efficient way to execute a given query
by considering several alternative, yet equivalent, execution plans. The
techniques used for query optimization in the systems we consider are
very different in terms of: (i) the space of possible execution plans (e.g.,
relational operators in databases versus configuration parameter set-
tings in MapReduce systems), (ii) the type of query optimization (e.g.,
cost-based versus rule-based), (iii) the type of cost modeling technique
(e.g., analytical models versus models learned using machine-learning
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8 Introduction

techniques), and (iv) the maturity of the optimization techniques (e.g.,
fully automated versus manual tuning).

Scheduling: Given the distributed nature of most data analytics sys-
tems, scheduling the query execution plan is a crucial part of the sys-
tem. Systems must now make several scheduling decisions, including
scheduling where to run each computation, scheduling inter-node data
transfers, as well as scheduling rolling updates and maintenance tasks.

Resource Management: Resource management primarily refers to
the efficient and effective use of a cluster’s resources based on the re-
source requirements of the queries or applications running in the sys-
tem. In addition, many systems today offer elastic properties that allow
users to dynamically add or remove resources as needed according to
workload requirements.

Fault Tolerance:Machine failures are relatively common in large clus-
ters. Hence, most systems have built-in fault tolerance functionalities
that would allow them to continue providing services, possibly with
graceful degradation, in the face of undesired events like hardware fail-
ures, software bugs, and data corruption. Examples of typical fault
tolerance features include restarting failed tasks either due to appli-
cation or hardware failures, recovering data due to machine failure or
corruption, and using speculative execution to avoid stragglers.

System Administration: System administration refers to the activ-
ities where additional human effort may be needed to keep the system
running smoothly while the system serves the needs of multiple users
and applications. Common activities under system administration in-
clude performance monitoring and tuning, diagnosing the cause of poor
performance or failures, capacity planning, and system recovery from
permanent failures (e.g., failed disks) or disasters.

1.4 Related Work

This monograph is related to a few surveys done in the past. Lee and
others have done a recent survey that focuses on parallel data process-
ing with MapReduce [136]. In contrast, we provide a more comprehen-
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1.4. Related Work 9

sive and in-depth coverage of systems for large-scale data analytics,
and also define a categorization of these systems. Empirical compar-
isons have been done in the literature among different systems that
we consider. For example, Pavlo and others have compared the perfor-
mance of both classic parallel databases and columnar databases with
the performance of MapReduce systems [166].

Tutorials and surveys have appeared in the past on specific dimen-
sions along which we describe and compare each of the four categories
of systems for large-scale data analytics. Recent tutorials include one
on data layouts and storage in MapReduce systems [79] and one on pro-
gramming techniques for MapReduce systems [174]. Kossmann’s survey
on distributed query processing [128] and Lu’s survey on query process-
ing in classic parallel databases [142] are also related.
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