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Abstract

Due to the growing need to process large graph and network datasets
created by modern applications, recent years have witnessed a surg-
ing interest in developing big graph platforms. Tens of such big graph
systems have already been developed, but there lacks a systematic cat-
egorization and comparison of these systems. This article provides a
timely and comprehensive survey of existing big graph systems, and
summarizes their key ideas and technical contributions from various
aspects. In addition to the popular vertex-centric systems which es-
pouse a think-like-a-vertex paradigm for developing parallel graph ap-
plications, this survey also covers other programming and computation
models, contrasts those against each other, and provides a vision for
the future research on big graph analytics platforms. This survey aims
to help readers get a systematic picture of the landscape of recent big
graph systems, focusing not just on the systems themselves, but also
on the key innovations and design philosophies underlying them.

D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms.
Foundations and TrendsR© in Databases, vol. 7, no. 1-2, pp. 1–195, 2015.
DOI: 10.1561/1900000056.
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1
Introduction

The growing need to deal with massive graphs in real-life applications
has led to a surge in the development of big graph analytics platforms.
Tens of big graph systems have already been developed, and more are
expected to emerge in the near future. Researchers new to this young
field can easily get overwhelmed and lost by the large amount of liter-
ature. Although several experimental studies have been conducted in
recent years that compare the performance of several big graph sys-
tems [Lu et al., 2014, Han et al., 2014a, Satish et al., 2014, Guo et al.,
2014], there lacks a comprehensive survey that clearly summarizes the
key features and techniques developed in existing big graph systems.
A recent survey [McCune et al., 2015] attempts to cover the landscape
as well, but primarily focuses on vertex-centric systems; it omits most
of the work on other programming models and also several crucial op-
timization and programmability issues with vertex-centric systems. In
addition to describing the various systems, this survey puts more em-
phasis on the innovations and technical contributions of existing sys-
tems, in order to help readers quickly obtain a systemic view of the key
ideas and concepts. We hope this will help big graph system researchers

2
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1.1. History of Big Graph Systems Research 3

avoid reinventing the wheel, apply useful existing techniques to their
own systems, and come up with new innovations.

In the rest of this chapter, we first review the history of research
on Big Graph systems, and then overview some important features of
existing Big Graph systems. Finally, we present the organization of
this survey. Many contents of this survey are covered by our tutorial
in SIGMOD 2016 [Yan et al., 2016a], the slides of which are available
online1 and contain animations to illustrate the various techniques used
by existing systems.

1.1 History of Big Graph Systems Research

Although graph analytics has always been an important research topic
throughout the history of computation, the research on big graph pro-
cessing only flourished in recent years as part of the big data movement,
which has seen increased use of advanced analytics on large volumes
of unstructured or semi-structured data. A hallmark of this movement
has been the MapReduce distributed data processing framework, in-
troduced by Google [Dean and Ghemawat, 2004], and the companion
Google File System (GFS) [Ghemawat et al., 2003]. Subsequently, the
Apache Hadoop project2 implemented the open-source counterparts,
the Hadoop Distributed File System (HDFS) and the Hadoop MapRe-
duce framework in 2006. Since then, a huge body of research has focused
on designing novel MapReduce algorithms as well as on improving the
framework for particular workloads. A large body of work in that space
focused on big graph analytics, and many tailor-made MapReduce al-
gorithms were proposed for solving specific graph problems [Lin and
Schatz, 2010]. As an early MapReduce-based framework designed for
general-purpose graph processing, PEGASUS [Kang et al., 2009] mod-
els graph computation by a generalization of matrix-vector multipli-
cation. However, the reliance on the disk-based Hadoop MapReduce
runtime, which requires repeated reads and writes of large files from
HDFS, fundamentally limits its performance.

1http://www.cse.cuhk.edu.hk/systems/gsys_tutorial/
2https://hadoop.apache.org/
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4 Introduction

Later, Malewicz et al. [2010] proposed the Pregel framework spe-
cially designed for large-scale big graph processing. Since many graph
algorithms are iterative, Pregel keeps the graph data in the main mem-
ory and adopts an iterative, message-passing computation model (in-
spired by the well-known Bulk Synchronous Parallel model for parallel
computation), and is thus much more efficient than MapReduce. Pregel
also adopts a “think-like-a-vertex” programming model which is more
intuitive and user-friendly for average programmers and a natural fit
for a range of graph analysis tasks. The vertex-centric programming
model of Pregel is also very expressive since a vertex can communicate
with any other vertex by passing messages. Since the introduction of
Pregel, it has sparked a large number of research works on extending
the basic Pregel framework in different aspects to improve the graph
processing performance [Tian et al., 2013, Yan et al., 2014a, Zhang
et al., 2014, Han and Daudjee, 2015, Yan et al., 2016b].

Independent of Pregel, Low et al. [2010] developed a multi-core,
shared-memory graph-based computation model, called GraphLab.
Then, Low et al. [2012] extended it to work in a distributed environ-
ment, while keeping the shared memory programming abstraction, in
which a vertex can directly access the states of its adjacent vertices and
edges. Later, GraphLab switched to the GAS (Gatter-Apply-Scatter)
computation model to further improve the system performance [Gon-
zalez et al., 2012]. Although the GAS model covers a large number of
graph algorithms, it is less expressive than the Pregel model, since a ver-
tex can only access the data of its adjacent vertices and edges; we call
this a neighborhood-based shared memory abstraction. This program-
ming abstraction is especially popular among recent big graph systems
designed to run on a single machine, such as GraphChi [Kyrola et al.,
2012].

While Pregel and GraphLab are designed specially for graph pro-
cessing, a number of systems, such as GraphX [Gonzalez et al., 2014]
and Pregelix [Bu et al., 2014], rely on a general-purpose data process-
ing engine for execution, at the same time providing graph-specific
programming interfaces similar to those in Pregel and GraphLab.

Full text available at: http://dx.doi.org/10.1561/1900000056



1.1. History of Big Graph Systems Research 5

Vertex-centric systems are ideally suited for graph analysis tasks
like PageRank computation where the overall computation can be bro-
ken down into individual tasks, each involving a specific vertex (i.e., its
local state, and the states of its adjacent edges). Many machine learning
tasks (e.g., belief propagation, matrix factorization, stochastic gradi-
ent descent) are also a natural fit for those systems. However, many
complex graph analysis tasks cannot be easily decomposed in such
fashion. For example, a class of graph problems termed “ego-centric
analysis” [Quamar et al., 2016] require analyzing the neighborhoods
of the vertices in their entirety. Also, graph problems such as graph
matching or graph mining may have intermediate or output results with
size superlinear or even exponential in the input graph size. Complex
graph algorithms, e.g., the Hungarian algorithm for maximum bipartite
matching, even require random access to the entire graph. Solving these
problems using vertex-centric processing leads to substantial commu-
nication and memory overheads, since each vertex needs to collect the
relevant neighborhood subgraph (if not the entire graph) to its local
state before processing the subgraph.

This has led to the development of many alternative programming
frameworks, examples of which include Socialite [Seo et al., 2013b],
Arabesque [Teixeira et al., 2015], NScale [Quamar et al., 2016], among
others. In addition, several systems including Ligra [Shun and Blelloch,
2013], Galois [Nguyen et al., 2013], Green-Marl DSL [Hong et al., 2012],
etc., provide low-level graph programming frameworks that can handle
nearly arbitrary graph computations. These frameworks often focus
on specific classes of graph problems, and make a range of different
assumptions about the computing environment, making them incom-
parable in many cases. Arabesque tackles problems like graph matching
and graph mining where the intermediate result can be very large, while
assuming that the entire graph can be held in a single machine mem-
ory. NScale is a strict generalization of the vertex-centric framework,
and can handle tasks that require access to multi-hop neighborhoods of
vertices; but it does not support the other classes of problems discussed
above. Socialite uses a Datalog-inspired programming model which is
most suitable for graph problems that can be expressed as recursive

Full text available at: http://dx.doi.org/10.1561/1900000056



6 Introduction

Datalog queries. Ligra, Galois, and other similar systems require ran-
dom access to the graph and focus on large-memory multi-core environ-
ments. Thus, developing a sufficiently expressive, yet easy-to-use and
easy-to-parallelize graph programming model, remains a critical and
open challenge in this field.

The majority of existing big graph systems are designed for pro-
cessing static graphs (or with small topology mutations). However,
real-world graphs often evolve over time, with vertices and edges con-
tinually being added or deleted, and their attributes being frequently
updated. A new class of big graph systems, such as KineoGraph [Cheng
et al., 2012], TIDE [Xie et al., 2015b], DeltaGraph [Khurana and Desh-
pande, 2013], and Chronos [Han et al., 2014b], have emerged to process
and analyze temporal and streaming graph data. This area is however
still in its infancy and there are many open problems that need to be
addressed to effectively handle continuous and/or temporal analytics
on big graphs.

There is also a large body of work on executing queries related to
a specific vertex (or a small subset of vertices) against large volumes
of graph data, which has developed a range of specialized indexes and
search algorithms. This survey does not cover that body of work.

1.2 Features of Big Graph Systems

We can categorize the big graph platforms along various dimensions.
Since an important feature of the modern big graph systems is user-
friendliness in programming parallel graph algorithms, we first summa-
rize the programming abstractions (languages and models) of existing
systems. While most systems adopt existing programming languages
that are familiar to users (e.g., C/C++ and Java), some systems require
users to learn a new domain-specific language dedicated to program-
ming parallel graph algorithms (e.g., Green-Marl [Hong et al., 2012]
and Trinity Specification Language [Shao et al., 2013]).

Full text available at: http://dx.doi.org/10.1561/1900000056



1.2. Features of Big Graph Systems 7

1.2.1 Programming Model

Most big graph systems adopt the vertex-centric model where a pro-
grammer only needs to specify the behavior of one vertex. The vertex-
centric model can be further divided into two types: (1) message passing
(e.g., in Pregel), where vertices communicate with each other by send-
ing messages; and (2) shared-memory abstraction (e.g., in GraphLab),
where vertices directly access the states of other vertices and edges.

Message passing is a natural model in a distributed environment,
since users can explicitly dictate message passing behavior in their pro-
grams. In contrast, the shared-memory abstraction allows programmers
to directly access data as if operating on a single machine, and most
single-machine vertex-centric systems adopt this model. However, dis-
tributed GraphLab adopts the shared-memory abstraction and there
are also single-machine systems that adopt message passing (e.g., Flash-
Graph [Zheng et al., 2015]).

The vertex-centric framework can be further extended with a block-
centric model (e.g., Giraph++ [Tian et al., 2013] and Blogel [Yan et al.,
2014a]), which partitions the vertices into multiple disjoint subgraphs,
so that value propagation within each subgraph could bypass network
communication. The block-centric model often improves the perfor-
mance of graph computation by orders of magnitude.

Besides the vertex-centric systems, some big graph systems adopt
a matrix-based programming model; these include PEGASUS [Kang
et al., 2009], GBASE [Kang et al., 2011], and SystemML [Ghoting
et al., 2011]. These systems represent a graph algorithm by a sequence
of generalized matrix-vector multiplications, which can be efficiently
processed since sparse matrix algebra has been studied for decades in
the High Performance Computing (HPC) field. However, users who are
not familiar with matrix algebra might prefer vertex-centric program-
ming to matrix-based programming. Recently, Sundaram et al. [2015]
helped bridge the gap for these users: their GraphMat system translates
a vertex-centric program to high performance sparse matrix operations
to be run on the backend.

Another important class of programming models is subgraph-
centric models, where users write programs to process a subgraph in-

Full text available at: http://dx.doi.org/10.1561/1900000056



8 Introduction

stead of a single vertex. These models target graph problems whose
output size can be exponential to the graph size (e.g., graph matching
and finding motifs), or problems that require analyzing entire neigh-
borhoods in a holistic manner. Since vertices in a subgraph can be
randomly accessed by a user program, a critical issue for a subgraph-
centric model is how to efficiently construct the relevant subgraphs.
Arabesque [Teixeira et al., 2015] and NScale [Quamar et al., 2016] are
two systems that use a subgraph-centric model, although there are sig-
nificant differences in the models they adopt.

There are also systems that require users to write graph algorithms
using a domain specific language (DSL), e.g., Green-Marl [Hong et al.,
2012, 2014], Galois [Nguyen et al., 2013], and Ligra [Shun and Blelloch,
2013]. The language constructs of those DSLs expose opportunities for
parallelism, which can be utilized by the system for efficient parallel ex-
ecution. Of course, users have to learn a new language or programming
paradigm in order to use such a system.

Finally, several recent systems have been built to bring in declara-
tive query languages for big graph analytics. First, since many graph
algorithms can be expressed as recursive Datalog [Bancilhon and Ra-
makrishnan, 1986] queries, a number of research projects are inventing
new-generation Datalog systems for scalable big graph analytics. Sec-
ond, often times, a graph analytics job is only one part of a gigantic,
end-to-end SQL3-dominated data analysis pipeline which includes con-
structing graphs dynamically from tabular data sources and converting
graph computation results back into tabular reports; therefore, sev-
eral systems have integrated vertex-centric programming models into
declarative query languages to make those end-to-end data analysis
tasks easier [Simmen et al., 2014, Gonzalez et al., 2014].

1.2.2 Expressiveness

Most big graph systems aim at solving a broad class of graph problems
using a unified programming framework. Therefore, it is meaningless
to study big graph systems without studying the algorithms and ap-
plications that can be implemented in these systems. However, many

3SQL. https://en.wikipedia.org/wiki/SQL
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1.2. Features of Big Graph Systems 9

papers just introduce API simplicity and performance advantages of
their systems in order to promote their work, but these benefits may
come at a cost of additional assumptions and narrower expressiveness
that were understated, which should be made clear to avoid blind or
even wrong system choice. We now discuss the expressiveness of the
various programming models described before, and provide some ad-
vice on how to choose an appropriate framework for an application at
hand.

Many graph algorithms only require each vertex to communicate
with its neighbors, such as PageRank and other more complicated ran-
dom walk algorithms (e.g., [Zhang et al., 2016]). In these algorithms,
intermediate data are only exchanged along edges, and so the volume
of intermediate data is comparable to the data size. We say that these
algorithms require edge-based communication. In some of these algo-
rithms, a vertex only needs the aggregated value of the received values,
which provides opportunities for further optimization. For example,
MOCgraph [Zhou et al., 2014], GraphD [Yan et al., 2016d], and the
superstep-splitting technique of Giraph [Ching et al., 2015] all propose
aggregating messages earlier instead of buffering them for later pro-
cessing, in order to save memory space; while PowerGraph [Gonzalez
et al., 2012], GraphChi [Kyrola et al., 2012] and X-Stream [Roy et al.,
2013] assume that data values are aggregated at each vertex from its
incoming edges, in their model design. We, however, would like to indi-
cate that not all algorithms with edge-based communication allow its
vertices to aggregate received values, such as the attribute broadcast
algorithm of Yan et al. [2015].

Edge-based communication implies that any information can be
propagated for just one hop at a time, which leads to poor perfor-
mance if a vertex u needs to transmit a value to another vertex v far
away from u in a large-diameter graph. Pointer jumping (aka path dou-
bling), a technique from PRAM algorithm design, solves this problem
by doubling the propagation length from u to v, until v is reached. This
requires a vertex to be able to send data to any other vertex, not just
its neighbors. We say that these algorithms require ID-based communi-
cation, where a vertex u can send messages to another vertex w as long

Full text available at: http://dx.doi.org/10.1561/1900000056



10 Introduction

as w’s ID is known. Pregel [Malewicz et al., 2010] adopts ID-based com-
munication and thus can implement pointer-jumping algorithms such
as those to be described in Chapter 3.2, while GraphLab [Gonzalez
et al., 2012] only allows each vertex to access its neighbors’ data, and
thus cannot support these algorithms. In fact, Pregel has probably the
most expressive programming model in theory, and it is known how
to write a large number of graph algorithms efficiently in that model.
The Bulk Synchronous Parallel (BSP) model, on which Pregel is based,
has been very well-studied, but as a synchronous model, the number
of iterations must be kept low in a distributed setting, which can be
achieved with the help of pointer jumping.

Another solution to avoid slow value propagation is to use a block-
centric model, where nearby vertices are grouped into a block for pro-
cessing together each time. In a distributed environment, since a block
is assigned to a unique machine, only blocks need to communicate with
each other, and computation over vertices inside a block does not gener-
ate communication. In a single-machine environment, each block usu-
ally fits in a CPU cache, and thus block-based processing improves
cache locality in its execution. In addition to faster value propagation
(i.e., block-wise), the block-centric model also significantly reduces the
communication workload. Representative block-centric system include
Giraph++ [Tian et al., 2013] and Blogel [Yan et al., 2014a].

Some graph algorithms (e.g., k-core finding [Salihoglu and Widom,
2014]) need to mutate the graph topology during computation, and
thus, support for deletion and addition of edges and vertices is
also an important aspect of system expressiveness. For example,
VENUS [Cheng et al., 2015] streams immutable graph structure and
thus does not support algorithms that require graph mutations.

The models discussed so far are mostly vertex-centric. However,
many graph mining problems define constraints on subgraphs, e.g.,
graph matching and motif mining. Subgraph-based models are pro-
posed to solve these problems by writing user-friendly programs, where
computation is directly performed on subgraphs. Such systems include
NScale [Quamar et al., 2016] and Arabesque [Teixeira et al., 2015],
which we discuss in more detail in Chapter 7.
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We remark that there are other models that could be more appro-
priate for a specific application at hand. For example, if one is viewing
a graph as a matrix, and solving a machine learning problem that uses
matrix operations, then matrix-based systems like SystemML [Ghoting
et al., 2011] could be a better choice. Also, if graph processing is just
part of a dataflow program, then dataflow-based systems could provide
more flexibility, e.g., GraphX [Gonzalez et al., 2014] can interoperate
with other dataflow operators in Spark [Zaharia et al., 2012] to avoid
data import/export.

1.2.3 Execution Mode

Most big graph systems target iterative graph computation, where ver-
tex values are repeatedly updated until the computation converges.
There are two typical execution modes: synchronous and asynchronous.
The synchronous mode is also called bulk synchronous parallel (BSP),
exemplified by Pregel, while the asynchronous mode is adopted by
GraphLab and several other systems (especially those targeting ma-
chine learning workloads). The difference between these two modes is
that, in the synchronous mode, there is a global barrier from one iter-
ation to another, and out-going messages or updates of one iteration
are only accessible in the next iteration; in the asynchronous mode, a
vertex has immediate access to its in-bound messages or updates.

Asynchronous parallel computation incurs race conditions and thus
requires additional effort to enforce data consistency (e.g., by using
locks). Moreover, in a distributed environment, asynchronous execu-
tion tends to transmit a lot of small messages, since the update to
a vertex value should be reflected in time. In contrast, BSP only re-
quires updates to be synchronized at the end of each iteration, and
messages can be sent in large batches. In fact, GraphLab has a syn-
chronous mode that simulates the BSP mode of Pregel, and both Lu
et al. [2014] and Han et al. [2014a] found that the synchronous mode is
generally faster than the asynchronous mode. Further, for many algo-
rithms, asynchronous execution is not an option because the indeter-
ministic execution may lead to incorrect answers.
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However, for some problems like PageRank computation, vertex
values converge asymmetrically: most vertices converge quickly after a
few iterations, but some vertices take a large number of iterations to
converge. In that case, asynchronous execution can schedule those ver-
tices that converge more slowly to compute for more iterations, while
synchronous execution processes every vertex once in each iteration
even if most vertices are converged. Therefore, asynchronous mode is
much faster for such algorithms and is thus preferred. Moreover, asyn-
chronous computation is always preferred in a single-machine system
since data access no longer incurs network communication, and access-
ing the latest vertex value leads to faster convergence.

It is, however, worth noting that some asynchronous frameworks
may not converge to the exact results (e.g., PageRank values), but
the approximate results are often good enough while the significant
improvement in performance (compared with synchronous execution)
is highly attractive. More discussion can be found in Section 4.2.

Recently, PowerSwitch [Xie et al., 2015a] showed how to support
mode switch between asynchronous execution and synchronous execu-
tion in GraphLab. They found that when the workload is low, asyn-
chronous execution is faster due to the faster convergence rate provided
by accessing the latest values. Race conditions (e.g., updates to the
same vertex) are unlikely to occur since only a small portion of vertices
participate in computation, and the number of messages is too small to
benefit from sending in large batches. In contrast, when the workload
is high, synchronous execution is faster since there is no need to han-
dle race conditions (i.e., it avoids the expensive locking/unlocking cost
required by asynchronous execution), and messages are sent in large
batches. Thus, PowerSwitch constantly collects execution statistics on-
the-fly, which are used to predict future performance and determine
the timing of a profitable mode switch.

1.2.4 Other Features

There are also many other dimensions to categorize big graph systems.
As for the execution environment, there are systems developed to
process graphs in a single machine, or using a cluster of machines.
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The single-machine environment can be further divided into two types,
commodity PCs and high-end servers. The former targets processing
big graphs efficiently using readily available resources; since the avail-
able memory on a commodity PC is limited, the graph is usually disk-
resident, and loaded into memory for processing part-by-part or in
a streaming fashion. The latter aims at beating distributed systems
by eliminating the cost of network communication, and the graph is
usually memory-resident. As for the graph placement, distributed
systems usually keep the graph in main memory, since there are many
machines and the total RAM size is sufficient, while single-PC systems
tend to process disk-resident or SSD-resident graphs. There are also
distributed systems that process disk-resident graphs in order to scale
to giant graphs whose size is much larger than the total RAM size in a
cluster, such as Pregelix [Bu et al., 2014], GraphD [Yan et al., 2016d]
and Chaos [Roy et al., 2015].

There are also many design techniques that may significantly influ-
ence the system performance for specific algorithms. For example, disk-
based single-machine systems like GraphChi [Kyrola et al., 2012] are
designed for iterative batch processing, while TurboGraph [Han et al.,
2013] maintains an in-memory page ID table for directly locating the
disk page of any vertex. Given these differences in system design, a
reader will not be surprised to see a claim like TurboGraph “signifi-
cantly outperforms GraphChi by up to four orders of magnitude”, for
a query that is to find the neighbors of a particular vertex.

1.3 Organization of the Survey

The diverse features supported by different big graph systems, and the
cross-cutting nature of many of the key designs, make it challenging
to organize such a survey. As an example, the popular vertex-centric
programming model is easy to support on top of a wide range of differ-
ent underlying implementations, including distributed frameworks like
Hadoop MapReduce, matrix-based systems, and relational databases.
However, each of those implementations raises unique and different
challenges despite their use of the vertex-centric model on top.
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In this survey, we focus on presenting the key designs and features
of the various graph processing systems, while endeavoring to place
related systems together to summarize the common ideas underlying
their designs. For quick reference, Table 1.1 presents a list of all the
systems that we discuss in each chapter.

We broadly divide the survey into three parts. In Part I, we discuss
the big graph systems that primarily use the vertex-centric program-
ming model, which has been widely studied recently due to its sim-
plicity in programming parallel graph algorithms. Specifically, Chap-
ter 3 reviews the framework of Pregel, and introduces how to develop
algorithms with performance guarantees in Pregel; it then discusses
existing open-source Pregel-like systems with improvements in com-
munication mechanism, load balancing, out-of-core support and fault
tolerance. Chapter 4 walks through the various extensions to the basic
framework of Pregel that could significantly improve the performance
of graph computations. Chapter 5 covers a few important big graph sys-
tems that adopt shared memory abstraction, including the pioneering
GraphLab system.

In Part II, we review other systems that attempt to provide sup-
port for more general graph programming models; most of these are
motivated by the observation that complex graph algorithms or analy-
sis tasks are often difficult to program using the simple vertex-centric
programming framework. Chapter 6 describes several matrix-based big
graph systems, including the pioneering MapReduce-based systems PE-
GASUS and GBASE, and the more powerful SystemML system. Chap-
ter 7 explains why the vertex-centric and matrix-based frameworks are
not sufficient for graph problems like graph matching and motif mining,
and introduces two subgraph-centric systems, NScale and Arabesque,
to process such graph problems efficiently. Chapter 8 reviews several
systems that either offer database-style declarative query languages or
leverage database-style query processing techniques.

Finally, in Part III, we discuss some miscelleneous issues. While
some vertex-centric single-machine big graph systems are also intro-
duced in Chapter 5, Chapter 9 surveys more single-machine systems
that adopt a computation model beyond a pure vertex-centric one.
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Table 1.1

Section System
3.1 Pregel
3.3 Giraph, Pregel+, GPS, MOCgraph
3.4 WindCatch, PAGE
3.5 GraphD
4.1 Giraph++, Blogel
4.2 Maiter, GiraphUC
4.3 Quegel
5.1 GraphLab/PowerGraph
5.2 GraphChi, X-Stream, Chaos, VENUS, GridGraph
6.1 PEGASUS
6.2 GBASE
6.2 SystemML
7.1.1 Trinity
7.2 NScale
7.3 Arabesque
8.1 SociaLite, DeALS, Myria, Yedalog
8.2 GraphX, Pregelix, Vertexica
8.3 REX, Maiter
8.4 Aster Data
9.1 GraphMat, GraphTwist
9.2 Green-Marl, Ligra, GRACE, Galois
10.1 TurboGraph, FlashGraph
10.2 Medusa, MapGraph, CuSha
11.2 Chronos, DeltaGraph, LLAMA
11.3 Kineograph, TIDE
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Chapter 10 discusses a few systems that utilize new hardware tech-
nologies to significantly boost the performance of big graph analytics.
Then, in Chapter 11, we discuss the issues of managing time-evolving
graphs and supporting real-time analytics over streaming graph data,
and discuss several recent systems that focus on providing those capa-
bilities. Finally, we conclude the survey in Chapter 12 and provide a
discussion on future research in big graph analytics platforms.
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