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Abstract

Spatial panel models have panel data structures to capture spatial inter-
actions across spatial units and over time. There are static as well as
dynamic models. This text provides some recent developments on the
specification and estimation of such models. The first part will con-
sider estimation for static models. The second part is devoted to the
estimation for spatial dynamic panels, where both stable and unstable
dynamic models with fixed effects will be considered.

For the estimation of a spatial panel model with individual fixed
effects, in order to avoid the incidental parameter problem due to the
presence of many individual fixed effects, a conditional likelihood or
partial likelihood approach is desirable. For the model with both fixed
individual and time effects with a large and long panel, a conditional
likelihood might not exist, but a partial likelihood can be constructed.
The partial likelihood approach can be generalized to spatial panel

* The authors are grateful to a referee for valuable comments to improve the presentation

of this paper.
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models with fixed effects and a space–time filter. If individual effects
are independent of exogenous regressors, one may consider the random
effects specification and its estimation. The likelihood function of a
random effects model can be decomposed into the product of a partial
likelihood function and that of a between equation. The underlying
equation for the partial likelihood function can be regarded as a within
equation. As a result, the random effects estimate is a pooling of the
within and between estimates. A Hausman type specification test can
be used for testing the random components specification vs. the fixed
effects one. The between equation highlights distinctive specifications
on random components in the literature.

For spatial dynamic panels, we focus on the estimation for models
with fixed effects, when both the number of spatial units n and the
number of time periods T are large. We consider both quasi-maximum
likelihood (QML) and generalized method of moments (GMM) estima-
tions. Asymptotic behavior of the estimators depends on the ratio of T
relative to n. For the stable case, when n is asymptotically proportional
to T , the QML estimator is

√
nT -consistent and asymptotically nor-

mal, but its limiting distribution is not properly centered. When n is
large relative to T , the QML estimator is T -consistent and has a degen-
erate limiting distribution. Bias correction for the estimator is possible.
When T grows faster than n1/3, the bias corrected estimator yields a
centered confidence interval. The n and T ratio requirement can be
relaxed if individual effects are first eliminated by differencing and the
resulting equation is then estimated by the GMM, where exogenous and
predetermined variables can be used as instruments. We consider the
use of linear and quadratic moment conditions, where the latter is spe-
cific for spatial dependence. A finite number of moment conditions with
some optimum properties can be constructed. An alternative approach
is to use separate moment conditions for each period, which gives rise
to many moments estimation.

The remaining text considers estimation of spatial dynamic models
with the presence of unit roots. The QML estimate of the dynamic
coefficient is

√
nT 3-consistent and estimates of all other parameters

are
√
nT -consistent, and all of them are asymptotically normal. There

are cases that unit roots are generated by combined temporal and
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spatial correlations, and outcomes of spatial units are cointegrated. The
asymptotics of the QML estimator under this spatial cointegration case
can be analyzed by reparameterization. In the last part, we propose a
data transformation resulting in a unified estimation approach, which
can be applied to models regardless of whether the model is stable or
not. A bias correction procedure is also available.

The estimation methods are illustrated with two relevant empirical
studies, one on regional growth and the other on market integration.
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1

Introduction

The last decade has seen a growing literature on panel data models
with cross sectional dependence. The current text presents some recent
developments in the specification and estimation of panel data models
with spatial interactions. Spatial econometrics consists of econometric
techniques dealing with interactions of economic units in space, which
can be of physical or economic characteristics. The spatial autoregres-
sive (SAR) model by Cliff and Ord (1973) has received the most atten-
tion in economics. Early development in estimation and testing for cross
sectional data in econometrics can be found in Anselin (1988, 1992),
Cressie (1993), Kelejian and Robinson (1993), Anselin and Florax
(1995), Anselin and Rey (1997) and Anselin and Bera (1998), among
others. Under the panel data setting, spatial panel data models are
of great interest, because they enable researchers to take into account
dynamics and control for unobservable heterogeneity.

For static models, the following spatial panel model with both spa-
tial lag and spatial disturbances is a typical one:

Ynt = λ0WnYnt + Xntβ0 + cn0 + Unt,

Unt = ρ0MnUnt + Vnt, t = 1,2, . . . ,T, (1.1)

1
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2 Introduction

where Ynt = (y1t,y2t, . . . ,ynt)′ and Vnt = (v1t,v2t, . . . ,vnt)′ are n × 1
vectors, and vit is i.i.d. across i and t with zero mean and variance
σ2

0. Wn is an n × n nonstochastic spatial weights matrix that generates
the spatial dependence on yit among cross sectional units, which may
or may not be row-normalized. Xnt is an n × k matrix of nonstochastic
time varying regressors, cn0 is an n × 1 vector of individual effects, Mn

is an n × n spatial weights matrix for the disturbance process. In prac-
tice, Mn may or may not be Wn.

For static panel data models with spatial interactions, we can
have random effects or fixed effects specifications. For the random
effects specification, Anselin (1988) provides a panel regression model
with error components and SAR disturbances, and Baltagi et al.
(2003) consider specification tests for spatial correlation in that spa-
tial panel regression model. The Anselin and Baltagi et al. model is
Ynt = Xntβ0 + cn0 + Unt, Unt = λ0WnUnt + Vnt, where cn0 is an n × 1
vector of individual error components, and the spatial correlation is
in Unt. Kapoor et al. (2007) propose a different specification with
error components and a SAR process in the overall disturbance, and
suggest a method of moments (MOM) estimation. The specification
in Kapoor et al. (2007) is Ynt = Xntβ0 + U+

nt and U+
nt = λ0WnU

+
nt +

dn0 + Vnt, where dn0 is a vector of individual error components.
Fingleton (2008) adopts a similar approach to estimate a spatial panel
model with SAR dependent variables, random components and a
spatial moving average (SMA) structure in the overall disturbance.
By the transformation (In − λ0Wn), the data generating process
(DGP) of Kapoor et al. (2007) becomes Ynt = Xntβ0 + cn0 + Unt
where cn0 = (In − λ0Wn)−1dn0 and Unt = U+

nt − (In − λ0Wn)−1dn0.
The Unt = λ0WnUnt + Vnt forms a SAR process. This model implies
spatial correlations in both the individual and disturbance components,
cn0 and Unt, having the same spatial effect parameter. Nesting the
Anselin (1988) and Kapoor et al. (2007) models, Baltagi et al. (2007)
suggest an extended model without restrictions on implied SAR struc-
tures in the error component and the remaining disturbance.

As an alternative to the random effects specification, Lee and Yu
(2010b) investigate the quasi-maximum likelihood (QML) estimation
of spatial panel models under the fixed effects specification. The fixed

Full text available at: http://dx.doi.org/10.1561/0800000015



3

effects model has the advantage of robustness in that fixed effects are
allowed to depend on included regressors in the model. It also provides
a unified model framework because different random effects models in
Anselin (1988), Kapoor et al. (2007) and Baltagi et al. (2007) reduce
to the same fixed effects model.

We have two approaches to estimate the spatial panel data models
with individual fixed effects. The first is called the “direct approach”,
where common parameters and the individual effects are jointly esti-
mated. The second is called the “transformation approach”, where the
individual effects are eliminated first before estimation. For the direct
ML approach, it will yield consistent estimates for the spatial and
regression coefficients, except for the variance parameter when T is
finite. Thus, the results are similar to Neyman and Scott (1948).1 The
transformation approach is the method of conditional likelihood, which
is applicable when sufficient statistics can be found for the fixed effects.
For the linear regression and logit panel models, the time average of the
dependent variables for each cross sectional unit provides a sufficient
statistic (see Hsiao, 1986). For the normal panel regression model, the
conditional likelihood can be constructed from some transformed data.
We investigate the use of similar transformations to the spatial panel
model. By using the deviation from the time mean transformation, indi-
vidual effects can be eliminated. The transformed equation can then
be estimated by the QML approach. This transformation approach can
be justified as a conditional likelihood approach. For the model with
both individual and time fixed effects, one may combine the trans-
formations by deviations from time means and also deviations from
cross section means to eliminate those effects. The transformed equa-
tion can be regarded as well-defined equation system when the spatial
weights matrix is row-normalized. The resulting likelihood function can
be interpreted as a partial likelihood (Cox, 1975; Wong, 1986).

The spatial panel data models have a wide range of applications such
as agricultural economics (Druska and Horrace, 2004), transportation
research (Frazier and Kockelman, 2005), public economics (Egger et al.,

1 As is illustrated in Neyman and Scott (1948), for the linear panel regression model with

fixed effects, the ML estimates of the regression coefficients are consistent, while the MLE
of the variance parameter is inconsistent when T is finite.
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4 Introduction

2005), and good demand (Baltagi and Li, 2006), to name a few. The
above panel models are static ones which do not incorporate time-
lagged dependent variables in the regression equation.

Spatial panel data can include both spatial and dynamic effects to
investigate the state dependence and spatial correlations. To include
time dynamic features in spatial panel data, an immediate approach is
to use the time lag term as an explanatory variable. In a conventional
dynamic panel data model with individual fixed effects, the MLE of
the autoregressive coefficient is biased and inconsistent when n tends
to infinity but T is fixed (Nickell, 1981; Hsiao, 1986). By taking time
differences to eliminate the fixed effects in the dynamic equation and by
the construction of instrumental variables (IVs), Anderson and Hsiao
(1981) show that IV methods can provide consistent estimates. When T
is finite, additional IVs can improve the efficiency of the estimation.
However, if the number of IVs is too large, the problem of many IVs
arises as the asymptotic bias would increase with the number of IVs.

For spatial dynamic models, Korniotis (2010) investigates a spatial
time lag model with fixed effects, and considers a bias adjusted within
estimator, which generalizes Hahn and Kuersteiner (2002). Elhorst
(2005) estimated a dynamic model with spatial disturbances by uncon-
ditional maximum likelihood method, and Mutl (2006) investigates the
model using a three-step GMM. Su and Yang (2007) derive the QMLEs
of the above model under both fixed and random effects specifications.
Yang et al. (2006) propose a generalized dynamic error component
model that accounts for the effects of functional form and spatial depen-
dence. For a general model with both time and space dynamics, we term
it the spatial dynamic panel data (SDPD) model to better link the ter-
minology to the dynamic panel data literature (see, e.g., Hsiao, 1986;
Alvarez and Arellano, 2003). Yu et al. (2008) study the stable SDPD
models where the individual time lag, spatial time lag and contempora-
neous spatial lag are all included. For the estimation of SDPD models,
we can use the QMLE when the number of periods T is large. When
T is relatively small, we can rely on GMM where lagged values can
be used as IVs. Elhorst (2010) uses Monte Carlo to investigate small
sample performances of various ML and GMM estimators when T is
finite.

Full text available at: http://dx.doi.org/10.1561/0800000015



5

When both n and T are large, the incidental parameter problem
in the MLE becomes less severe as each individual fixed effect can be
consistently estimated. However, the presence of asymptotic bias may
still cause the distribution of estimates not centered properly. Simi-
lar issue on asymptotic bias occurs for estimates of SDPD models. As
the presence of asymptotic bias is an undesirable feature of these esti-
mates, a bias correction procedure is needed. Kiviet (1995), Hahn and
Kuersteiner (2002), and Bun and Carree (2005) have constructed bias
corrected estimators for the conventional dynamic panel data model
by analytically modifying the within estimator. For the QMLE of the
SDPD model, analytic bias correction is also possible (Yu et al., 2008).

A general SDPD model can be specified as, for t = 1,2, . . . ,T ,

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 + Xntβ0

+cn0 + αt0ln + Vnt, (1.2)

where cn0 is an n × 1 column vector of fixed effects and αt0’s are time
effects. Comparing it to the static model, we have included the dynamic
terms Yn,t−1 and WnYn,t−1 in (1.2). Here, γ0 captures the pure dynamic
effect and ρ0 captures the spatial-time effect.

These SDPD models can be applied to various fields such as growth
convergence of countries and regions (Ertur and Koch, 2007), regional
markets (Keller and Shiue, 2007), labor economics (Foote, 2007), public
economics (Revelli, 2001; Tao, 2005; Franzese, 2007).

To investigate the dynamics of the SDPD model, a reduced form of
(1.2) is of interest. Define Sn(λ) = In − λWn and Sn ≡ Sn(λ0). Then,
presuming that Sn is invertible2 and denoting An = S−1

n (γ0In + ρ0Wn),
(1.2) can be rewritten as

Ynt = AnYn,t−1 + S−1
n Xntβ0 + S−1

n cn0 + αt0S
−1
n ln + S−1

n Vnt. (1.3)

To study the dynamics of this model, one may investigate eigenval-
ues of An under the assumption that Wn is diagonalizable. Let $n =
diag{$n1,$n2, . . . ,$nn} be the n × n diagonal eigenvalues matrix of
Wn such that Wn = Γn$nΓ−1

n where Γn is the corresponding eigenvec-
tor matrix. As An = S−1

n (γ0In + ρ0Wn), the eigenvalues matrix of An

2 As an example in practice with a row-normalized Wn, |λ0| < 1 will guarantee that Sn is

invertible.
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6 Introduction

is Dn = (In − λ0$n)−1(γ0In + ρ0$n) such that An = ΓnDnΓ−1
n . When

Wn is row-normalized, all the eigenvalues are less than or equal to
1 in absolute value, where it definitely has some eigenvalues being 1
(Ord, 1975). Let mn be the number of unit eigenvalues of Wn and
let the first mn eigenvalues of Wn be the unity. Then, Dn can be
decomposed into two parts, one corresponding to the unit eigenval-
ues of Wn, and the other corresponding to the remaining eigenvalues
of Wn smaller than 1. Define Jn = diag{l′mn ,0, . . . ,0} with lmn being
an mn × 1 vector of ones and D̃n = diag{0, . . . ,0,dn,mn+1, . . . ,dnn},
where |dni| < 1, for i = mn + 1, . . . ,n, are assumed.3 As Jn · D̃n = 0,
we have Ahn = (γ0+ρ0

1−λ0
)hΓnJnΓ−1

n + Bh
n where Bh

n = ΓnD̃h
nΓ−1

n for any
h = 1,2, . . . .

Denote W u
n = ΓnJnΓ−1

n . Then, for t ≥ 0, Ynt can be decomposed into
a sum of a possible stable part, a possible unstable or explosive part,
and a time effect part:

Ynt = Y s
nt + Y u

nt + Y α
nt, (1.4)

where

Y s
nt =

∞∑
h=0

Bh
nS
−1
n (cn0 + Xn,t−hβ0 + Vn,t−h),

Y u
nt = W u

n

{(
γ0 + ρ0

1 − λ0

)t+1

Yn,−1

+
1

(1 − λ0)

[
t∑

h=0

(
γ0 + ρ0

1 − λ0

)h
(cn0 + Xn,t−hβ0 + Vn,t−h)

]}
,

Y α
nt =

1
(1 − λ0)

ln

t∑
h=0

αt−h,0

(
γ0 + ρ0

1 − λ0

)h
.

The Y u
nt can be an unstable component when γ0+ρ0

1−λ0
≥ 1. With λ0 < 1,

γ0 + ρ0 + λ0 > 1 is equivalent to γ0+ρ0
1−λ0

> 1 and, in that case, Y u
nt can be

explosive. The component Y α
nt captures the time effect due to the time

dummies. The Y α
nt can be rather complicated as it depends on what

3 We note that dni = (γ0 + ρ0$ni)/(1 − λ0$ni). Hence, if |γ0| + |λ0| + |ρ0| < 1, we have

dni < 1 as |$ni| ≤ 1.
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the time dummies would represent. The Ynt can be explosive when αt0
represents some explosive functions of t, even when γ0+ρ0

1−λ0
were smaller

than 1. Without a specific time structure for αt0, it is desirable to
eliminate this component for the estimation. If the absolute values of
the elements in D̃n are less than 1, Y s

nt will be a stable component.
The Y s

nt can be a stable component unless γ0 + ρ0 + λ0 is much larger
than 1. If the sum γ0 + ρ0 + λ0 were too big, some of the eigenvalues
dni in Y s

nt might become larger than 1.
The spatial cointegration case is the situation where γ0 + ρ0 +

λ0 = 1 but γ0 6= 1. The unit eigenvalues of An correspond exactly
to those unit eigenvalues of Wn via the relation Dn = (In −
λ0$n)−1(γ0In + ρ0$n). Wn has some unit eigenvalues, but not all of
them are equal to 1 because tr(Wn) = 0, and hence the sum of eigen-
values of Wn is zero. Hence, some eigenvalues of An, but not all, are
equal to 1. If cn0 and/or the time mean of Xntβ0 are nonzero, the∑t

h=0(cn0 + Xn,t−hβ0) will generate a time trend. The
∑t

h=0Vn,t−h
will generate a stochastic trend. These imply the unstability of Y u

nt.
The unit roots case has all eigenvalues of An being 1. It occurs when

γ0 + ρ0 + λ0 = 1 and γ0 = 1, because An = (In − λ0Wn)−1(γ0In +
ρ0Wn) = (In − λ0Wn)−1(In − λ0Wn) = In. For this unit roots case, the
unit eigenvalues of An are not linked to the eigenvalues of Wn. Because
W u
n is defined completely from Wn, the decomposition in (1.4) is not

revealing for the unit roots case; instead, one has

Ynt = Yn,t−1 + S−1
n (Xntβ0 + cn0 + αt0ln + Unt). (1.5)

Some implications of spatial and dynamic effects in terms of the
coefficients λ0, γ0 and ρ0 can be revealed via marginal impacts of regres-
sors. Suppose that we are interested in (an average) total (expected)
impact resulting from changing a regressor by the same amount across
all spatial units in some time periods, say, from the time period t1 to t,
where t1 ≤ t. For simplicity, we assume that xnt is a single regressor, and
consider the situation that Wn is row-normalized and does not depend
on x. Thus, we have from the reduced form equation that ∂E(Ynt)

∂x =
β0
∑t−t1

h=0 A
h
nS
−1
n ln, where ln is an n-dimensional vector of ones. As Wn

is row-normalized such that Wnln = ln, ∂E(Ynt)
∂x =

∑t−t1
h=0 A

h
nS
−1
n lnβ0 =

ln
∑t−t1

h=0 (γ0+ρ0
1−λ0

)h · β0

1−λ0
, where every unit will receive the same impact.
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8 Introduction

There are several cases of interest:

(1) t1 = t, i.e., the marginal change of x occurs for all spatial
units at the current period t. In that case, ∂E(Ynt)

∂x = ln
β0

1−λ0
,

which is the marginal impact due to spatial interactions.
The β0 is the marginal effect of x and 1

1−λ0
represents the

spatial multiplier effect.
(2) t1 < t, i.e., the marginal change of x occurs for all spatial

units from the past period t1 to the current period t. In
this case, ∂E(Ynt)

∂x = ln[1 + (γ0+ρ0
1−λ0

) + · · · + (γ0+ρ0
1−λ0

)t−t1 ] β0

1−λ0
.

If t1 = t − 1, the marginal impact for each spatial unit
becomes [1 + (γ0+ρ0

1−λ0
)] β0

1−λ0
. This marginal impact is com-

posed of the marginal impact β0

1−λ0
of changing x in the cur-

rent period t to E(Ynt) and also an impact due to changing
x in the last period t − 1. The change of x at t − 1 has the
marginal impact with spatial multiplier β0

1−λ0
on Yn,t−1. This

marginal change of Yn,t−1 generates its marginal impact
γ0+ρ0
1−λ0

on E(Ynt) through both the time filter (γ0In + ρ0Wn)
and the space filter S−1

n . Thus, the marginal impact on
changing x in the last period is the product (γ0+ρ0

1−λ0
) β0

1−λ0
.

The marginal impact on changing x from a past period
can be deducted recursively, and the total impact accu-
mulates effects of those changes. For both the unit roots
case (γ0 = 1 and λ0 + ρ0 = 0) and the spatial cointegration
case (λ0 + γ0 + ρ0 = 1 with γ0 6= 1), they imply γ0+ρ0

1−λ0
= 1;

hence, their total marginal impact is simply the product of
the marginal impact β0

1−λ0
at each time period multiplied

by the total number of time periods of changing x, i.e.,
∂E(Ynt)
∂x = ln

β0

1−λ0
(t − t1 + 1).

(3) t1 = −∞, i.e., the marginal change of x occurs from infi-
nite past to the current period. For the stable SDPD
process, one has a convergent series. The total marginal
impact would be ∂E(Ynt)

∂x = ln
β0

1−(λ0+γ0+ρ0) . The spatial and
dynamic effects are combined into the multiplier effect

1
1−(λ0+γ0+ρ0) .
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For estimation of those models with QML approaches, the QMLEs
may have different rates of convergence. For the stable case, the rates
of convergence of QMLEs are

√
nT , as shown in Yu et al. (2008) and

reported in a subsequent section. For the spatial cointegration case, Yu
et al. (2007) show that the QMLEs for such a model are

√
nT consistent

and asymptotically normal, but, the presence of the unstable compo-
nents will make the estimators’ asymptotic variance matrix singular.
Consequently, a linear combination of the spatial and dynamic effects
estimates can converge at a higher rate. For the unit roots case, the
QMLEs of γ0 is

√
nT 3 consistent and other estimates are

√
nT consis-

tent; however, the estimate of sum of ρ0 + λ0 is
√
nT 3 consistent. For

the explosive case, we will rely on a data transformation in order to
estimate the model.

The rest of the text is organized as follows. Static Spatial Panels —
Fixed Effects Models uses either the conditional likelihood or the par-
tial likelihood approaches to estimate the spatial panel model with
individual fixed effects. Static Spatial Panels — Random Effects Mod-
els investigates the spatial panel model with a general space–time filter
under random effects specification. It is shown that the estimates under
the random effects specification is a pooling of the within and between
estimates, and a Hausman type specification test can be used for testing
the random components specification vs. the fixed effects one. Spatial
Dynamic Panels — Stable Models with Fixed Effects study both QML
and GMM estimation of stable SDPD models with fixed effects. The
QML approach is applicable when T is large, and a bias correction pro-
cedure can eliminate the dominant bias of the QMLE. The n and T ratio
requirement can be relaxed if individual effects are first eliminated by
differencing and the resulting equation is then estimated by the GMM,
where exogenous and predetermined variables can be used as instru-
ments. Spatial Dynamic Panels — Unstable Models with Fixed Effects
cover QML estimation of SDPD models in the presence of unit roots. A
data transformation is proposed to estimate various SDPD models, and
can provide regular

√
nT -consistent and asymptotic normal estimates

as long as the stable component is present. Finally, two empirical appli-
cations are presented to illustrate the proposed estimation methods.
Some technical theorems and notations are provided in Appendices.
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10 Introduction

Even though we have different model specifications, there are some
basic common features for all of them. The following common assump-
tions will be used throughout the text for both static and dynamic
models.4 In addition to these, specific assumptions for different models
will be listed when needed.

Assumption 1. All the spatial weights matrices (i.e., Wn) are non-
stochastic with zero diagonals and are uniformly bounded in both row
and column sums in absolute value (for short, UB).5

Assumption 2. The relevant disturbances (i.e., vit or eit) are i.i.d.
across i and t with zero mean and finite variance, and their higher
than fourth moments exist.

Assumption 3. The true spatial effect coefficients (i.e., λ0) are in the
interior of their parameter spaces. The spatial transformation matri-
ces (i.e., In − λWn) are invertible on the compact parameter spaces of
spatial effects, and their inverses are UB uniformly in the parameter
spaces.

Assumption 4. The elements of Xnt are nonstochastic and bounded,
uniformly in n and t. When we have n × kz time invariant regressor zn,
it is also nonstochastic and bounded uniformly in n.

For some cases, we focus on row-normalized spatial weights matrices
that are popular in empirical applications. Under these situations, we
make that explicit and extend Assumption 1 to

Assumption 1′. All the spatial weights matrices are row-normalized
and satisfy Assumption 1.

Assumption 5. n goes to infinity, where T can be finite or an increas-
ing function of n.

Assumption 5′. T goes to infinity, where n is an increasing function
of T .

4 Matlab codes for those estimation methods are available upon request for readers who are
interested.

5 We say a (sequence of n × n) matrix Pn is uniformly bounded in row and col-

umn sums in absolute value if supn≥1 ‖Pn‖∞ <∞ and supn≥1 ‖Pn‖1 <∞, where
‖Pn‖∞ = sup1≤i≤n

∑n
j=1 |pij,n| is the row sum norm and ‖Pn‖1 = sup1≤j≤n

∑n
i=1 |pij,n|

is the column sum norm.
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Assumption 5′′. T goes to infinity, where n can be finite or an increas-
ing function of T .

The zero diagonal assumption for the Wn matrix helps the interpre-
tation of the spatial effect, as self-influence shall be excluded in prac-
tice. As a result, the trace of a spatial weights matrix is zero and hence
the sum of all its eigenvalues is zero. In many empirical applications
with a non-negative spatial weights matrix, each of the rows of that
spatial weights matrix sums to 1, which ensures that all the weights are
between 0 and 1. Row-normalized spatial weights matrix provides sim-
ple interpretation of the spatial interaction effect as an average neigh-
borhood effect. For such a spatial weights matrix, because its spectral
radius (the largest eigenvalue in absolute value) is 1, dynamic features
of the SDPD model is easier to understand. Assumption 2 provides
i.i.d. regularity assumptions for the disturbances. If there is unknown
heteroskedasticity, the MLE (QMLE) will not be consistent. Methods
such as the GMM in Lin and Lee (2010) and the G2SLS in Kelejian and
Prucha (2010) may be designed for that situation. The UB condition
in Assumption 3 is originated by Kelejian and Prucha (1998, 2001) and
also used in Lee (2004, 2007), which limits the spatial correlation to a
manageable degree. Invertibility of spatial transformation matrices in
Assumption 3 guarantees that the reduced form of the spatial process is
valid and the true parameter lies in the interior of the parameter space,
which rules out spatial (near) unit roots problem in a cross section set-
ting. As usual, compactness is a condition for theoretical analysis on
nonlinear functions. When Wn is row-normalized, a compact subset of
(−1,1) has often been taken as the parameter space for λ in theory.
When exogenous variables Xnt are included in the model, it is conve-
nient to assume that they are uniformly bounded as in Assumption 4. If
elements of Xnt are allowed to be stochastic and unbounded, appropri-
ate moment conditions can be imposed instead. Assumption 5 specifies
that we have a large number of spatial units, while the time period T

could be either large or small. For some direct estimation approaches,
we need both n and T large, as in Assumption 5′. When we have a
dynamic feature in the panel data model, we need a large T condition
as in Assumption 5′′, unless we specify a separate process for the initial
value observation.
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