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Abstract

Nonparametric estimators are widely used to estimate the produc-

tive efficiency of firms and other organizations, but often without

any attempt to make statistical inference. Recent work has provided

statistical properties of these estimators as well as methods for making

statistical inference, and a link between frontier estimation and extreme

value theory has been established. New estimators that avoid many

of the problems inherent with traditional efficiency estimators have

also been developed; these new estimators are robust with respect to

outliers and avoid the well-known curse of dimensionality. Statistical

properties, including asymptotic distributions, of the new estimators
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have been uncovered. Finally, several approaches exist for introduc-

ing environmental variables into production models; both two-stage

approaches, in which estimated efficiencies are regressed on environ-

mental variables, and conditional efficiency measures, as well as the

underlying assumptions required for either approach, are examined.
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1

Nonparametric Statistical Models of Production:
Combining Economics and Statistics

The economic theory underlying analysis of efficiency in production

dates at least to the work of Koopmans (1951), Debreu (1951), and

Farrell (1957). Farrell made the first attempt to estimate efficiency

from a set of observed production units, but the statistical properties

of his estimator were only considered much later.

The discussion that follows introduces basic concepts and notation;

Economic Considerations introduces an economic framework, to which

Statistical Considerations adds a statistical paradigm.

1.1 Economic Considerations

Producers transform inputs into outputs; for example, in manu-

facturing, inputs typically include labor, capital, energy, materials,

and perhaps other things, while outputs are the products produced.

There may be one, several, perhaps many different products that are

produced. Of course, production is constrained by what is possible or

feasible. Let x ∈ Rp+ and y ∈ Rq+ denote vectors of input and output

quantities, respectively, and let

P = {(x,y) | x can produce y} (1.1)

1

Full text available at: http://dx.doi.org/10.1561/0800000020



2 Nonparametric Statistical Models of Production

denote the set of feasible combinations of inputs and outputs, i.e., the

production set. Any output quantities y can be produced using input

quantities x if and only if (x,y) ∈ P. However, the points in P are not

equally desirable.

The following three assumptions regarding P are standard in

microeconomic theory of the firm; see, for example, Shephard (1970)

and Färe (1988).

Assumption 1.1. P is closed.

Assumption 1.2. All production requires use of some inputs:

(x,y) /∈ P if x = 0 and y ≥ 0, y 6= 0.1

Assumption 1.3. Both inputs and outputs are freely disposable:

if (x,y) ∈ P, then for any (x′,y′) such that x′ ≥ x and y′ ≤ y,

(x′,y′) ∈ P.

Assumption 1.1 ensures that the boundary of P is included in P.

Assumption 1.2 means that there are no “free lunches.” The free dis-

posability assumption is sometimes called strong disposability and is

equivalent to an assumption of monotonicity of the technology. This

property also characterizes the technical possibility of wasting resources

(i.e., the possibility of producing less with more resources).

For purposes of efficiency measurement, the upper boundary of P
is relevant. The efficient subset of points in P is the upper boundary

(frontier) of P, i.e., the locus of optimal production plans (e.g., minimal

achievable input level for a given output, or maximal achievable output

given the level of the inputs). The upper boundary of P,

P∂ = {(x,y) ∈ P | (γ−1x,γy) 6∈ P ∀ γ ∈ (1,∞)} (1.2)

is sometimes referred to as the technology or the production frontier,

and is given by the intersection of P and the closure of its complement.

1 Throughout, inequalities involving vectors are assumed to hold element by element; e.g.,
a ≤ b denotes aj ≤ bj for each j = 1, . . . , k, where k is the length of a and b.
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1.1 Economic Considerations 3

Firms that are technically inefficient operate at points in the interior

of P, while those that are technically efficient operate somewhere along

the technology defined by P∂ .

Various features of the production set P and its frontier P∂ are

often of interest to applied researchers. One such feature is returns to

scale. Strictly speaking, returns to scale is a feature of the frontier,

P∂ , but it is common to ascribe such features to the set P. There are

several possibilities.

Definition 1.1. The frontier P∂ displays globally constant returns

to scale (CRS) if and only if (αx,αy) ∈ P ∀ (x,y) ∈ P and α ∈ [0,∞).

Definition 1.2. The frontier P∂ displays globally variable returns

to scale (VRS) if and only if for any (x,y) ∈ P, there exist constants

a(x,y) ∈ R1
+, b(x,y) ∈ R1

++ such that a(x,y) ≤ b(x,y) and (αx,αy) ∈
P ∀ α ∈ [a(x,y), b(x,y)].

Definition 1.3. The frontier P∂ displays globally nonincreasing

returns to scale (NIRS) if and only if (αx,αy) ∈ P ∀ (x,y) ∈ P and α ∈
[0,1].

Note that Definition 1.2 encompasses Definitions 1.1 and 1.3; i.e.,

CRS and NIRS are special cases of VRS. In the same way, Definition 1.3

encompasses Definition 1.1 in that CRS is a special case of NIRS. In

other words, assuming either CRS or NIRS is more restrictive than

assuming VRS; assuming CRS is more restrictive that assuming NIRS.

The production set P can also be described by its sections or level

sets. For instance, the input requirement set for some y ∈ Rq+ is given by

X (y) = {x ∈ Rp+ | (x,y) ∈ P}, (1.3)

i.e., the set of all input vectors x that can produce output vector y.

The boundary of this set, i.e., the (input-oriented) efficiency boundary

X ∂(y), is defined for a given y ∈ Rq+ by

X ∂(y) = {x | x ∈ X (y),θx /∈ X (y), ∀ θ ∈ (0,1)}. (1.4)

Full text available at: http://dx.doi.org/10.1561/0800000020



4 Nonparametric Statistical Models of Production

Alternatively, the output feasibility set for some x ∈ Rp+ is defined by

Y(x) = {y ∈ Rq+ | (x,y) ∈ P}, (1.5)

which gives the set of all output vectors y than can be produced with

given input quantities x. The (output-oriented) efficiency boundary

Y∂(x) is defined, for a given x ∈ Rp+, as

Y∂(x) = {y | y ∈ Y(x),λy /∈ Y(x), ∀ λ > 1}. (1.6)

Then the production set P corresponds to the union of all sets X (y)

over all y ∈ Rq+, or to the union of all sets Y(x) over all x ∈ Rp+.

The Debreu–Farrell input measure of technical efficiency for a given

point (x,y) ∈ Rp+q+ is given by

θ(x,y | P) = inf{θ | θx ∈ X (y)}
= inf{θ | (θx,y) ∈ P}. (1.7)

Note that this measure is defined for some points in Rp+q+ not necessarily

in P (i.e., points for which a solution exists in (1.7)). Given an output

level y, and an input mix (a direction) given by the vector x, the

corresponding efficient level of input is given by

x∂(y) = θ(x,y | P)x, (1.8)

which is the projection of (x,y) onto the efficient boundary P∂ , along

the ray x and orthogonal to the vector y.

Figure 1.1 illustrates a point (x0,y0) ∈ P for p = q = 1. The level

set x∂(y) defined in (1.8) contains just one point in Figure 1.1; in terms

of the labels on the horizontal axis, θ(x0,y0 | P) = x∂(y0)/x0 < 1.

In general, for (x,y) ∈ P, θ(x,y | P) gives the feasible proportionate

reduction of inputs that a unit located at (x,y) could undertake to

become technically efficient. By construction, for all (x,y) ∈ P, θ(x,y |
P) ∈ (0,1]; (x,y) is technically efficient if and only if θ(x,y | P) = 1.

This measure is the reciprocal of the Shephard (1970) input distance

function.

Similarly, in the output direction, the Debreu–Farrell output mea-

sure of technical efficiency is given by

λ(x,y | P) = sup{λ | λy ∈ Y(x)}
= sup{λ | (x,λy) ∈ P} (1.9)
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1.1 Economic Considerations 5

Fig. 1.1 Input efficiency measure.

for (x,y) ∈ Rp+q+ . Analogous to the input-oriented case described above,

λ(x,y | P) gives the feasible proportionate increase in outputs for a

unit operating at (x,y) ∈ P that would achieve technical efficiency.

By construction, for all (x,y) ∈ P, λ(x,y | P) ∈ [1,∞) and (x,y) is

technically efficient if and only if λ(x,y | P) = 1.

The output efficiency measure λ(x,y | P) is the reciprocal of the

Shephard (1970) output distance function. The efficient level of out-

put, for the input level x and for the direction of the output vector

determined by y, is given by

y∂(x) = λ(x,y | P)y. (1.10)

Figure 1.2 illustrates the same point (x0,y0) ∈ P shown in

Figure 1.1. Here, the set y∂(x0) defined by (1.10) also contains a single

point, and in terms of the labels on the vertical axis in Figure 1.2,

λ(x0,y0 | P) = y∂(x0)/y0 > 1.

Efficiency can be measured in other directions, although care should

be taken to avoid having efficiency measures depend on units of mea-

surement for inputs or outputs. For example, a hyperbolic measure of

efficiency is given by

γ(x,y | P) = sup{γ | (γ−1x,γy) ∈ P} (1.11)

Full text available at: http://dx.doi.org/10.1561/0800000020



6 Nonparametric Statistical Models of Production

Fig. 1.2 Output efficiency measure.

for (x,y) ∈ Rp+q+ . This hyperbolic measure of efficiency gives the simul-

taneous proportionate, feasible reduction in input levels and the pro-

portionate, feasible increase in output levels for a unit operating at

(x,y) ∈ P that would result in technical efficiency, and is the recipro-

cal of the hyperbolic graph measure of efficiency defined by Färe et al.

(1985).

In terms of the illustration in Figure 1.3, the firm operating at the

point (x0,y0) ∈ P can become technically efficient by moving along the

curved (hyperbolic) path from (x0,y0) to (x∂γ(x0,y0), y∂γ(x0,y0)). By

construction, γ(x,y | P) ∈ [1,∞) for all (x,y) ∈ P; in addition, (x,y)

is technically efficient if and only if γ(x,y | P) = 1. For (x,y) in the

interior of P, the corresponding hyperbolic-efficient levels of inputs are

outputs that are given by(
x∂γ(x,y), y∂γ(x,y)

)
=
(
γ(x,y | P)−1x, γ(x,y | P)y

)
. (1.12)

Alternatively, Chambers et al. (1996) introduced the directional effi-

ciency measure defined by

δ(x,y | u,v,P) = sup{δ | (x − δu,y + δv) ∈ P}, (1.13)

where u and v are direction vectors with u ∈ Rp+, v ∈ Rq+, and[
u′ v′

]
6= 0. This distance function projects a point (x,y) onto the

Full text available at: http://dx.doi.org/10.1561/0800000020



1.1 Economic Considerations 7

Fig. 1.3 Hyperbolic efficiency measure.

frontier P∂ in the direction (−u,v), with(
x∂δ (x,y | u,v), y∂δ (x,y | u,v)

)
=

(x − δ(x,y | u,v,P)u, y + δ(x,y | u,v,P)v) (1.14)

giving the directionally-efficient (in the direction (u,v)) levels of inputs

and outputs.

The directional distance function is illustrated in Figure 1.4. Setting

u = x0, v = y0, the firm operating at (x0,y0) becomes technically effi-

cient when it moves to (x∂δ (x0,y0), y∂δ (x0,y0)) defined by (1.14) (the

notation indicating dependence on direction vectors is suppressed here

and in Figure 1.4 to conserve space). By construction, δ(x,y | u,v,P) ∈
[0,∞) for all (x,y) ∈ P; a point (x,y) ∈ P is technically efficient if and

only if δ(x,y | u,v,P) = 0.

Färe et al. (2008, p. 534) state that the directional distance function

is independent of units of measurement in the sense that

δ(αx ◦ x,αy ◦ y | αx ◦ u,αy ◦ v,P) = δ(x,y | u,v,P), (1.15)

where αx ∈ Rp++, αy ∈ Rq++, and ◦ denotes the Hadamard product.2

However, while (1.15) is true, it also indicates that if units of

2The Hadamard product of two arrays A = [aij ] and B = [bij ] with the same dimensions is
given by the array C = [cij ] having the same dimensions as A and B where cij = aijbij ;
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8 Nonparametric Statistical Models of Production

Fig. 1.4 Directional efficiency measure.

measurement for inputs or outputs are changed, the corresponding

direction vector must be rescaled to avoid changing the value of the

directional distance function. Instead of being homogeneous of degree

zero with respect to inputs and outputs, the directional distance func-

tion is only homogeneous of degree zero with respect to inputs, outputs,

and direction vectors.

This feature of the directional distance function makes the range of

reasonable choices for the direction vectors less broad than has been

suggested in the literature. For example, Färe et al. (2008, p. 533)

note that the direction vectors should be specified in the same units

as the inputs and outputs, but then go on to suggest choosing u = 1,

v = 1 or to optimize u and v to minimize distance to the (estimated)

frontier. But, if one specifies u = 1, v = 1, and then changes the units

of measurement, this will require re-scaling also u and v so that they no

longer equal unity in order to avoid changing the value of the distance

function. Hence the choice of (1,1) for (u,v) is arbitrary, and therefore

rather meaningless. Moreover, if the direction vectors are optimized to

e.g., see Marcus and Kahn (1959), Marcus and Thompson (1963), and Johnson (1974a,
1974b).
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1.2 Statistical Considerations 9

minimize distance to the estimated frontier, then the results will be

sensitive to the units of measurement that are used.

It is easy to show that if u = x and v = 0, then

δ(x,y | u = x,v = 0,P) = 1 − θ(x,y | P). (1.16)

Similarly, if u = 0 and v = y, then

δ(x,y | u = 0,v = y,P) = λ(x,y | P) − 1. (1.17)

A common choice, when x ∈ Rp++ and y ∈ Rq++, is to set u = x and

v = y. One can also set the direction vectors equal to the sample means

of inputs and outputs in order to use a common direction for all obser-

vations. For additional properties of the directional distance function,

see Chambers et al. (1996).

Both the hyperbolic and the directional measures are measures of

technical efficiency, as are the input- and output-oriented measures

discussed above. Technical efficiency refers to what is possible, but as

suggested earlier, not everything that is possible is desirable. Firms

may want to maximize profits, which requires considering the prices

of inputs and outputs in addition to their quantities. In the case of

government provision of goods and services, or in regulated indus-

tries, producers’ goals may be cost minimization or perhaps revenue

maximization.

A variety of assumptions on P are found in the literature (e.g., free

disposability, convexity, etc.; see Shephard, 1970 for examples). The

assumptions about P determine the appropriate estimator that should

be used to estimate P∂ , θ(x,y | P), λ(x,y | P), γ(x,y), or δ(x,y). This

issue will be discussed next.

1.2 Statistical Considerations

In real-world research problems, the attainable set P, as well as X (y),

X ∂(y), Y(x), and Y∂(x) are unknown to the analyst. Consequently, the

efficiency scores θ(x,y | P), λ(x,y | P), γ(x,y | P), and δ(x,y | u,v,P)

corresponding to a particular unit operating at (x,y) ∈ P are also

unknown.

Full text available at: http://dx.doi.org/10.1561/0800000020



10 Nonparametric Statistical Models of Production

In ordinary settings, the only information available to the researcher

is a sample

Sn = {(Xi,Y i), i = 1, . . . , n} (1.18)

of observations on input and output levels for a set of production units

engaged in the activity of interest.3 The statistical paradigm raises

the following question that must be answered: what can be learned by

observing Sn? In other words, how can the information in Sn be used

to estimate P, θ(x,y | P), λ(x,y | P) γ(x,y | P), δ(x,y | u,v,P), or

other things of interest?

Answering these questions involves much more than reading the

data in Sn into a computer program and pushing some buttons on the

keyboard to solve some linear programs. A relevant question is, “what

is learned from an estimate of θ(x,y | P), λ(x,y | P), or other numbers

computed from Sn?” The answer is clear and certain: almost nothing.

One might learn, for example, that unit A uses less input quantities

while producing greater output quantities than unit B, but little else

can be learned from estimates of the efficiency measures introduced

above without doing some additional work.

Before anything can be learned about θ(x,y | P), λ(x,y | P),

γ(x,y | P), δ(x,y | u,v,P), or by extension about P and its various

features, one must use methods of statistical analysis to understand

the properties of whatever estimators have been used to obtain esti-

mates of the things of interest.4 This raises the following questions:

Is the estimator consistent? Is the estimator biased? If the estima-

tor is biased, does the bias disappear as the sample size tends toward

infinity? If the estimator is biased, can the bias be corrected, and at

what cost; i.e., does correcting the bias introduce too much noise?

Can confidence intervals for the values of interest be estimated, and

if so, how? How might one test interesting hypotheses about the pro-

duction process? Notions of statistical consistency, etc. are discussed

below.

3Following standard notation, random variables are denoted by upper-case letters, and

realizations of random variables and other nonstochastic quantities by lower-case letters.
4Note that an estimator is a random variable, while an estimate is a realization of an

estimator (random variable). An estimator can take perhaps infinitely many values with
different probabilities, while an estimate is merely a known, nonrandom value.
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1.2 Statistical Considerations 11

Before these questions can be answered, a statistical model must

be defined; without a statistical model, one cannot know what is esti-

mated. Statistical models consist of two parts: (i) a probability model,

which in the present case includes assumptions on the production set

P and the distribution of input and output vectors (x,y) over P; and

(ii) a sampling model describing how data are obtained from the prob-

ability model. The statistical model provides a theoretical description

the mechanism that yields the data in the sample Sn, and is sometimes

called the data-generating process (DGP). In typical research settings,

the task is to use the data in Sn to learn something about the features

of the DGP.

In cases where a group of productive units are observed at the same

point in time, i.e., where cross-sectional data are observed, it is conve-

nient and often reasonable to assume the sampling process involves

independent draws from the probability distribution defined in the

DGP’s probability model. With regard to the probability model, one

must attempt reasonable assumptions. Of course, there are trade-offs

here; the assumptions on the probability model must be strong enough

to permit estimation using estimators that have useful properties, and

to allow those properties to be deduced, yet not so strong as to impose

conditions on the DGP that do not reflect reality. The goal should be, in

all cases, to make minimal, flexible assumptions in order to let the data

reveal as much as possible about the underlying DGP, as opposed to

making strong, untested assumptions that might influence the results

of estimation and inference in perhaps large and misleading ways. The

assumptions defining the statistical model are of crucial importance,

since any inference that might be made will typically be valid only if

the assumptions are in fact true.

The above considerations apply equally to parametric as well as

nonparametric approaches to estimation and inference. One can imag-

ine a spectrum of estimation approaches, ranging from fully parametric

(most restrictive) to fully nonparametric (least restrictive). Fully para-

metric estimation strategies necessarily involve stronger assumptions on

the probability model, which is completely specified in terms of a spe-

cific probability distribution function, structural equations, etc. Semi-

parametric strategies are less restrictive; in these approaches, some (but
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not all) features of the probability model are left unspecified (for exam-

ple, in a regression setting one might specify parametric forms for some,

but not all, of the moments of a distribution function in the probability

model). Fully nonparametric approaches assume no parametric forms

for any features of the probability model. Instead, only (relatively) mild

assumptions on broad features of the probability distribution are made,

usually involving assumptions of various types of continuity, degrees of

smoothness, etc.

With fully nonparametric approaches to efficiency estimation, no

specific analytical function describing the frontier is assumed. In addi-

tion, possibly restrictive assumptions on the stochastic part of the

model, describing the probabilistic behavior of the observations in the

sample with respect to the efficient boundary of P, are also avoided.

There is, however, a cost for this flexibility; in particular, all observed

input–output pairs (Xi,Y i) are assumed to be technically attain-

able; observations (Xi,Y i) on input, output vectors are assumed to

be drawn randomly and independently from a population of firms

whose input–output vectors are distributed on the attainable set P
according to some unknown probability law described by a probabil-

ity density function f(x,y) or the corresponding distribution function

F (x,y) = Pr(X ≤ x,Y ≤ y), with

Pr(Xi,Y i) ∈ P) = 1. (1.19)

By contrast, fully parametric approaches to efficiency estimation

developed by Aigner et al. (1977), Meeusen and van den Broeck (1977),

Battese and Corra (1977), Jondrow et al. (1982), and others allow

some observations to lie outside the production set P by incorpo-

rating a (two-sided) stochastic term reflecting measurement error or

other noise in addition to a (one-sided) stochastic term reflecting inef-

ficiency. Introduction of the stochastic noise term, however, incurs a

cost: some parametric structure is required for such models to be iden-

tified, which in turn requires assumptions that may or may not be

supported by data. In addition, such models typically allow for only a

single response variable, i.e., a single output variable in a production

framework; researchers typically work in a cost framework when there

are multiple outputs, but this in turn requires data on input-prices.
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To the extent that the fully parametric approach allows for measure-

ment error, it only does so for the response variable, and not for any

of the explanatory variables. Perhaps most problematic, writing the

model in a regression framework introduces issues of causality and exo-

geneity that do not arise in the fully nonparametric approach, which

more closely resembles an exercise in density estimation.

The fully parametric approaches are often called stochastic frontier

analysis, while the fully nonparametric approaches are frequently called

deterministic frontier analysis. This terminology is unfortunate since

it is misleading and has created a good bit of confusion in the litera-

ture. In both approaches, there is only one frontier, and it is fixed, not

stochastic. In both approaches, the location of the frontier is unknown,

and this is what necessitates estimation and gives rise to uncertainty.

In both approaches, the distance from a given observation (Xi,Y i) to

the frontier (in any direction) is unknown, and must be estimated.

The most popular nonparametric efficiency estimators are based

on the idea of estimating the attainable set P by the smallest set P̂
within some class of sets that envelop the observed data. Depending on

assumptions made on P, this idea leads to the Free Disposal Hull (FDH)

estimator of Deprins et al. (1984), which relies only on an assumption of

free disposability, and the Data Envelopment Analysis (DEA) estima-

tors which incorporate additional assumptions. Farrell (1957) was the

first to use a DEA estimator in an empirical application, but the idea

remained obscure until it was popularized by Charnes et al. (1978) and

Banker et al. (1984). Charnes et al. estimated P by the convex cone

of the FDH estimator of P, thus imposing an assumption of constant

returns to scale, while Banker et al. used the convex hull of the FDH

estimator of P, thereby allowing for VRS.

The primary advantage of nonparametric models and estimators

lies in their great flexibility (as opposed to parametric, deterministic

frontier models). In addition, the nonparametric estimators are easy

to compute, and today most of their statistical properties are well-

established. As will be discussed below, inference is available using

bootstrap methods.

The main drawbacks of the fully nonparametric DEA and FDH

estimators is that they are very sensitive to outliers and extreme values,
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and that noisy data are not allowed. Fortunately, robust alternatives to

DEA and FDH estimators are available for use in fully nonparametric

models; these alternative approaches will be described later. Also, as

discussed below in the last section of this survey, “stochastic” versions

of DEA and FDH estimators are the object of current research.

It should be noted that allowing for noise in frontier models presents

difficult problems even in a fully parametric framework where one can

rely on the assumed parametric structure. In fully parametric models

where the DGP involves a one-sided error process reflecting inefficiency

and a two-sided error process reflecting statistical noise, numerical iden-

tification of the statistical model’s features is sometimes highly prob-

lematic even with large (but finite) samples; see Ritter and Simar (1997)

for examples.

Apart from the issue of numerical identification, fully parametric

frontier models that incorporate a noise term present other difficulties.

Efficiency estimates in these models are based on residual terms that

are unidentified. Researchers instead base efficiency estimates on

an expectation, conditional on a composite residual; estimating an

expected inefficiency is rather different from estimating actual ineffi-

ciency. An additional problem arises from the fact that, even if the fully

parametric, stochastic frontier model is correctly specified, there is

typically a nontrivial probability of drawing samples with the “wrong”

skewness (e.g., when estimating cost functions, one would expect

composite residuals with right-skewness, but it is certainly possible to

draw finite samples with left-skewness — the probability of doing so

depends on the sample size and the mean of the composite errors).

Since there are apparently no published studies, and also apparently

no working papers in circulation, where researchers report composite

residuals with the “wrong” skewness when fully parametric, stochastic

frontier models are estimated, it appears that estimates are sometimes,

perhaps often, conditioned (i) on either drawing observations until the

desired skewness is obtained or (ii) on model specifications that result

in the desired skewness. This raises formidable questions for inference;

see Simar and Wilson (2010) for discussion.
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Sciences Actuarielles, Université Catholique de Louvain, Louvain-la-

Neuve, Belgium.

Kneip, A., L. Simar, and P. W. Wilson (2008), ‘Asymptotics and con-

sistent bootstraps for DEA estimators in non-parametric frontier

models’. Econometric Theory 24, 1663–1697.

Kneip, A., L. Simar, and P. W. Wilson (2011), ‘A computationally

efficient, consistent bootstrap for inference with non-parametric DEA

estimators’. Computational Economics 38, 483–515.

Kneip, A., L. Simar, and P. W. Wilson (2012b), ‘Central limit theorems

for DEA scores: When bias can kill the variance’. Discussion paper

#2012/xx, Institut de Statistique Biostatistique et Sciences Actuar-
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