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Abstract

In systems theory, it is well known that the parameter spaces of dynam-
ical systems are stratified into bifurcation regions, with each support-
ing a different dynamical solution regime. Some can be stable, with
different characteristics, such as monotonic stability, periodic damped
stability, or multiperiodic damped stability, and some can be unstable,
with different characteristics, such as periodic, multiperiodic, or chaotic
unstable dynamics. But in general the existence of bifurcation bound-
aries is normal and should be expected from most dynamical systems,
whether linear or nonlinear. Bifurcation boundaries in parameter space
are not evidence of model defect. While existence of such bifurcation
boundaries is well known in economic theory, econometricians using
macroeconometric models rarely take bifurcation into consideration,
when producing policy simulations from macroeconometrics models.
Such models are routinely simulated only at the point estimates of the
models’ parameters.

Barnett and He [1999] explored bifurcation stratification of
Bergstrom and Wymer’s [1976] continuous time UK macroeconometric
model. Bifurcation boundaries intersected the confidence region of the
model’s parameter estimates. Since then, Barnett and his coauthors
have been conducting similar studies of many other newer macroe-
conometric models spanning all basic categories of those models. So
far, they have not found a single case in which the model’s parameter
space was not subject to bifurcation stratification. In most cases, the
confidence region of the parameter estimates were intersected by some
of those bifurcation boundaries. The most fundamental implication of
this research is that policy simulations with macroeconometric models
should be conducted at multiple settings of the parameters within the
confidence region. While this result would be as expected by systems
theorists, the result contradicts the normal procedure in macroecono-
metrics of conducting policy simulations solely at the point estimates
of the parameters.

This survey provides an overview of the classes of macroeconometric
models for which these experiments have so far been run and empha-
sizes the implications for lack of robustness of conventional dynamical
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inferences from macroeconometric policy simulations. By making this
detailed survey of past bifurcation experiments available, we hope to
encourage and facilitate further research on this problem with other
models and to emphasize the need for simulations at various points
within the confidence regions of macroeconometric models, rather than
at only point estimates.

W. A. Barnett and G. Chen. Bifurcation of Macroeconometric Models
and Robustness of Dynamical Inferences. Foundations and TrendsR© in
Econometrics, vol. 8, nos. 1–2, pp. 1–144, 2015.
DOI: 10.1561/0800000026.
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1
Bifurcation of Macroeconomic Models1

1.1 Introduction

Bifurcation has long been a topic of interest in dynamical macroe-
conomic systems. Bifurcation analysis is important in understanding
dynamic properties of macroeconomic models as well as in selection
of stabilization policies. The goal of this survey is to summarize work
by William A. Barnett and his coauthors on bifurcation analyses in
macroeconomic models to facility and motivate work by others on fur-
ther models. In Section 1, we introduce the concept of bifurcation and
its role in studies of macroeconomic systems and also discuss several
types of bifurcations by providing examples summarized from Barnett
and He [2004, 2006a,b]. In Sections 2–8, we discuss bifurcation anal-
ysis and approaches with models from Barnett’s other papers on this
subject.

To explain what bifurcation is, Barnett and He [2004, 2006a,b] begin
with the general form of many existing macroeconomic models:

Dx = f(x,θ), (1.1)
1This section is summarized from Barnett and Binner [2004], Barnett and He

[2006a,b].

3

Full text available at: http://dx.doi.org/10.1561/0800000026



4 Bifurcation of Macroeconomic Models

where D is the vector-valued differentiation operator, x is the state
vector, θ is the parameter vector, and f is the vector of functions gov-
erning the dynamics of the system, with each component assumed to
be smooth in a local region of interest.

In system (1.1), the focus of interest lies in the settings of the param-
eter vector, θ. Assume θ takes values within a theoretically feasible
set Θ. The value of θ can affect the dynamics of the system substan-
tially through a small change, and we say a bifurcation occurs in the
system, if such a small change in parameters fundamentally alters the
nature of the dynamics of the system. In particular, bifurcation refers
to a change in qualitative features instead of quantitative features of
the solution dynamics. A change in quantitative features of dynami-
cal solutions may refer to a change in such properties as the period or
amplitude of cycles, while a change in qualitative features may refer
to such changes as changes from one type of stability or instability to
another type of stability or instability.

A point within the parameter space at which a change in quali-
tative features of the dynamical solution path occurs defines a point
on a bifurcation boundary. At the bifurcation point, the structure of
the dynamic system may change fundamentally. Different dynamical
solution properties can occur when parameters are close to but on dif-
ferent sides of a bifurcation boundary. A parameter set can be stratified
by bifurcation boundaries into several subsets with different types of
dynamics within each subset.

There are several types of bifurcation boundaries, such as Hopf,
pitchfork, saddle-node, transcritical, and singularity bifurcation. Each
type of bifurcation produces a different type of qualitative dynamic
change. We illustrate these different types of bifurcation by providing
examples in Section 1.3. Bifurcation boundaries have been discovered
in many macroeconomic systems. For example, Hopf bifurcations have
been found in growth models [e.g., Benhabib and Nishimura, 1979,
Boldrin andWoodford, 1990, Dockner and Feichtinger, 1991, Nishimura
and Takahashi, 1992], and in overlapping generations models. Pitch-
fork bifurcations have been found in the tatonnement process [e.g.,
Bala, 1997, Scarf, 1960]. Transcritical bifurcations have been found in
Bergstrom and Wymer’s [1976] UK model [Barnett and He, 1999] and
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1.1. Introduction 5

singularity bifurcation in Leeper and Sims’ Euler-equation model [Bar-
nett and Duzhak, 2008].

One reason we are concerned about bifurcation phenomena in
macroeconomic models is because changes in parameters could affect
dynamic behaviors of the models and consequently the outcomes of
imposition of policy rules. For example, Bergstrom and Wymer’s [1976]
UK model operates close to bifurcation boundaries between stable and
unstable regions of the parameter space. In this case, if a bifurcation
boundary intersects the confidence region of the parameter estimates,
different qualitative properties of solution can exist within this confi-
dence region. As a result, robustness of inferences about dynamics can
be damaged, especially if inferences about dynamics are based on model
simulations with the parameters set only at their point estimates. When
confidence regions are stratified by bifurcation boundaries, dynamical
inferences need to be based on simulations at points within each of the
stratified subsets of the confidence region.

Knowledge of bifurcation boundaries is directly useful in policy
selection. If the system is unstable, a successful policy would bifurcate
the system from the unstable to stable region. In that sense, stabi-
lization policy can be viewed as bifurcation selection. As illustrated in
Section 2, Barnett and He [2002] have shown that successful bifurcation
policy selection can be difficult to design.

Barnett’s work has found bifurcation phenomena in every macroe-
conomic model that he and his coauthors have so far explored. Barnett
and He [1999, 2002] examined the dynamics of Bergstrom-Wymer’s
continuous-time dynamic macroeconomic model of the UK economy
and found both transcritical and Hopf bifurcation boundaries. Barnett
and He [2008] estimated and displayed singularity bifurcation bound-
aries for the Leeper and Sims’s [1994] Euler equations model. Barnett
and Duzhak [2010] found Hopf and period doubling bifurcations in a
New Keynesian model. Banerjee et al. [2011] examined the possibility
of cyclical behavior in the Marshallian Macroeconomic Model. Barnett
and Eryilmaz [2013, 2014], investigated bifurcation in open economy
models. Barnett and Ghosh [2013] investigated the existence of bifur-
cations in endogenous growth models.
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6 Bifurcation of Macroeconomic Models

This survey is organized in the chronological order of Barnett’s work
on bifurcation of macroeconomic models, from early models to many
of the most recent models.

1.2 Stability

There are two possible approaches to analyze bifurcation phenomena:
global and local. Methods in Barnett’s current papers have used local
analysis, which is analysis of the linearized dynamic system in a neigh-
borhood of the steady state. In his papers, (1.1) is linearized in the
form

Dx = A(θ)x + F(x,θ), (1.2)

where A(θ) is the Jacobian matrix of f(x,θ), and F(x,θ) =
f(x,θ)−A(θ)x = o(x,θ) is the vector of higher order term. Define
x∗ to be the system’s steady state equilibrium, such that f(x∗,θ) = 0,
and redefine the variables such that the steady state is the point x∗ = 0
by replacing x with x− x∗.

The local stability of (1.1), for small perturbation away from the
equilibrium, can be studied through the eigenvalues of A(θ), which is
a matrix-valued function of the parameters θ. It is important to know
at what parameter values, θ, the system (1.1) is unstable. But it is
also important to know the nature of the instability, such as periodic,
multiperiodic, or chaotic, and the nature of the stability, such as mono-
tonically convergent, damped single-periodic convergent, or damped
multiperiodic convergent. For global analysis, which can be far more
complicated than local analysis, higher order terms must be consid-
ered, since the perturbations away from the equilibrium can be large.
Analysis of A(θ) alone may not be adequate. More research on global
analysis of macroeconomic models is needed.

To analyze the local stability properties of the system, we need to
locate the bifurcation boundaries. The boundaries must satisfy

det(A(θ)) = 0. (1.3)

According to Barnett and Binner [2004], if all eigenvalues of A(θ)
have strictly negative real parts, then (1.1) is locally asymptotically
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1.2. Stability 7

stable in the neighborhood of x = 0. If at least one of the eigenvalues
of A(θ) has positive real part, then (1.1) is locally asymptotically
unstable in the neighborhood of x = 0.

The bifurcation boundaries can be difficult to locate. In Barnett
and He [1999, 2002], various methods are applied to locate the bifurca-
tion boundaries characterized by (1.3). Equation (1.3) usually cannot
be solved in closed form, when θ is multi-dimensional. As a result,
numerical methods are extensively used for solving (1.3).

Before proceeding to the next section, we introduce the definition
of hyperbolic for flows and maps, respectively. According to Hale and
Kocak [1991], the following definitions apply.

Definition 1.1. An equilibrium point x∗ of ẋ = f(x) is said to be
hyperbolic, if all the eigenvalues of the Jacobian matrix Df(x∗) have
nonzero real parts.

Definition 1.2. A fixed point x∗ of x 7→ f(x) is said to be hyperbolic,
if the linear C1 map x 7→Df(x∗)x is hyperbolic; that is, if the Jacobian
matrix Df(x∗) at x∗ has no eigenvalues with modulus one.

Definition 1.2 refers to discrete-time dynamical systems. Since bifur-
cations can only occur in a local neighborhood of nonhyperbolic equilib-
ria, we are more interested in the behavior at nonhyperbolic equilibria.

For a discrete-time dynamical system, consider a generic smooth
one-parameter family of maps x 7→ f(x, α) = f(α)(x), x ∈ Rn, α ∈ R.
Since local bifurcation happens only at nonhyperbolic fixed points,
there are three critical cases to consider:

(a) The fixed point x∗ has eigenvalue 1.

(b) The fixed point x∗ has eigenvalue −1.

(c) The fixed point x∗ has a pair of complex-conjugate eigenvalues
e±iθ0 with 0 < θ0 < π.

The codimension 1 bifurcation associated with case (a) is called a
fold (saddle node) bifurcation. The codimension 1 bifurcation associ-
ated with case (b) is called a flip (period doubling) bifurcation, while the
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8 Bifurcation of Macroeconomic Models

codimension 1 bifurcation associated with case (c) is called a Neimark-
Sacker bifurcation. Neimark-Sacker bifurcation is the equivalent of
Hopf bifurcation for maps.

In the following section, we are going to introduce three important
one-dimensional equilibrium bifurcations described locally by ordinary
differential equations. They are transcritical, pitchfork, and saddle-
node bifurcations.

1.3 Types of bifurcations

1.3.1 Transcritical bifurcations

For a one-dimensional system,

Dx = G(x, θ),

the transversality conditions for a transcritical bifurcation at (x, θ) =
(0, 0) are

G(0, 0) = Gx(0, 0) = Gθ(0, 0) = 0, Gxx(0, 0) 6= 0, and

G2
θx −GxxGθθ(0, 0) > 0. (1.4)

An example of such a form is

Dx = θx− x2. (1.5)

The steady state equilibria of the system are at x∗ = 0 and x∗ = θ.
It follows that system (1.5) is stable around the equilibrium x∗ = 0
for θ < 0, and unstable for θ > 0. System (1.5) is stable around the
equilibrium x∗ = θ for θ > 0, and unstable for θ < 0. The nature
of the dynamics changes as the system bifurcates at the origin. This
transcritical bifurcation arises in systems in which there is a simple
solution branch, corresponding here to x∗ = 0.

Transcritical bifurcations have been found in high-dimensional
continuous-time macroeconomic systems, but in high dimensional
cases, transversality conditions have to be verified on a manifold.
Details are provided in Guckenheimer and Holmes [1983].
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1.3. Types of bifurcations 9

1.3.2 Pitchfork bifurcations

For a one-dimensional system,

Dx = f(x, θ).

Suppose that there exists an equilibrium x∗ and a parameter value
θ∗ such that (x∗, θ∗) satisfies the following conditions:

(a) ∂f(x, θ∗)
∂x

∣∣∣∣
x=x∗

= 0,

(b) ∂3f(x, θ∗)
∂x3

∣∣∣∣∣
x=x∗

6= 0,

(c) ∂2f(x, θ)
∂x∂θ

∣∣∣∣∣
x=x∗,θ=θ∗

6= 0,

then (x∗, θ∗) is a pitchfork bifurcation point.
An example of such form is

Dx = θx− x3.

The steady state equilibria of the system are at x∗ = 0 and x∗ =
±
√
θ. It follows that the system is stable when θ < 0 at the equilibrium

x∗ = 0, and unstable at this point when θ > 0. The two other equilibria
x∗ = ±

√
θ are stable for θ > 0. The equilibrium x∗ = 0 loses stability,

and two new stable equilibria appear. This pitchfork bifurcation, in
which a stable solution branch bifurcates into two new equilibria as θ
increases, is called a supercritical bifurcation.

Bala [1997] shows how pitchfork bifurcation can occur in the taton-
nement process.

1.3.3 Saddle-Node bifurcations

For a one-dimensional system,

Dx = f(x, θ).

A saddle-node point (x∗, θ∗) satisfies the equilibrium condition
f(x∗, θ∗) = 0 and the Jacobian condition

∂f(x, θ∗)
∂x

∣∣∣∣
x=x∗

= 0,
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10 Bifurcation of Macroeconomic Models

as well as the transversality conditions, as follows:

(a) ∂f(x, θ)
∂θ

|x=x∗,θ=θ∗ 6= 0,

(b) ∂2f(x, θ)
∂x2 |x=x∗,θ=θ∗ 6= 0.

Sotomayor [1973] shows that transversality conditions for high-
dimensional systems can also be formulated.

A simple system with a saddle-node bifurcation is

Dx = θ − x2.

The equilibria are at x∗ = ±
√
θ, which requires θ to be nonnegative.

Therefore, there exist no equilibria for θ < 0, and there exist two
equilibria at x∗ = ±

√
θ, when θ > 0. It follows that when θ > 0,

the system is stable at x∗ =
√
θ and unstable at x∗ = −

√
θ. In this

example, bifurcation occurs at the origin as θ increases through zero,
which is called the (supercritical) saddle node.

1.3.4 Hopf bifurcations

Hopf bifurcation is the most studied type of bifurcation in economics.
For continuous time systems, Hopf bifurcation occurs at the equilib-
rium points at which the system has a Jacobian matrix with a pair of
purely imaginary eigenvalues and no other eigenvalues which have zero
real parts. For discrete time system, the following theorem applies in
the special case of n = 2. The Hopf bifurcation theorem in Gandolfo
(2010, ch. 24, p. 497) is widely applied to find the existence of Hopf
bifurcation.

Theorem 1.1 Existence of Hopf bifurcation in two dimensions.
Consider the two-dimensional nonlinear difference system with one
parameter

yt+1 = ϕ(yt, α),
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1.3. Types of bifurcations 11

and suppose that for each α in the relevant interval there exists
a smooth family of equilibrium points, ye = ye(α), at which the
eigenvalues are complex conjugates, λ1,2 = θ(α) + iω(α). If there is
a critical value α0 of the parameter such that

(a) the eigenvalues’ modulus becomes unity at α0 but the eigen-
values are not roots of unity (from the first up to the fourth),
namely

|λ1,2(α0)| =
√
θ2 + ω2 = 1, λj1,2(α0) 6= 1 for j = 1, 2, 3, 4,

and

(b) d|λ1,2(α)|
dα |α=α0 6= 0,

then there is an invariant closed curve bifurcating from α0.

This theorem only applies with a 2× 2 Jacobian. The earliest theo-
retical works on Hopf bifurcation include Poincaré [1892] and Andronov
[1929], both of which were concerned with two-dimensional vector
fields. A general theorem on the existence of Hopf bifurcation, which
is valid in n dimensions, was proved by Hopf [1942].

A simple example in the two-dimensional system is

Dx = −y + x(θ − (x2 + y2)),

Dy = x+ y(θ − (x2 + y2)).

One equilibrium is x∗ = y∗ = 0 with stability occurring for θ < 0
and the instability occurring for θ > 0. That equilibrium has a pair of
conjugate eigenvalues θ + i and θ − i. The eigenvalues become purely
imaginary, when θ = 0.

Barnett and Binner [2004] show the following method to find Hopf
bifurcation. They let p(s) = det(sI−A) be the characteristic polyno-
mial of A and write it as

p(s) = c0 + c1s+ c2s
2 + c3s

3 + · · ·+ cn−1s
n−1 + sn.

Full text available at: http://dx.doi.org/10.1561/0800000026



12 Bifurcation of Macroeconomic Models

They construct the following (n− 1)× (n− 1) matrix

S =



c0 c2 . . . cn−2 1 0 0 . . . 0
0 c0 c2 . . . . cn−2 1 0 . . . 0

. . .

0 0 . . . 0 c0 c2 c4 . . . 1
c1 c3 . . . cn−1 0 0 0 . . . 0
0 c1 c3 . . . cn−1 0 0 . . . 0

. . .

. . .

0 0 . . . 0 c1 c3 . . . . . . cn−1


Let S0 be obtained by deleting rows 1 and n/2 and columns 1 and

2, and let S1 be obtained by deleting rows 1 and n/2 and columns 1
and 3. The matrix A(θ) has one pair of purely imaginary eigenvalues
[Guckenheimer et al., 1997], if

det(S) = 0, det(S0) det(S1) > 0. (1.6)

If det(S) = 0 and det(S0) det(S1) = 0, then A(θ) may have more
than one pair of purely imaginary eigenvalues. The following condition
can be used to find candidates for bifurcation boundaries:

det(S) = 0, det(S0) det(S1) ≥ 0. (1.7)

Since solving (1.7) analytically is difficult, Barnett and He [1999]
apply the following numerical procedure to find bifurcation boundaries.
Without loss of generality, they initially consider only two parameters
θ1 and θ2.

Procedure (P1)

(1) For any fixed θ1, treat θ2 as a function of θ1, and find the value of
θ2 satisfying the condition h(θ2) = det(A(θ)) = 0. First find the
number of zeros of h(θ2). Starting with approximations of zeros,
use the following gradient algorithm to find all zeros of h(θ2):

θ2(n+ 1) = θ2(n)− anh(θ2)|θ2=θ2(n) (1.8)

where {an, n = 0, 1, 2, . . .} is a sequence of positive step sizes.
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1.3. Types of bifurcations 13

(2) Repeat the same procedure to find all θ2 satisfying (1.7).

(3) Plot all the pairs (θ1, θ2).

(4) Check all parts of the plot to find the segments representing the
bifurcation boundaries. Then parts of the curve found in Step (1)
are boundaries of saddle-node bifurcations. Parts of the curve
found in Step (2) are boundaries of Hopf bifurcations, if the
required transversality conditions are satisfied.

Pioneers in studies of Hopf bifurcations in economics include Torre
[1977] and Benhabib and Nishimura [1979]. Torre found the appearance
of a limit cycle associated with a Hopf bifurcation boundary in Key-
nesian systems. Benhabib and Nishimura showed that a closed invari-
ant curve might emerge as the result of optimization in a multi-sector
neoclassical optimal growth model. These studies illustrate the exis-
tence of a Hopf bifurcation boundary in an economic model results in a
solution following closed curves around the stationary state. The solu-
tion paths may be stable or unstable, depending upon the side of the
bifurcation boundary on which the parameter values lie. More recent
studies finding Hopf bifurcation in econometric models include Bar-
nett and He [1999, 2002, 2008], who found bifurcation boundaries of
the Bergstrom–Wymer continuous-time UK model and the Leeper and
Sims Euler-equations model.

1.3.5 Singularity-induced bifurcations

This section is devoted to a dramatic kind of bifurcation found by Bar-
nett and He [2008] in the Leeper and Sims [1977] model — singularity-
induced bifurcation.

Some macroeconomic models, such as the dynamic Leontief model
[Luenberger and Arbel, 1977] and the Leeper and Sims [1994] model,
have the form

Bx(t+ 1) = Ax(t) + f(t). (1.9)

Here x(t) is the state vector, f(t) is the vector of driving variables, t is
time, and B and A are constant matrices of appropriate dimensions.
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14 Bifurcation of Macroeconomic Models

If f(t) = 0, the system (1.9) is in the class of autonomous systems.
Barnett and He [2006a,b] illustrate only the autonomous cases of (1.9).

If B is invertible, then we can invert B to acquire

x(t+ 1) = B−1Ax(t) + B−1f(t),

so that

x(t+ 1)− x(t) = B−1Ax(t)− x(t) + B−1f(t)

= (B−1A− I)x(t) + B−1f(t),

which is in the form of (1.1).
The case in which the matrix B is singular is of particular interest.

Barnett and He [2006a,b] rewrite (1.9) by generalizing the model to
permit nonlinearity as follows:

B(x(t),θ)Dx = F(x(t), f(t),θ). (1.10)

Here f(t) is the vector of driving variables, and t is time. Barnett and
He [2006a,b] consider the autonomous cases in which f(t) = 0.

Singularity-induced bifurcation occurs, when the rank of B(x,θ)
changes, as from an invertible matrix to a singular one. Therefore, the
matrix must depend on θ for such changes to occur. If the rank of
B(x,θ) does not change according to the change of θ, then singularity
of B(x,θ) is not sufficient for (1.10) to be able to produce singularity
bifurcation.

Barnett and He [2006a,b] consider the two-dimensional state-space
case and perform an appropriate coordinate transformation allowing
(1.10) to become the following equivalent form:

B1(x1, x2,θ)Dx1 = F1(x1, x2,θ),

0 = F2(x1, x2,θ).

They provide four examples to demonstrate the complexity of bifur-
cation behaviors that can be produced from system (1.10). The first
two examples do not produce singularity bifurcations, since B does not
depend on θ. In the second two examples, Barnett and Duzhak [2008]
find singularity bifurcation, since B does depend on θ.
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Example 1.1. Consider the following system modified from system
(1.5), which has been shown to produce transcritical bifurcation:

Dx = θx− x2, (1.11)

0 = x− y2. (1.12)

Comparing with the general form of (1.10), observe that

B =
[
1 0
0 0

]
,

which is singular but does not depend upon the value of θ.

The equilibria are (x∗, y∗) = (0, 0) and (θ,±
√
θ) Near the equilib-

rium (x∗, y∗) = (0, 0), the system ((1.11),(1.12)) is stable for θ < 0
and unstable for θ > 0. The equilibria (x∗, y∗) = (θ,±

√
θ) are unde-

fined, when θ < 0, and stable when θ > 0. The bifurcation point is
(x, y, θ) = (0, 0, 0). Notice before and after bifurcation, the number of
differential equations and the number of algebraic equations remain
unchanged. This implies that the bifurcation point does not produce
singularity bifurcation, since B does not depend upon θ.

Example 1.2. Consider the following system modified from system
(1.7), which can produce saddle-node bifurcation:

Dx = θ − x2, (1.13)

0 = x− y2. (1.14)

Comparing with the general form of (1.10), observe that

B =
[
1 0
0 0

]
,

which is singular but does not depend upon the value of θ.

The equilibria are at (x∗, y∗) = (
√
θ,± 4√θ), defined only for θ ≥ 0.

The system ((1.13),(1.14)) is stable around both of the equilibria
(x∗, y∗) = (

√
θ,± 4√θ) and (x∗, y∗) = (

√
θ,± 4√θ). The bifurcation point

is (x∗, y∗, θ) = (0, 0, 0). The three-dimensional bifurcation diagram in
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16 Bifurcation of Macroeconomic Models

Barnett and He [2006a,b] shows that there is no discontinuity or change
in dimension at the origin at the origin. The bifurcation point does not
produce singularity bifurcation, since the dimension of the state space
dynamics remains unchanged on either side of the origin.

Example 1.3. Consider the following system:

Dx = ax− x2, with a > 0, (1.15)

θDy = x− y2. (1.16)

Comparing with the general form of (1.10), observe that

B =
[
1 0
0 θ

]
,

which does depend upon the parameter θ.

When θ = 0, the system has one differential equation (1.15) and
one algebraic equation (1.16). If θ 6= 0, the system has two differential
equations (1.15) and (1.16) with no algebraic equations for nonzero θ.

The equilibria are (x∗, y∗) = (0, 0) and (a,±
√
a). For any value

of θ, the system ((1.15),(1.16)) is unstable around the equilibrium at
(x∗, y∗) = (0, 0). The equilibrium (x∗, y∗) = (a

√
a) is unstable for θ < 0

and stable for θ > 0. The equilibrium (x∗, y∗) = (a,−
√
a) is unstable

for θ > 0 and stable for θ < 0.
Without loss of generality, Barnett and He [2006a,b] normalize a to

be 1. When θ = 0, the system’s behavior degenerates into movement
along the one-dimensional curve x− y2 = 0 When θ 6= 0, the dynamics
of the system move throughout the two-dimensional state space. The
singularity bifurcation caused by the transition from nonzero θ to zero
results in the drop in the dimension.

Barnett and He [2006a,b] observe that even if singularity bifurcation
does not cause a change of the system between stability and instability,
dynamical properties produced by singularity bifurcation can change.
For example, if θ changes from positive to zero, when (x, y) is at the
equilibrium (1, 1), the system will remain stable; if θ changes from
positive to zero, when (x, y) is at the equilibrium (0, 0), the system
will remain unstable; if θ changes from positive to zero, when (x, y)
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is at the equilibrium (1,−1), the system will change from unstable
to stable. But in all of these cases, the nature of the disequilibrium
dynamics changes dramatically, even if there is no transition between
stability and instability.

Example 1.4. Consider the following system:

Dx = ax− x2, with a > 0, (1.17)

θDy = x− y. (1.18)

Comparing with the general form of (1.10), observe that

B =
[
1 0
0 θ

]
.

The equilibria are (x∗, y∗) = (0, 0) and (a, a). The system is unsta-
ble around the equilibrium (x∗, y∗) = (0, 0) for any value of θ. The
equilibrium (x∗, y∗) = (a, a) is unstable for θ < 0 and stable for θ ≥ 0.
When θ < 0, the system is unstable everywhere. When θ = 0, equa-
tion (1.18) becomes the algebraic constraint y = x, which is a one-
dimensional ray through the origin. However, when θ 6= 0, the system
moves into the two-dimensional space. Even though the dimension can
drop from singular bifurcation, there could be no change between sta-
bility and instability. For example, (0, 0) remains unstable and (1, 1)
remains stable, when θ 6= 0 and θ = 0.

Barnett and He [2006a,b] also observe that the nature of the dynam-
ics with θ small and positive is very different from the dynamics with
θ small and negative. In particular, the equilibrium at (x∗, y∗) = (1, 1)
is stable in the former case and unstable in the latter case. Hence there
is little robustness of dynamical inference to small changes of θ close
to the bifurcation boundary. Barnett and Binner [2004, Part 4] further
investigate the subject of robustness of inferences in dynamic models.

Example 1.5. Consider the following system:

Dx1 = x3,

Dx2 = −x2,

0 = x1 + x2 + θx3, (1.19)
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18 Bifurcation of Macroeconomic Models

with singular matrix

B =

1 0 0
0 1 0
0 0 0

, (1.20)

where Dx = (Dx1, Dx2, Dx3)′.

The only equilibrium is at x∗ = (x∗1, x∗2, x∗3) = (0, 0, 0) For any
θ 6= 0, Barnett and He [2006a,b] solve the last equation for x3 and
substitute into the first equation to derive the following two equation
system:

Dx1 = −x1 + x2
θ

, (1.21)

Dx2 = −x2.

In this case, the matrix B becomes the identity matrix.
This two-dimensional system is stable at x∗ = (x∗1, x∗2) = (0, 0) for

θ > 0 and unstable for θ < 0. However, setting θ = 0, Barnett and He
[2006a,b] find that system (1.19) becomes

x1 = −x2,

Dx2 = −x2,

x3 = x2, (1.22)

for all t > 0. This system has the following singular matrix:

B =

0 0 0
0 1 0
0 0 0

. (1.23)

The dimension of system (1.22) is very different from that of (1.21).
In system (1.22), there are two algebraic constraints and one differen-
tial equation, while system (1.21) has two differential equations and
no algebraic constraints. Clearly the matrix B is different in the two
cases with different ranks. This example shows that singular bifurca-
tion can results from the dependence of B upon the parameters, even
if there does not exist a direct closed-form algebraic representation of
the dependence.
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Barnett and He [2008] find singularity bifurcation in their research
on the Leeper and Sims’ Euler-equations macroeconometric model, as
surveyed in Section 3. Singularity bifurcations could similarly damage
robustness of dynamic inferences with other modern Euler-equations
macroeconometric models. Examples above show that implicit func-
tion systems (1.9) and (1.10) could produce singular bifurcation, while
closed form differential equations systems are less likely to produce
singularity bifurcation. Since Euler equation systems are in implicit
function form and rarely can be solved for closed form representations,
Barnett and He [2006a,b] conclude that singularity bifurcation should
be a serious concern with modern Euler equations models.
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