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Abstract

Chip-level soft-error rate (SER) estimation can come from two sources:
direct experimental measurement and simulation. Because SER miti-
gation decisions need to be made very early in the product design cycle,
long before product Si is available, a simulation-based methodology of
chip-level radiation-induced soft error rates that is fast and reasonably
accurate is crucial to the reliability and success of the final product.

The following contribution summarizes selected publications that are
deemed relevant by the author to enable a truly chip-level radiation-
induced soft error rate estimation methodology. Although the strate-
gies and concepts described have microprocessors manufactured in bulk
CMOS technologies in mind, there is no fundamental reason why they
cannot be applied to other technologies and different types of integrated
circuits (ICs).
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1

Introduction

This work summarizes the modeling and technology related content
of a series of one day tutorials given at several major conferences dur-
ing 2006–2008 by Norbert Seifert, Subhasish Mitra and Pia Sanda. The
tutorials provided an overview of key single event (SE) phenomena, dis-
cussed the impact of technology scaling on soft error rates, introduced
the basic concepts of modeling of soft errors, covered well-known as well
as novel mitigation techniques and presented actual system behavior
data in the presence of soft errors for selected case studies. In these
tutorials Dr. Seifert covered all technology and circuit-level aspects
of soft errors, while most mitigation techniques were introduced by
Prof. Mitra. Results of case studies of soft errors in real systems were
presented and discussed by Dr. Sanda. Due to the distinct nature of the
topics covered and because each presenter solely owned the content of
his or her presentation, it was decided to have this separation preserved
in the current edition of FTEDA. The author of this work included key
publications published after 2008 and further added content and ref-
erences that were not covered in the tutorials due to the limited time
available.

1
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2 Introduction

After introducing the key strategy for modeling chip-level soft
error rates (SER) used throughout this work in Section 1.1, important
types of single-event phenomena are discussed in Section 1.2. Mainly
radiation-induced phenomena that result in soft errors, i.e., upsets that
do not cause permanent damage, are being considered in this work. The
terrestrial particle environment and charge generation and collection
processes are addressed in Section 2. SER trends of key SER contribu-
tors are summarized in Section 3. SER modeling methods are discussed
in Sections 4.2–4.7. Finally, Section 4.8 illustrates how all components
can be put together in a truly chip-level capable SER strategy and tool.

1.1 SER Fundamentals

1.1.1 System-level SER Modeling Strategy Overview

“Divide et impera”
Traiano Boccalini, 1556–1613

Projecting soft error rates of products is a very complex process and
involves modeling at all abstraction levels, from radiation transport
physics all the way up to system responses. Equations similar to (1.1)
frequently form the basis of chip- or system level SER assessments.
Radiation-induced upset rates of devices are modeled as the product
of nominal soft error rates with timing- and architectural vulnerability
factors [91, 92]. Devices in the context of Equation (1.1) are place-
holder for circuits, structures, or even whole chips. Please note that
the fault model assumed here is upsets occurring in memory elements
(single event upsets, SEU). Upsets due to strikes in combinational logic
(SERcomb) are caused by so-called single event transients (SETs) and
will be treated separately in Section 4.4.

SERsystem
SEU =

N∑
device

(SERnominal × TVF × AVF) (1.1)

Nominal soft error rates (SERnominal) refer to upset rates under static
conditions, i.e., where signal propagation times are not relevant and
input signals do not change. In a real chip, signals switch and propagate
from device to device and not all upsets are relevant to the output of a
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1.1 SER Fundamentals 3

program. This deviation from static conditions is accounted for by two
types of derating or vulnerability factors.

(A) Architectural vulnerability factors (AVF or LD: logic der-
ating) denote the probability of faults being relevant to the
execution of programs. What relevant really means in this
context is discussed in Section 4.5. AVF values dependent
on the application/code executed as well as the (micro-)
architecture of the device. Please note that AVF in the
context of Equation (1.1) is different from logic derating
factors in combinational circuits (see Section 4.4).

(B) Timing vulnerability factors (TVF or TD: timing derating)
equal the fraction of time during which a device is suscep-
tible to radiation-induced upsets. TVF values depend on
the device design and functionality as well as on the circuit
environment (Section 4.3).

Equation (1.1) implicitly assumes that (1) the system is made up
of N independent1 devices which all must operate in order for the
system to function properly (if AVF and TVF of device > 0); (2) all
key variables (SERnominal, AVF and TVF) are independent of each
other; and (3) that the single event effect (SEE) approximation holds,
i.e., that at any given point in time faults are induced by only one single
ionizing particle. Multi-bit upsets (MBU), where one SEE results in the
formation of more than one fault, are treated separately in Section 4.7.
Device parallelism (redundancy) can be accounted for in AVF values.

Recent work by Miskov-Zivanov et al. and Rao et al. has demon-
strated that for combinational and sequential logic, derating factors
are not strictly independent of each other [77, 78, 108]. Re-convergent
paths can break the independence of derating or masking factors in the
case of SETs. Nevertheless, it is a key assumption in this work that
in the case of single event upsets an independent treatment of all vari-
ables in Equation (1.1) results in accurate SER estimates for complex,
general purpose chips such as central processing units (CPUs).

1 Independent with respect to failure probabilities of the individual devices or components.
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4 Introduction

As mentioned above, Equation (1.1) is applicable to small devices/
circuits (for instance a latch) as well as to whole chips and even systems.
In the former case, it equals the sum over all nodes2 in the circuit of
interest, in the latter it is the sum over all circuits or components of a
chip or system. It can be easily seen that a chip- or system-level SER
assessment strategy cannot possibly account for all input vectors, all
circuits and signal paths. Typically, averages of TVF and AVF values
over larger structures such as storage queues and execution units and
over selected applications (code sequences) are simulated and applied
in Equation (1.1). It is worth mentioning that if averages are applied in
Equation (1.1), mitigation decisions cannot be made on a scale smaller
than the averaging range. In this case the output of Equation (1.1)
might be sufficiently accurate for upset rate projections, but certainly
not for identifying nodes or devices as candidates for hardening.

1.2 Particle-induced Soft Error Upset Modes

Derating factors and nominal soft error rates not only depend on the
technology, design and system architecture, but are also impacted by
the error type. The best known and characterized single event phe-
nomenon is the single event upset (SEU), where one single particle
strike upsets a memory type cell. This could be a static random access
memory (SRAM) cell, a dynamic random access memory (DRAM) cell,
a latch, a register file (RF), a sense amp (SA), etc. SEU further can be
classified into single bit upsets (SBU) and multiple bit or cell upsets
(MBU or MCU) [56]. An MCU occurs when a single particle strike
upsets several memory cells and no attention is paid to how the cells
or bits are arranged logically (bytes, words, etc.). If the upset cells log-
ically belong to the same protected entity, the phenomenon is called
an MBU.

An entirely different class of upsets is formed by so-called single
event transients (SETs). SETs occur in combinational logic, where the
node voltage is always restored in the case of a strike. How fast depends
on the charge collection dynamics,3 the load capacitance and on the

2 Transistors in the case of Silicon on Insulator (SOI) based circuits.
3 Which in turn depends on the process technology and the particle strike location.
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1.2 Particle-induced Soft Error Upset Modes 5

Fig. 1.1 Various masking effects of strikes in combinational logic are illustrated.

driver strength which all determine the width and amplitude of the
radiation-induced voltage pulse. A fault occurs when the particle gen-
erated voltage glitch propagates to an observable output or is captured
by a storage element. A radiation-induced glitch can be captured by
the receiving storage element only if it is not masked by any of the
following three effects (Figure 1.1):

(1) Electrical masking: pulses will be attenuated before arriving
at the latching element.

(2) Logical masking: propagation of pulses is blocked by logic
gates.

(3) Latching-window masking: propagated pulses will not be
latched unless the pulses overlap with the setup and hold
time window of the receiver.

Once an SET has been captured by a storage element (latch, FF,
etc.), it becomes indistinguishable from an SEU of the receiver induced
by a direct strike of one of the nodes within the device. More than
one storage element can be upset by inducing an SET in combinational
logic with a fanout larger than 1. See Section 4.4 for more details.

The above three masking effects depend on the electrical, logical,
and timing properties of the circuit. For the pulse to propagate along
the path from the struck node to the output of the combinational block,
i.e., input of the storage element, the path must be logically sensitized
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6 Introduction

Fig. 1.2 Soft error upset modes for clock node strikes [119]. c© 2005 IEEE. Reproduced

with permission.

and the pulse width must be wider than the propagation delay of the
slowest gate along the path [12].

Particle-induced SETs in control logic and along data paths have
many commonalities with respect to SET formation and propagation.
The impact on the upset rate of a circuit, however, is distinctly dif-
ferent. Seifert et al. investigated the impact of particle strikes in clock
trees of a modern microprocessor [119]. In principle one can distinguish
two modes of clock node upsets. Figure 1.2 schematically depicts both
modes. IN and OUT denote the input and output nodes of one pipeline
stage, CLK denotes the external clock node and SN the data path node
just before the receiving sequential (an FF in this case).

(A) Radiation-induced clock jitter: clock jitter is defined as the
difference in clock arrival times at one and the same clocked
receiver. Charge injected into clock nodes by ionizing radia-
tion at times that are very close to when the clock is asserted
results in the clock edge moving randomly in time. In this
case a setup time (Ts) violation might occur, i.e., the clock
edge is shifted such that for critical paths data will not be
latched correctly. Data might arrive too late at the receiving
latching element (Figure 1.2 — Jitter case).

(B) Radiation-induced race: this mode reflects a false opening
of a receiving storage element. For a short data path and
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1.2 Particle-induced Soft Error Upset Modes 7

without any irradiative effects data would remain at the
input of the receiving storage element until the clock asserts.
Due to a particle strike enough charge might be injected to
result in the formation of a new clock pulse. If the width
of the pulse is wide enough, this could result in prema-
turely writing data into the receiver and incorrect data racing
through the next pipeline stage. In the design community this
phenomenon is called race and hence the naming convention.
In Figure 1.2 the additional clock pulse results in a prema-
ture latching of the input data (see timing diagram of node
OUT in the case of race). Whether this is significant depends
on the path length of the next stage and whether the state
racing through is different from what is currently stored in
the receiver. Further, for a long data path where data arrive
at the receiving sequential after the radiation-induced gener-
ation of the clock pulse, no upset occurs. This is because only
the old data, i.e., data already stored in the receiver before
the strike occurred, are propagating through the receiver.

Another acronym frequently used in the soft error literature is
SEFI (single event functional interrupt [56]), which denotes single event
upsets that cause the component to reset, lock-up, or otherwise mal-
function in a detectable way. SEFI per se is not a different soft error
upset mechanism, but rather a term that specifies a certain system
response (see Section 1.4) to a particle induced upset that is fully
captured by Equation (1.1).

All upset types discussed so far are soft in nature, i.e., the upset
devices have no memory of it once the state has been rewritten.4 In
the case of single-event latchup (SEL) the lateral and vertical para-
sitic bipolar devices in bulk CMOS devices are turned on by the charge
deposited in the Si by a particle strike [57]. Latchup short-circuits power
to ground and due to the high currents involved is frequently destruc-
tive. In cases where SEL is not destructive, power needs to be recycled.
SEL rates can be estimated on the chip-level using Equation (1.1) with

4 This may, however, take longer than one cycle, since the re-written/corrected information
might have to propagate to corrupted registers that are more than one clock cycle away.
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8 Introduction

an AVF of one. Please note that SEL is not possible in Si on Insula-
tor (SOI) technologies because NMOS and PMOS devices and wells
are completely insulated by the presence of the buried oxide. How-
ever, single event snapback where the lateral bipolar between drain
and source is turned on by a particle strike has been observed in SOI
devices [27].

1.3 The Unit of SER

Soft error rates are frequently expressed in units of FIT (failure in time),
which equals 1 upset in 109 hours of operation. 1 FIT corresponds to
a mean time between failures (MTBF) of about 114000 years.5 For
terrestrial applications, soft errors are an important reliability issue
mainly for large systems consisting of hundreds or even 1000s of nodes
but not for typical PCs or laptops where software bugs typically limit
MTBF values [16].

1.4 System-level Error Types

Although the author of this article calls upsets in devices errors, it is
important to clarify the definitions of the terms fault and error: a fault
in hardware (HW) refers to an incorrect state caused by for instance
a defect, or by radiation, whereas an error is the manifestation of a
fault and results in a difference of computed values. A fault does not
necessarily lead to an error, since it can be masked by HW or software
(SW). In the remainder of this work, the author intends to stick to the
above terminology only where deemed important, as in the case of AVF
simulations for instance.

On the system level, soft errors can be divided up into errors
that are detected but cannot be corrected (DUE: Detected Unrecover-
able Errors), those that remain undetected/silent (Silent Data Cor-
ruption: SDC) and finally those that are corrected (CE, in SW or
HW). Figure 1.3 illustrates the possible outcome of a single-bit upset

5 MTBF (mean time between failures) is the expected time between two successive failures
of a system and is a key reliability metric for systems that can be repaired. MTTF (mean

time to failure) is typically applied to non-repairable systems and is equivalent to the
mean of its failure time distribution.
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1.4 System-level Error Types 9

Fig. 1.3 Classification of system level soft error modes [14]. c© 2005 IEEE. Reproduced

with permission.

depending on whether the bit is read and on the implemented protec-
tion scheme.

From a customer’s perspective silent data corruption is clearly the
worst error type, mainly because the system or user is unaware of its
occurrence and cannot control and prevent its propagation. Detected
errors are either corrected by schemes such as error correcting codes
(ECC), or re-loaded from the next memory hierarchy, or cannot be
corrected (DUE) and typically result in the system rebooting. The
interpretation of anomalous behavior such as a system hang is not
straight forward since it is certainly detected by the user, but not
through dedicated hardware level detection capabilities. The scope of
DUE6 impacts whether these error modes are factored into the DUE
bucket or into the SDC one. Other authors try to circumvent this dif-
ficulty by making as many soft errors as possible detectable [49]. In
this case the sum of both error types is relevant. One of the great chal-
lenges in system level radiation testing lies in making SDC detectable.
In modern machine check architectures (MCA), an SDC might also
trigger a detected error before the corrupted data propagate to the

6 One example would be to account only for hardware level detection mechanisms.
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10 Introduction

program output and hence SDC is never detected. Detecting SDC in
systems where DUE >> SDC is therefore very difficult. Using lock-
stepped systems or some form of SW redundancy is a first step, but by
no means trivial. The discussion of these issues is beyond the scope of
this work.

Errors that are detected and corrected, as in the case of a single
bit upset for a SECDED protected array (single error correct, double
error detect), contribute to the CE rate. CE rates are of importance
in lock-stepped systems for instance where the occurrence of CE can
cause the system to go out of lockstep.

SEFI (Section 1.2) can be both, SDC or DUE, depending on their
scopes, as long as they result in a detected (by the user or by dedicated
HW) malfunction of the system.

Before modeling strategies of all key variables of Equation (1.1) are
introduced, the physics of the charge collection process, the radiation
environment and SER trends are discussed first.

Full text available at: http://dx.doi.org/10.1561/1000000018
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