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Abstract

Cloud computing is a new computing paradigm and it is gaining wide
popularity due to its benefits including reduced cost, ease of manage-
ment, and increased reliability. In a cloud computing environment, com-
panies or individuals offload their computing (hardware/software/data)
to the cloud, which is supported by the computing infrastructure called
datacenters. Datacenters consume large amounts of electricity to op-
erate and bring enormous electricity bills to the operators. Associated
emissions also cause significant negative impact to the environment.
Meanwhile, a new kind of electrical grid, called the smart grid, is emerg-
ing. Smart grids enable two way communications between the power
generators and the power consumers. Smart grid technology brings
many salient features to help deliver power efficiently and reliably.

There are many efforts addressing either of the two tracks above.
Different with them, we focus on cost-aware datacenter power manage-
ment in presence of smart grids and review recent developments on this
area. It involves understanding how a smart grid operates, where power
goes in datacenters, and most importantly, how to reduce the power
cost and/or negative environmental impact when operating datacen-
ters. We first study new ideas of exploring spatial diversities provided
by geographically distributed datacenters and show how to perform re-
quest routing. Then, we discuss the research that leverages temporal
flexibilities given by delay-tolerant workload and present how to con-
duct workload scheduling. Thirdly, we study how to jointly optimize
routing and scheduling by considering spatial diversities and temporal
flexibilities together. These studies consider multiple features of smart
grids, and develop different cost minimization approaches using tech-
niques from the optimization, algorithmic, and feedback control fields.
Moreover, we review studies incorporating the same solution framework
with additional dimensions such as renewable and cooling.

X. Liu and F. Kong. Datacenter Power Management in Smart Grids. Foundations
and TrendsR© in Electronic Design Automation, vol. 9, no. 1, pp. 1–98, 2015.
DOI: 10.1561/1000000038.
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1

Introduction and Overview

Cloud computing is a new computing paradigm and it is gaining wide
popularity due to the distinct benefits provided to the cloud users
Armbrust et al. [2010]. Cloud computing enables users to have ubiq-
uitous, convenient, and on-demand access to a shared pool of com-
puting resources (e.g., servers, applications, and services). Cloud users
no longer need massive capital investment in self-owned hardware and
software or large expenses to operate them. They do not need to be
concerned about over-provisioning or under-provisioning computing re-
sources for their services. Instead, cloud users can pay for use of com-
puting resources as needed and release them when not needed. This fea-
ture significantly simplifies users’ resource management. Furthermore,
the cloud keeps users’ data safe and improves their service reliability.

The computing infrastructure supporting the cloud is called data-
centers. The benefits for cloud users come with large-scale datacenter
maintenance and management, which cause unacceptably heavy eco-
nomic burden on cloud service providers. For example, a large data-
center hosts hundreds of thousands servers and requires megawatts of
electricity Katz [2009]. This brings an electricity bill of millions of dol-
lars annually to the operator. Moreover, associated carbon emissions

2
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1.1. Datacenter Overview 3

from operating datacenters also cause significant negative impact to the
environment. Organizations such as Google, Microsoft, Amazon, and
many other cloud service providers are very concerned with their high
power usages, electricity costs, and carbon emissions. Hence, an energy-
efficient, low-cost, and environment-friendly datacenter operation is a
key enabler of cloud computing.

In the mean time, a new technology for the next generation electri-
cal grid, called the smart grid, has been emerging Farhangi [2010]. A
smart grid uses both information and communication technology, and
enables a two way communication between the power suppliers and the
power consumers. Many salient features brought by a smart grid includ-
ing self-healing, load adjustment, bi-directional energy flows, time-of-
use pricing, demand response, etc., help deliver power more efficiently
and reliably. Therefore, smart grids provide an excellent opportunity
for better power management of datacenters. For example, cloud ser-
vice providers could benefit from receiving real-time information of the
electrical grid, such as electricity price and power availability. They
can reduce their energy costs by dispatching workload to the datacen-
ters where the electricity prices are lower and the power supplies are
abundant. In this work, we review how to manage datacenter power
consumption in the context of a smart grid, mainly focusing on uti-
lizing features of time-of-use pricing and demand response to cut the
datacenter electricity cost.

1.1 Datacenter Overview

Cloud-oriented datacenters are usually built in independent buildings,
which are dedicated for hosting computing devices. Each datacenter
can take up to several hundred thousand square feet in size, and can
have a peak power usage of tens of megawatts (MWs). A cloud ser-
vice provider may have tens or even hundreds of such datacenters dis-
tributed geographically and connected by the Internet. This section
presents an overview of such a large-scale system, from three aspects
including major components and their functions, power usage, and dat-
acenter distribution.

Full text available at: http://dx.doi.org/10.1561/1000000038



4 Introduction and Overview
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Figure 1.1: Components of a Datacenter.

1.1.1 Major Components

Fig. 1.1 shows typical components of a datacenter
U.S. Environmental Protection Agency [2007]. There are three
major components: IT equipment, cooling system, and power infras-
tructure. We list detailed description for each of the three major
components as follows.

IT equipment. IT equipment includes servers for data processing,
storage devices for data storage, and network equipment for data com-
munications. They work together to support applications and services
hosted in a datacenter. Servers are often mounted in rack cabinets and
are interconnected by high-speed network equipment. Storage devices
are usually placed alongside servers for lower access delay as well as
easy management.

Cooling system. Cooling devices, usually referred to as computer
room air conditioning (CRAC) units, extract the heat from IT equip-
ment, and control the temperature and humidity in a datacenter. Typ-
ically, outside air is introduced into the top of a CRAC unit where it
gets conditioned by passing through some coils containing chilled wa-
ter. The chilled water is pumped from a chiller that cools down the
returned hot water from CRAC units using mechanical refrigeration
cycles or water-sider economizers Zhou et al. [2012], Liu et al. [2012].
The cooled air then passes IT equipment (primarily servers) through a
raised floor plenum, and the fans pull the air into servers.

Power infrastructure. Different datacenters may have different

Full text available at: http://dx.doi.org/10.1561/1000000038



1.1. Datacenter Overview 5
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Figure 1.2: The figure is from Kong and Liu [2014], which illustrates the hourly
power usage of a Google datacenter of 12,500 machines Goolge. All servers are
assumed to be homogeneous. Each server has a peak power of 300W and idle power
of 150W. Networking devices’ power consumption equals 5% of the total peak power
of all servers. Power Usage Effectiveness or PUE equals 1.5.

power infrastructure designs. We just give a typical case in the follow-
ing. The power infrastructure generates and/or distributes power to
cooling devices and IT equipment through a micro power grid that can
integrate the electrical grid, local power supply (backup generator) and
energy storage devices (UPS, uninterruptible power supplies). Electric-
ity first flows to an UPS unit, which acts as a battery backup to prevent
the IT equipment from experiencing power disruptions. The electricity
is converted from AC to DC to charge the UPS batteries, and then
reconverted from DC to AC before leaving the UPS. The electricity
finally enters IT equipment through power distribution units (PDUs).
Upon a power outage, UPS batteries keep powering up a datacenter
using energy stored within them, until the backup power can start up
or ramp up to match the datacenter’s power load.

1.1.2 Power Usage

The total power usage of a datacenter can be approximately defined as
the sum of IT equipment power, cooling power, and power distribution
losses. They are related via the power usage effectiveness (PUE) met-
ric, which equals total power divided by IT equipment power. A lower
PUE means a higher power efficiency, i.e., a larger portion of power
is used for computing devices instead of supporting facilities. Modern
datacenters usually have a PUE around 1.1 to 2. The power usage of

Full text available at: http://dx.doi.org/10.1561/1000000038



6 Introduction and Overview

IT equipment consists of the aggregated power consumed by all servers
(data storage included) and networking devices. Servers’ power con-
sumption can be estimated by a linear power model or dynamic voltage
and frequency scaling (DVFS) power model (details will be discussed
in Section 2). Networking devices’ power consumption can be approxi-
mated as a constant offset and is in general less than 10% of the peak
power of all servers in a datacenter Hamilton. Hence, if given a PUE and
IT equipment power consumption, we can estimate the total power us-
age of a datacenter. For example, Fig. 1.2 (from Kong and Liu [2014])
shows power load estimation using a Google workload trace Goolge
based on the linear power model in Fan et al. [2007]. The datacenter
power load is highly variable but shows an approximate daily pattern
of up-and-down. The first three weeks have a similar power load trace;
while the last week experiences a load burst. A more detailed analysis
on the Google workload trace can be found in Reiss et al. [2012]. A
more accurate datacenter power usage estimation method relates PUE
to the varying temperature. PUE is largely dependent on the scale of
cooling power, and cooling power is closely tied to the temperature
difference between the outside air and the insider air Liu et al. [2012].
For example, usually PUE for a cold weather will be smaller than that
in a hot weather.

1.1.3 Datacenter Distribution

A cloud service provider may have tens or even hundreds of geo-
distributed datacenters connected at Internet scale. Each datacenter
is connected to many Internet Service Providers (ISPs) that are re-
sponsible for carrying traffic between service providers and thousands
to millions of users. Datacenters are interconnected by the backbone
network. Datacenters are distributed to different locations according
to many factors, such as population, power availability, network prox-
imity, and climate. The geo-distributed feature of datacenters brings a
number of diversities in service response time, capital and operational
costs, and carbon emissions. Hence, these diversities can be leveraged
to optimize different kinds of performances for an Internet scale dat-
acenter system. For example, user requests can be dispatched to the

Full text available at: http://dx.doi.org/10.1561/1000000038



1.2. Smart Grid Overview 7

nearest datacenter (e.g., with the smallest round trip time (RTT)) for
processing to reduce the response time perceived by users, or assigned
to the datacenter location with the lowest temperature to reduce the
datacenter cooling cost, or routed to the datacenter with the lowest
electricity price to cut the datacenter operational cost.

1.2 Smart Grid Overview

Smart grids are the next generation power grids. Traditional electrical
grids are used to carry power from several central power generators to a
large number of customers. By contrast, a smart grid enables two-way
energy and information flows to create an automated and distributed
power delivery network. Smart grids have distinct features compared
with traditional grids. For a comprehensive survey on smart grid sys-
tems, readers are referred to existing surveys, such as Fang et al. [2011].
In this work, we only describe features closely related to the datacenter
power management.

Improved reliability. Smart grids employ advanced technologies for
better self-monitoring and self-healing without manual intervention.
With the help of real-time monitoring devices, a smart grid is able
to reduce blackouts with minimum disruptions. It can automatically
detect the problems, immediately respond to errors on power lines, and
accurately isolate the error-prone links from the main power network.
Reliable and quality power supply can significantly improve datacenter
service availability.

Dynamic pricing. Communication and metering technologies of
smart grids can inform electricity consumers (e.g., datacenters) via
smart devices, when power demand is high in their regions. To moti-
vate consumers to cut their load, the electricity price increases during
high demand periods and decreases during low demand periods. Con-
sequently, electricity consumers are stimulated to consume less during
high demand periods as eventually they would see an economic gain by
using energy at off-peak periods.

Enhanced sustainability. A smart grid is a key enabler for deep in-
tegration of renewable energy and distributed power generation. Smart

Full text available at: http://dx.doi.org/10.1561/1000000038



8 Introduction and Overview

grid technology allows for many distributed feed-in points and sup-
port bidirectional power flows. Furthermore, with the help of integrated
monitoring and control, a smart grid can tackle the intermittancy and
fluctuations of renewable energy, and can also maintain a consistent
and stable power flow over the electrical grid. Hence, one electricity
consumer can not only draw much cleaner power from the grid but
also can install local power generators to become a power supplier.

Demand response. Generators and consumers can interact in a real-
time manner with demand response support, adjusting demand to level
out spikes. Advanced communication capabilities of a smart grid can
provide consumers effective tools to receive incentive-based or emer-
gency load reduction signals and to respond these signals accordingly.
These capabilities not only eliminate the cost of adding reserve capac-
ity for utilities but also cut the electricity bills for energy users who
avoid coincidence with spikes. Moreover, consumers are even allowed
to sell self-generated or stored energy back to the grid under policies
such as net metering DSIRE.

1.3 Datacenter Power Management Overview

Along with the surging energy usage of datacenters, power manage-
ment is becoming an important and active research area. An overview
of challenges toward power management in datacenters is presented
in Liu et al. [2009a]. Efforts such as the Climate Savers Computing
Initiative (www.climatesaverscomputing.org) intended to help lower
worldwide computer energy consumption by promoting widespread
adoption of high efficiency power supplies and also by encourag-
ing the use of power-saving features already present in users’ equip-
ment. Earlier research work on power management aims at reduc-
ing power consumption of servers within a single datacenter. Differ-
ent hardware and software technologies have been proposed. In hard-
ware level, the adoption of technologies, such as chip multiprocessing
Barroso and Holzle [2007] and dynamic voltage and frequency scaling
(DVFS) Horvath et al. [2007], has made more energy-efficient servers.
In software level, the application of technologies, such as virtualiza-
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1.4. Road Map 9

tion technologies Nathuji and Schwan [2007], Barham et al. [2003], dy-
namic power management Chase et al. [2001], Meisner et al. [2009],
Ahmad and Vijaykumar [2010] and control theories Lefurgy et al.
[2007], has further reduced servers’ power consumption. In addition,
there are new technologies developed to reduce the power of both
servers and cooling device in a datacenter, such as Raghavendra et al.
[2008], Liu et al. [2009b], Abbasi et al. [2012].

While all of the above works address how to reduce datacenter en-
ergy consumption, this work focuses on the problem of how to reduce
the datacenter energy cost. The difference between energy saving and
cost reduction mainly stems from the dynamics of the electricity mar-
ket. For example, to minimize energy consumption, workload should
be allocated to the most energy-efficient datacenters as much as possi-
ble. However, these datacenters may not locate at the region with the
cheapest electricity price, and thus this allocation method would in-
crease energy cost. Furthermore, there are two reasons for considering
energy cost. First, energy cost is one of the major concerns for data-
center operators, such as Google and Facebook. For example, Google
consumed 2.60 × 106MWh electricity in 2010, amounting to hundreds
of million dollars Shao et al. [2013]. Second, lowering datacenter energy
expenditure also contributes to emission reduction. For example, the
electricity price increases as power suppliers put more spinning reserves
on-line to meet the rising power demand. These reserves not only have
higher power generation costs, but also usually use carbon-intensive
fuel such as coal and diesel. Hence, lowering energy cost makes data-
centers use less power when the price is high, and thus reduce carbon
emissions.

1.4 Road Map

Figure 1.3 depicts the road map of this work. In Section 2, we study
ideas of exploring spatial diversities provided by geographically dis-
tributed datacenters and show how to carry out request routing to
minimize energy cost. In this section, we first present the objectives
and constraints of the energy cost minimization problem for geograph-
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10 Introduction and Overview

Section 2

Spatial load balancing

(routing)

Section 3

Temporal load balancing

(scheduling)

Section 4

Spatio temporal load balancing

(routing + scheduling)

Figure 1.3: Road map of the work.

ically distributed datacenters. We then provide several solutions based
on different pricing and power models using techniques from the opti-
mization, algorithmic and feedback control fields. At the end of this
section, we introduce several extensions of this model to deal with
carbon emission reduction, renewable energy integration, and energy
buffering. In Section 3, we provide the research that leverages tempo-
ral flexibilities given by delay-tolerant datacenter workload and present
how to perform workload scheduling to save datacenter power cost. In
Section 4, we study how to jointly optimize routing and scheduling by
exploring both spatial diversities and temporal flexibilities. We first
discuss the problem formulation and a cost minimizing solution, and
then present several open problems for spatio-temporal load balanc-
ing. In Section 5, we conclude the work with summaries of main ideas
discussed in previous sections.
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