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Abstract

Real-time embedded systems have been widely deployed in mission-
critical applications, such as avionics mission computing, highway traf-
fic control, remote patient monitoring, wireless communications, navi-
gation, etc. These applications always require their real-time and em-
bedded components to work in open and unpredictable environments,
where workload is volatile and unknown. In order to guarantee the
temporal correctness and avoid severe underutilization or overload, it
is of vital significance to measure, control, and optimize the processor
utilization adaptively.

A key challenge in this mission is to meet real-time requirements
even when the workload cannot be accurately characterized a pri-
ori. Traditional approaches of worst-case analysis may cause under-
utilization of resources, while Model Predictive Control (MPC) based
approaches may suffer severe performance deterioration when large es-
timation errors exist. To address this challenging problem and provide
better system performance, we have developed several important online
adaptive optimal control approaches based on advanced control tech-
niques. Our approaches adopt Recursive Least Square (RLS) based
model identification and Linear Quadratic (LQ) optimal controllers to
guarantee that the systems are neither overloaded, nor underloaded.
These proposed approaches, as well as the associated tools, can quickly
adapt to volatile workload changes to provide stable system perfor-
mance. To minimize the impact of modeling errors, we adopt the Adap-
tive Critic Design (ACD) technique and develop an improved solution
that requires little information of the system model. To deal with the
discrete task rates, we further propose to utilize the frequency scaling
technique to assist the utilization control and optimization.

The computational overhead of centralized approaches explodes as
the scale of systems increases. To ensure system scalability and global
stability, decentralized control and optimization approaches are desired.
We leverage an efficient decoupling technique and derive several dis-
tributed approaches. These approaches adopt one feedback loop to ad-
just the task rate, and apply another feedback loop to control the CPU
frequency asynchronously. As these two manipulated variables (i.e., the
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CPU frequency and task rate) contribute to the system performance
together with a strong coupling, asynchronous control approaches may
not be able to achieve the optimal performance. To handle this cou-
pling, we further develop a synchronous rate and frequency control
and optimization approach. This approach jointly and synchronously
adjusts rate and frequency settings, and achieves enhanced system per-
formance.

All the aforementioned approaches are based on certain mathemat-
ical models. However, it is sometimes hard to develop an exact model
to characterize a real-time embedded system. In order to deal with this
issue, we further develop a model-free utilization control and optimiza-
tion solution by applying the fuzzy logic control theory. The application
of this theory allows us to achieve the desired performance in a non-
linear dynamic system without a specific system model. The proposed
fuzzy utilization control approaches are stable and fast-converging, and
achieve smaller tracking errors than model-based approaches.

X. Liu, X. Chen, and F. Kong. Utilization Control and Optimization of Real-Time
Embedded Systems. Foundations and TrendsR© in Electronic Design Automation,
vol. 9, no. 3, pp. 211–307, 2015.
DOI: 10.1561/1000000042.
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1
Introduction

1.1 Real-Time Embedded Systems

A real-time system is required to accomplish jobs and deliver services
on a timely basis. To function correctly, these systems must provide
the correct values of computation within precise time constraints.
Examples of real-time systems include Multiprocessor System-On-
Chip (MPSoC), media streaming systems, video games, automotive
electronics, aircraft control systems, telecommunications, robotics,
sensor networks and etc. In real-time systems, a unit of work scheduled
or executed by a system is called a job. A real-time task is then defined
as a set of related jobs together providing a certain function. One
key parameter, the deadline, distinguishes real-time jobs from non-
realtime ones. A real-time task is required to be completed before the
deadline. Depending on types of systems, missing deadlines will cause
performance losses or even complete failures of the real-time systems.
Another important concept is the release time, which is the time when
a real-time job becomes available for execution. The release time and
the deadline together can specify a timing constraint of a real-time job.

The timing constraints are generally divided into two types: hard
and soft. There are several different definitions of hard and soft timing

2
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1.2. Improving Reliability and Performance of Real-Time Embedded
Systems 3

constraints. In this article, we adopt a well-known and widely used
definition as follows [45].

• A real-time constraint is hard, if violating this constraint is con-
sidered as a fatal fault and may cause serious consequences.

• A real-time constraint is soft, if meeting this constraint is desir-
able, but missing this constraint does not seriously damage the
system behavior.

In this article, we mainly focus on the soft real-time systems.
Many real-time systems are embedded as part of a complete device

to deliver specified real-time services with limited resources. We call
these systems real-time embedded systems. Formally, an embedded
system is a computer system that is designed to perform a few
dedicated functions [42]. Compared with general-purpose computer
systems, embedded systems have several distinct features including low
energy consumption, small size, low per-unit price, and limited pro-
cessing power. The real-time embedded systems preserve the features
of both real-time systems and embedded systems. They are enabling
components of a large number of real-life applications, including
automotive control, car navigation, robot control, patient monitoring,
wireless communications, sensor networks, gaming electronics and etc.

As the key components of these applications, real-time embedded
systems often function in open and unpredictable environments. In such
environments, the sensing, computing and control workload is volatile
and unknown. Meanwhile, real-time embedded systems are required to
accomplish tasks with limited resources. Therefore, it is of crucial im-
portance to to measure, control and optimize the utilization of resources
adaptively. Otherwise, the temporal correctness of the systems will be
violated, and the resources will be severely underutilized or overloaded.

1.2 Improving Reliability and Performance of Real-Time Em-
bedded Systems

In this section, we discuss several kinds of approaches that are widely
adopted to improve the reliability and performance of real-time embed-
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4 Introduction

ded systems. Note that all the following approaches can be integrated
with utilization control and optimization to achieve enhanced reliability
and improved performance.

1.2.1 Monitoring Real-Time Embedded Systems

A variety of real-time monitoring schemes assist this goal of improving
reliability and performance by collecting measurement results of criti-
cal system metrics. The functions or metrics being monitored include,
but are not limited to, Quality of Service (QoS), resource utilization,
power, energy and temperature. For example, Tedesco et al. in [65]
proposed a QoS-aware monitoring scheme, which monitors congestion
events among subsystems and applies adaptive routing decisions for the
on-chip traffic. Cherkasova et al. in [14] developed a scheme to measure
the processor utilization and performance loss due to visualization for
parallel I/O. Isci et al. in [30] designed an approached to monitor the
run-time power consumption of processors. Merkel et al. [51] proposed
a metric named task activity vector to enhance temperature monitoring
and temperature-aware scheduling.

More detailed discussions of real-time monitoring schemes can be
found in [37]. Based on the real-time monitoring results, different kinds
of advanced control and optimization approaches can be applied to the
software and hardware of real-time embedded systems. Among these
approaches, task scheduling, Dynamic Voltage and Frequency Scaling
(DVFS), and utilization control and optimization are widely adopted
schemes.

1.2.2 Scheduling Real-Time Embedded Tasks

Scheduling approaches for different platforms and tasks have been ex-
tensively studied. For general real-time systems, a number of classic
real-time scheduling algorithms have been developed for better sys-
tem performance. For example, Stankovic et al. in [64] leveraged feed-
back control to develop a scheduling algorithm, which meets the per-
formance requirements without accurate knowledge of task execution
parameters. Goel et al. in [24] utilized a feedback technique to auto-
matically infer system requirements, which makes it possible to design
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1.2. Improving Reliab. and Perform. of RT Embedded Systems 5

real-time scheduling mechanisms for general-purpose systems that have
unknown real-time constraints. Lin et al. in [44] developed a feedback-
based scheduling algorithm that maintains a desired deadline miss ratio
while keeping the processor utilization as high as possible. Lu et al. in
[47] proposed a feedback control real-time scheduling (FCS) framework,
which establishes dynamic models and performance analyses of FCS al-
gorithms. It can guarantee robust system performance even when the
task execution time varies as much as 100% from initial estimation.
Anderson et al. in [1] designed an EDF scheduling algorithm to ensure
bounded deadline tardiness in soft real-time systems.

In order to support real-time embedded systems, significant im-
provements over classic scheduling approaches have been made, by con-
sidering distinct features of these systems. These features include, but
are not limited to, close coordination among multiple processing units,
parallel processing, limited energy, and vulnerability to high tempera-
ture. For example, Lakshmanan et al. in [40] addressed the challenge
brought by parallel programming models to MPSoCs, and proposed a
partitioned preemptive fixed-priority scheduling algorithm that greatly
improves the processing speed. Goossens et al. in [26] developed an ef-
ficient Earliest Deadline First (EDF) scheduling algorithm for periodic
tasks in multiprocessor systems.

As for energy consumption, Aydin et al. in [3] proposed an online
power-aware scheduling algorithm for periodic hard real-time tasks,
which saves 50% of energy over static algorithms and meets all the
deadlines at the same time. Xu et al. in [73] minimized the energy
consumption while satisfying the throughput and response time re-
quirement with an energy-aware scheduling algorithm in the context of
content streaming. Bruns et al. in [5] considered the proportional fair-
ness in power-aware scheduling, and developed an approach to guaran-
tee the availability of sufficient energy for all real-time tasks. To avoid
reliability degradation due to thermal hot spots and high temperature
gradients on MPSoCs, Coskun et al. in [15] proposed a temperature-
aware scheduling algorithm.. To address the aging issue, Huang et al.
in [29] developed a lifetime- and reliability-aware task allocation and
scheduling scheme.
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6 Introduction

More comprehensive overviews of recent advances on scheduling in
real-time embedded systems can be found in [16, 6, 32].

1.2.3 Dynamic Voltage and Frequency Scaling in Real-Time Em-
bedded Systems

DVFS is another powerful tool in improving the performance of real-
time embedded systems, especially the energy efficiency. For instance,
Pillai et al. in [54] considered deadlines and periodicity of real-time
tasks, and developed a class of real-time dynamic voltage scaling (RT-
DVS) schemes for low-power embedded systems. The RT-DVS schemes
maintain real-time guarantees while reducing energy consumption by
20% to 40%. Saewong et al. in [61] minimized the energy consump-
tion while guaranteeing the schedulability of the real-time tasks in
CMOS circuits with discrete operating frequencies. By adopting event-
driven control updates, Durand et al. in [19] designed a DVFS approach
for MPSoCs with distributed and asynchronous clocks. Kahng et al.
in [34] investigated the observation that energy overheads of energy-
constrained systems is still relatively high in low-power modes. They
leveraged the intrinsic characteristics of the hardware design, and de-
veloped a context-aware DVFS design flow to further improve the effi-
ciency of DVFS.

Recently, DVFS has been utilized to control the temperature of pro-
cessing units, since the power consumption, performance and lifetime
of embedded systems are all highly related to temperature. Hanumaiah
et al. in [27] presented a method that satisfies both hard real-time and
temperature constraints on multi-core processors. Durand et al. in [18]
analyzed the nonlinearity between power and temperature, and imple-
mented a chopped scheme to limit the temperature increase. Kim et al.
in [35] studied the performance loss caused by DVFS-based dynamic
management, and proposed a temperature-aware DVFS for mobile de-
vices that saves 12.7% energy consumption.

DVFS is sometimes combined with scheduling to achieve better
system performance. For example, Zhu et al. in [79] integrated an EDF
scheduler with a DVFS controller to prolong battery life of embedded
systems. Gerards et al. in [23] studied the relation between globally

Full text available at: http://dx.doi.org/10.1561/1000000042



1.3. Utilization Control and Optimization in Real-Time Embedded
Systems 7

synchronous DVFS and scheduling in multi-core processors. and further
increases the energy efficiency over local DVFS schemes. Islam et al.
in [31] adopted a reinforcement learning-based approach to adaptively
select the optimal DVFS algorithm from a set of algorithms, so as to
achieve optimal performance under different conditions.

Interested readers can refer to surveys [52, 36] for more extensive
discussions on recent advances in DVFS.

1.2.4 Other Control and Optimization Approaches in Real-Time
Embedded Systems

Besides system monitoring, task scheduling and DVFS, other ap-
proaches have also been actively studied. For example, Dubach et al.
in [17] a predictive model for micro architectural adaptivity control,
which adjusts the hardware architecture at runtime to fulfill the needs
of different applications. Sharifi et al. in [62] applied a Proportional In-
tegral Derivative (PID) controller to increase communication through-
put across a network-on-chip (NoC) based multi-core system. Rafiliu
et al. in [58] studied the issue of large workload variations, and derived
the stability conditions of real-time resource management.

It is worth noticing that all the above approaches (including moni-
toring, scheduling, DVFS and other approaches) can be combined with
utilization control and optimization to further boost the reliability
and performance of real-time embedded systems. Furthermore, com-
pared with scheduling and DVFS, utilization control and optimization
achieves more benefits, including better resource utilization and more
stable performance in the presence of unpredictable disturbances. An
overview of utilization control and optimization is to be presented in
the next section.

1.3 Utilization Control and Optimization in Real-Time Em-
bedded Systems

Conventional real-time systems functioning in a closed environment
mainly rely on worst-case analysis. This tool provides offline timeli-
ness guarantees by scheduling real-time tasks based on conservative
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8 Introduction

estimations of their execution time. However, this is not suitable for
real-time embedded systems in open and unpredictable environments,
which bring workload uncertainties and estimation errors on execution
time. As a result, the traditional approach of worst-case analysis leads
to severe under-utilization and wasted resources.

To enforce the desired utilization, task rate based utilization control
has been leveraged in the design. Lu et al. in [48] developed an end-
to-end utilization control (EUCON) algorithm based on Model Pre-
dictive Control (MPC) technique. EUCON applies a Multiple-Input-
Multiple-Output (MIMO)s model to describe the utilization control as
a multi-variable constrained optimization problem. Experimental re-
sults demonstrated that EUCON is more effective and efficient than
existing solutions based on worst-case analysis. Wang et al. in [71] fo-
cused on distributed real-time systems, and proposed the decentralized
end-to-end utilization control (DEUCON) algorithm. To control and
optimize the distributed systems, DEUCON requires only localized co-
ordination among neighbor processors. It is scalable and robust even
in large-scale distributed systems with varying task execution times.
Wang et al. in [67] developed a real-time utilization control middleware,
which adopts task rate adaptation to handle variations in application
workload and system resources. Fu et al. in [22] focused on cluster-
based soft real-time applications, and developed a utilization control
algorithm DUC-LB for large-scale server clusters. Koutsoukos et al. in
[38] considered a scenario where control variables are discrete. The pro-
posed hybrid supervisory utilization control (HySUCON) algorithm en-
forces utilization bounds by adaptively switching between the discrete
configurations. Chen et al. in [13] studied the computation overhead
of discrete task rate adaption, and proposed a multi-parametric rate
adaptation (MPRA) algorithm that conducts the online computation
in polynomial time. Luiz et al. in [49] developed a model based on
approximate system state identification, so as to reduce the negative
impact of prediction errors in utilization control.

The above work on utilization control and optimization mainly
applies the tool of Model Predictive Control (MPC). MPC-based ap-
proaches manage to establish analytical models of the real-time tasks
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1.3. Utilization Control and Optimization in RT Embedded Systems 9

and the underlying systems. These models are then adjusted online
based on runtime system variations, and are applied to control and opti-
mize resource utilization. For example, based on a model of task execu-
tion time, we can keep processor utilization to be under the schedulable
utilization bound while still providing real-time guarantees. However,
MPC-based approaches fail to handle large estimation errors that are
commonly found in open environments. For instance, if the estimated
execution time is much smaller than the actual one, the performance of
the system may degrade greatly, or even the whole system may become
unstable. On the other hand, overestimating the execution time may
result in under-utilization of the processor and a slow convergence of
the system.

To handle the highly dynamic workload in an open environment,
this article presents several important online adaptive optimal control
approaches based on advanced control techniques. In order to guar-
antee that the systems are neither overloaded nor underloaded, our
approaches adopt Recursive Least Square (RLS) based model identi-
fication and Linear Quadratic (LQ) optimal controller. To provide a
good system performance, these proposed approaches quickly adapt to
workload changes. We further improve these approaches with the Adap-
tive Critic Design (ACD) and the frequency scaling techniques, so as
to handle the issues of modeling errors and discrete task rates. We also
design distributed approaches to ensure system scalability and global
stability and reduce computational overhead. In order to minimize the
impact of modeling errors, we further apply the tool of fuzzy logic to
develop a model-free solution.

Besides the challenge of unpredictable workload, the use of the tech-
nology of MPSoCs in modern real-time embedded system also increases
the complexity of utilization control and optimization. Although the
MPSoC technology significantly raises the computing power of real-
time embedded systems, the utilizations of multiple distributed pro-
cessors need to be controlled and optimized jointly. In addition, a real-
time application usually consists of multiple tasks, each of which may
be dispatched to a different processor. Therefore, the whole system
is a Multiple-Input-Multiple-Output (MIMO) system. The problem of
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10 Introduction

utilization control and optimization becomes a MIMO control and op-
timization problem. 1

1.4 Road Map

The road map of this article is presented in Fig. 1.1.
In Chapter 2, we study the centralized utilization control and op-

timization in real-time embedded systems. We first present the control
model used to characterize a MIMO system. We then discuss how to
online adjust the model parameters according to real-time variations
of the system. With this online model, we apply an optimal controller
to embrace the self-tuning ability of adaptive control and optimization
in the design. By optimizing a quadratic cost function, we are able to
achieve a good tradeoff between input variations and system perfor-
mance. We further tackles the issues of modeling errors and discrete
task rates by applying the ACD technique and frequency scaling, re-
spectively.

This article
Utilization Control
and Optimization

Chapter 4
Fuzzy Control and 

Optimization
Chapter 2

Centralized
MIMO Control

Chapter 3
Distributed

MIMO Control

MIMO Model based 
Control and Optimization

Figure 1.1: The road map of this article.

1Note that in this article, the term MIMO refers to the multiple control inputs
and outputs of a control model or system. This is different from the concept of
multiple antennas and multiple I/O data streams in wireless communications.
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1.4. Road Map 11

In Chapter 3, in order to ensure system scalability and global sta-
bility, we develop distributed approaches for utilization control and op-
timization. A communication technique is designed for distributed sub-
systems to share information. An efficient decoupling technique is lever-
aged to adjust the task rate and processor frequency asynchronously
and in a decentralized manner. To achieve enhanced system perfor-
mance and increased energy efficiency, we further develop an approach
to jointly and synchronously adjust rate and frequency settings.

In Chapter 4, we apply fuzzy logic control theory to develop a
model-free utilization control and optimization approach that requires
no mathematical model. With this approach, we can minimize the er-
rors of mathematical models in characterizing a real-time embedded
system. The application of fuzzy logic control allows us to achieve
the desired performance in a nonlinear dynamic system, and achieves
smaller control and tracking errors than mathematical model based
approaches. In Chapter 5, we summarize this article.

Full text available at: http://dx.doi.org/10.1561/1000000042
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