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Abstract

Statistical language models have recently been successfully applied
to many information retrieval problems. A great deal of recent work
has shown that statistical language models not only lead to superior
empirical performance, but also facilitate parameter tuning and open
up possibilities for modeling nontraditional retrieval problems. In gen-
eral, statistical language models provide a principled way of model-
ing various kinds of retrieval problems. The purpose of this survey is
to systematically and critically review the existing work in applying
statistical language models to information retrieval, summarize their
contributions, and point out outstanding challenges.
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1

Introduction

The goal of an information retrieval (IR) system is to rank documents
optimally given a query so that relevant documents would be ranked
above nonrelevant ones. In order to achieve this goal, the system must
be able to score documents so that a relevant document would ideally
have a higher score than a nonrelevant one.

Clearly the retrieval accuracy of an IR system is directly determined
by the quality of the scoring function adopted. Thus, not surprisingly,
seeking an optimal scoring function (retrieval function) has always been
a major research challenge in information retrieval. A retrieval function
is based on a retrieval model, which formalizes the notion of relevance
and enables us to derive a retrieval function that can be computed to
score and rank documents.

Over the decades, many different types of retrieval models have been
proposed and tested. A great diversity of approaches and methodology
has developed, but no single unified retrieval model has proven to be
most effective. Indeed, finding the single optimal retrieval model has
been and remains a long-standing challenge in information retrieval
research.

1
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2 Introduction

The field has progressed in two different ways. On the one hand,
theoretical models have been proposed often to model relevance
through inferences; representative models include the logic models
[27, 111, 115] and the inference network model [109]. However, these
models, while theoretically interesting, have not been able to directly
lead to empirically effective models, even though heuristic instantia-
tions of them can be effective. On the other hand, there have been many
empirical studies of models, including many variants of the vector space
model [89, 90, 91, 96] and probabilistic models [26, 51, 80, 83, 110, 109].
The vector-space model with heuristic TF-IDF weighting and docu-
ment length normalization has traditionally been one of the most effec-
tive retrieval models, and it remains quite competitive as a state of
the art retrieval model. The popular BM25 (Okapi) retrieval function
is very similar to a TF-IDF vector space retrieval function, but it is
motivated and derived from the 2-Poisson probabilistic retrieval model
[84, 86] with heuristic approximations. BM25 is one of the most robust
and effective retrieval functions. Another effective retrieval model is
divergence from randomness which is based on probabilistic justifica-
tions for several term weighting components [1].

While both vector space models and BM25 rely on heuristic design
of retrieval functions, an interesting class of probabilistic models called
language modeling approaches to retrieval have led to effective retrieval
functions without much heuristic design. In particular, the query like-
lihood retrieval function [80] with Dirichlet prior smoothing [124]
has comparable performance to the most effective TF-IDF weighting
retrieval functions including BM25 [24]. Due to their good empiri-
cal performance and great potential of leveraging statistical estima-
tion methods, the language modeling approaches have been attracting
much attention since Ponte and Croft’s pioneering paper published in
ACM SIGIR 1998 [80]. Many variations of the basic language mod-
eling approach have since been proposed and studied, and language
models have now been applied to multiple retrieval tasks such as cross-
lingual retrieval [54], distributed IR [95], expert finding [25], passage
retrieval [59], web search [47, 76], genomics retrieval [129], topic track-
ing [41, 53, 99], and subtopic retrieval [122].
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3

This survey is to systematically review this development of the
language modeling approaches. We will survey a wide range of retrieval
models based on language modeling and attempt to make connections
between this new family of models and traditional retrieval models.
We will summarize the progress we have made so far in these models
and point out remaining challenges to be solved in order to further
increase their impact.

The survey is written for readers who have already had some basic
knowledge about information retrieval. Readers with no prior knowl-
edge about information retrieval will find it more comfortable to read
an IR textbook (e.g., [29, 63]) first before reading this survey. The read-
ers are also assumed to have already had some basic knowledge about
probability and statistics such as maximum likelihood estimator, but
a reader should still be able to follow the high-level discussion in the
survey even without such background.

The rest of the survey is organized as follows. In Section 2, we review
the very first generation of language models which are computationally
as efficient as any other existing retrieval model. The success of these
early models has stimulated many follow-up studies and extensions of
language models for retrieval. In Section 3, we review work that aims
at understanding why these language models are effective and why
they can be justified based on relevance. In Section 4, we review work
on extending and improving the basic language modeling approach.
Feedback is an important component in an IR system, but it turns
out that there is some difficulty in supporting feedback with the first
generation basic language modeling approach. In Section 5, we review
several lines of work on developing and extending language models to
support feedback (particularly pseudo feedback). They are among the
most effective language models for retrieval. In Section 6, we further
review a wide range of applications of language models to different spe-
cial retrieval tasks where a standard language model is often extended
or adapted to better fit a specific application. Finally, in Section 7, we
briefly review some work on developing general theoretical frameworks
to facilitate systematic applications of language models to IR. We
summary the survey and discuss future research directions in Section 8.
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