
Graphical Models,

Exponential Families, and

Variational Inference

Full text available at: http://dx.doi.org/10.1561/2200000001



Graphical Models,
Exponential Families, and

Variational Inference

Martin J. Wainwright

University of California

Berkeley 94720

USA

wainwrig@stat.berkeley.edu

Michael I. Jordan

University of California

Berkeley 94720

USA

jordan@stat.berkeley.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/2200000001



Foundations and Trends R© in
Machine Learning

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is M. J. Wainwright and M. I. Jordan,
Graphical Models, Exponential Families, and Variational Inference, Foundation and

Trends R© in Machine Learning, vol 1, nos 1–2, pp 1–305, 2008

ISBN: 978-1-60198-184-4
c© 2008 M. J. Wainwright and M. I. Jordan

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2200000001



Foundations and Trends R© in
Machine Learning

Volume 1 Issue 1–2, 2008

Editorial Board

Editor-in-Chief:
Michael Jordan
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776
USA

Editors

Peter Bartlett (UC Berkeley)
Yoshua Bengio (Université de Montréal)
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Abstract

The formalism of probabilistic graphical models provides a unifying
framework for capturing complex dependencies among random
variables, and building large-scale multivariate statistical models.
Graphical models have become a focus of research in many statisti-
cal, computational and mathematical fields, including bioinformatics,
communication theory, statistical physics, combinatorial optimiza-
tion, signal and image processing, information retrieval and statistical
machine learning. Many problems that arise in specific instances —
including the key problems of computing marginals and modes of
probability distributions — are best studied in the general setting.
Working with exponential family representations, and exploiting the
conjugate duality between the cumulant function and the entropy
for exponential families, we develop general variational representa-
tions of the problems of computing likelihoods, marginal probabili-
ties and most probable configurations. We describe how a wide variety
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of algorithms — among them sum-product, cluster variational meth-
ods, expectation-propagation, mean field methods, max-product and
linear programming relaxation, as well as conic programming relax-
ations — can all be understood in terms of exact or approximate forms
of these variational representations. The variational approach provides
a complementary alternative to Markov chain Monte Carlo as a general
source of approximation methods for inference in large-scale statistical
models.
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1

Introduction

Graphical models bring together graph theory and probability theory
in a powerful formalism for multivariate statistical modeling. In vari-
ous applied fields including bioinformatics, speech processing, image
processing and control theory, statistical models have long been for-
mulated in terms of graphs, and algorithms for computing basic statis-
tical quantities such as likelihoods and score functions have often been
expressed in terms of recursions operating on these graphs; examples
include phylogenies, pedigrees, hidden Markov models, Markov random
fields, and Kalman filters. These ideas can be understood, unified, and
generalized within the formalism of graphical models. Indeed, graphi-
cal models provide a natural tool for formulating variations on these
classical architectures, as well as for exploring entirely new families of
statistical models. Accordingly, in fields that involve the study of large
numbers of interacting variables, graphical models are increasingly in
evidence.

Graph theory plays an important role in many computationally ori-
ented fields, including combinatorial optimization, statistical physics,
and economics. Beyond its use as a language for formulating models,
graph theory also plays a fundamental role in assessing computational

1
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2 Introduction

complexity and feasibility. In particular, the running time of an algo-
rithm or the magnitude of an error bound can often be characterized
in terms of structural properties of a graph. This statement is also true
in the context of graphical models. Indeed, as we discuss, the com-
putational complexity of a fundamental method known as the junction
tree algorithm — which generalizes many of the recursive algorithms on
graphs cited above — can be characterized in terms of a natural graph-
theoretic measure of interaction among variables. For suitably sparse
graphs, the junction tree algorithm provides a systematic solution to
the problem of computing likelihoods and other statistical quantities
associated with a graphical model.

Unfortunately, many graphical models of practical interest are not
“suitably sparse,” so that the junction tree algorithm no longer provides
a viable computational framework. One popular source of methods for
attempting to cope with such cases is the Markov chain Monte Carlo
(MCMC) framework, and indeed there is a significant literature on the
application of MCMC methods to graphical models [e.g., 28, 93, 202].
Our focus in this survey is rather different: we present an alternative
computational methodology for statistical inference that is based on
variational methods. These techniques provide a general class of alter-
natives to MCMC, and have applications outside of the graphical model
framework. As we will see, however, they are particularly natural in
their application to graphical models, due to their relationships with
the structural properties of graphs.

The phrase “variational” itself is an umbrella term that refers to var-
ious mathematical tools for optimization-based formulations of prob-
lems, as well as associated techniques for their solution. The general
idea is to express a quantity of interest as the solution of an opti-
mization problem. The optimization problem can then be “relaxed”
in various ways, either by approximating the function to be optimized
or by approximating the set over which the optimization takes place.
Such relaxations, in turn, provide a means of approximating the original
quantity of interest.

The roots of both MCMC methods and variational methods lie
in statistical physics. Indeed, the successful deployment of MCMC
methods in statistical physics motivated and predated their entry into
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3

statistics. However, the development of MCMC methodology specif-
ically designed for statistical problems has played an important role
in sparking widespread application of such methods in statistics [88].
A similar development in the case of variational methodology would be
of significant interest. In our view, the most promising avenue toward
a variational methodology tuned to statistics is to build on existing
links between variational analysis and the exponential family of distri-
butions [4, 11, 43, 74]. Indeed, the notions of convexity that lie at the
heart of the statistical theory of the exponential family have immediate
implications for the design of variational relaxations. Moreover, these
variational relaxations have particularly interesting algorithmic conse-
quences in the setting of graphical models, where they again lead to
recursions on graphs.

Thus, we present a story with three interrelated themes. We begin
in Section 2 with a discussion of graphical models, providing both an
overview of the general mathematical framework, and also presenting
several specific examples. All of these examples, as well as the majority
of current applications of graphical models, involve distributions in the
exponential family. Accordingly, Section 3 is devoted to a discussion
of exponential families, focusing on the mathematical links to convex
analysis, and thus anticipating our development of variational meth-
ods. In particular, the principal object of interest in our exposition
is a certain conjugate dual relation associated with exponential fam-
ilies. From this foundation of conjugate duality, we develop a gen-
eral variational representation for computing likelihoods and marginal
probabilities in exponential families. Subsequent sections are devoted
to the exploration of various instantiations of this variational princi-
ple, both in exact and approximate forms, which in turn yield various
algorithms for computing exact and approximate marginal probabili-
ties, respectively. In Section 4, we discuss the connection between the
Bethe approximation and the sum-product algorithm, including both
its exact form for trees and approximate form for graphs with cycles.
We also develop the connections between Bethe-like approximations
and other algorithms, including generalized sum-product, expectation-
propagation and related moment-matching methods. In Section 5, we
discuss the class of mean field methods, which arise from a qualitatively
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4 Introduction

different approximation to the exact variational principle, with the
added benefit of generating lower bounds on the likelihood. In Section 6,
we discuss the role of variational methods in parameter estimation,
including both the fully observed and partially observed cases, as well
as both frequentist and Bayesian settings. Both Bethe-type and mean
field methods are based on nonconvex optimization problems, which
typically have multiple solutions. In contrast, Section 7 discusses vari-
ational methods based on convex relaxations of the exact variational
principle, many of which are also guaranteed to yield upper bounds on
the log likelihood. Section 8 is devoted to the problem of mode compu-
tation, with particular emphasis on the case of discrete random vari-
ables, in which context computing the mode requires solving an integer
programming problem. We develop connections between (reweighted)
max-product algorithms and hierarchies of linear programming relax-
ations. In Section 9, we discuss the broader class of conic programming
relaxations, and show how they can be understood in terms of semidef-
inite constraints imposed via moment matrices. We conclude with a
discussion in Section 10.

The scope of this survey is limited in the following sense: given a dis-
tribution represented as a graphical model, we are concerned with the
problem of computing marginal probabilities (including likelihoods), as
well as the problem of computing modes. We refer to such computa-
tional tasks as problems of “probabilistic inference,” or “inference” for
short. As with presentations of MCMC methods, such a limited focus
may appear to aim most directly at applications in Bayesian statis-
tics. While Bayesian statistics is indeed a natural terrain for deploying
many of the methods that we present here, we see these methods as
having applications throughout statistics, within both the frequentist
and Bayesian paradigms, and we indicate some of these applications at
various junctures in the survey.

Full text available at: http://dx.doi.org/10.1561/2200000001



References

[1] A. Agresti, Categorical Data Analysis. New York: Wiley, 2002.
[2] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans-

actions on Information Theory, vol. 46, pp. 325–343, 2000.
[3] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions

in Analysis. New York: Hafner Publishing Company, 1966.
[4] S. Amari, “Differential geometry of curved exponential families — curvatures

and information loss,” Annals of Statistics, vol. 10, no. 2, pp. 357–385, 1982.
[5] S. Amari and H. Nagaoka, Methods of Information Geometry. Providence, RI:

AMS, 2000.
[6] G. An, “A note on the cluster variation method,” Journal of Statistical

Physics, vol. 52, no. 3, pp. 727–734, 1988.
[7] A. Bandyopadhyay and D. Gamarnik, “Counting without sampling: New algo-

rithms for enumeration problems wiusing statistical physics,” in Proceedings
of the 17th ACM-SIAM Symposium on Discrete Algorithms, 2006.

[8] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary
data,” Journal of Machine Learning Research, vol. 9, pp. 485–516, 2008.

[9] F. Barahona and M. Groetschel, “On the cycle polytope of a binary matroid,”
Journal on Combination Theory, Series B, vol. 40, pp. 40–62, 1986.

[10] D. Barber and W. Wiegerinck, “Tractable variational structures for approxi-
mating graphical models,” in Advances in Neural Information Processing Sys-
tems, pp. 183–189, Cambridge, MA: MIT Press, 1999.

[11] O. E. Barndorff-Nielsen, Information and Exponential Families. Chichester,
UK: Wiley, 1978.

295

Full text available at: http://dx.doi.org/10.1561/2200000001



296 References

[12] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. New York: Aca-
demic Press, 1982.

[13] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina, “Belief-propagation for
weighted b-matchings on arbitrary graphs and its relation to linear programs
with integer solutions,” Technical Report arXiv: 0709 1190, Microsoft
Research, 2007.

[14] M. Bayati and C. Nair, “A rigorous proof of the cavity method for counting
matchings,” in Proceedings of the Allerton Conference on Control, Communi-
cation and Computing, Monticello, IL, 2007.

[15] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching for max-
product belief propagation,” in International Symposium on Information The-
ory, Adelaide, Australia, 2005.

[16] M. J. Beal, “Variational algorithms for approximate Bayesian inference,” PhD
thesis, Gatsby Computational Neuroscience Unit, University College, London,
2003.

[17] C. Berge, The Theory of Graphs and its Applications. New York: Wiley, 1964.
[18] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractabil-

ity of certain coding problems,” IEEE Transactions on Information Theory,
vol. 24, pp. 384–386, 1978.

[19] U. Bertele and F. Brioschi, Nonserial Dynamic Programming. New York:
Academic Press, 1972.

[20] D. P. Bertsekas, Dynamic Programming and Stochastic Control. Vol. 1. Bel-
mont, MA: Athena Scientific, 1995.

[21] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific,
1995.

[22] D. P. Bertsekas, Network Optimization: Continuous and Discrete Methods.
Belmont, MA: Athena Scientific, 1998.

[23] D. P. Bertsekas, Convex Analysis and Optimization. Belmont, MA: Athena
Scientific, 2003.

[24] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Bel-
mont, MA: Athena Scientific, 1997.

[25] J. Besag, “Spatial interaction and the statistical analysis of lattice systems,”
Journal of the Royal Statistical Society, Series B, vol. 36, pp. 192–236, 1974.

[26] J. Besag, “Statistical analysis of non-lattice data,” The Statistician, vol. 24,
no. 3, pp. 179–195, 1975.

[27] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal
Statistical Society, Series B, vol. 48, no. 3, pp. 259–279, 1986.

[28] J. Besag and P. J. Green, “Spatial statistics and Bayesian computation,” Jour-
nal of the Royal Statistical Society, Series B, vol. 55, no. 1, pp. 25–37, 1993.

[29] H. A. Bethe, “Statistics theory of superlattices,” Proceedings of Royal Society
London, Series A, vol. 150, no. 871, pp. 552–575, 1935.

[30] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and
selected topics. Upper Saddle River, N.J.: Prentice Hall, 2001.

[31] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process mix-
tures,” Bayesian Analysis, vol. 1, pp. 121–144, 2005.

Full text available at: http://dx.doi.org/10.1561/2200000001



References 297

[32] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[33] H. Bodlaender, “A tourist guide through treewidth,” Acta Cybernetica, vol. 11,
pp. 1–21, 1993.

[34] B. Bollobás, Graph Theory: An Introductory Course. New York: Springer-
Verlag, 1979.

[35] B. Bollobás, Modern Graph Theory. New York: Springer-Verlag, 1998.
[36] E. Boros, Y. Crama, and P. L. Hammer, “Upper bounds for quadratic 0-1

maximization,” Operations Research Letters, vol. 9, pp. 73–79, 1990.
[37] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete Applied

Mathematics, vol. 123, pp. 155–225, 2002.
[38] J. Borwein and A. Lewis, Convex Analysis. New York: Springer-Verlag, 1999.
[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cam-

bridge University Press, 2004.
[40] X. Boyen and D. Koller, “Tractable inference for complex stochastic pro-

cesses,” in Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, pp. 33–42, San Francisco, CA: Morgan Kaufmann, 1998.
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