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Abstract

This paper describes a novel machine learning framework for solving
sequential decision problems called Markov decision processes (MDPs)
by iteratively computing low-dimensional representations and approx-
imately optimal policies. A unified mathematical framework for learn-
ing representation and optimal control in MDPs is presented based
on a class of singular operators called Laplacians, whose matrix repre-
sentations have nonpositive off-diagonal elements and zero row sums.
Exact solutions of discounted and average-reward MDPs are expressed
in terms of a generalized spectral inverse of the Laplacian called the
Drazin inverse. A generic algorithm called representation policy iter-
ation (RPI) is presented which interleaves computing low-dimensional
representations and approximately optimal policies. Two approaches
for dimensionality reduction of MDPs are described based on geometric
and reward-sensitive regularization, whereby low-dimensional represen-
tations are formed by diagonalization or dilation of Laplacian opera-
tors. Model-based and model-free variants of the RPI algorithm are
presented; they are also compared experimentally on discrete and
continuous MDPs. Some directions for future work are finally outlined.
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1

Introduction

In this section, we introduce the problem of representation discovery in
sequential decision problems called Markov decision processes (MDPs),
whereby the aim is to solve MDPs by automatically finding “low-
dimensional” descriptions of “high-dimensional” functions on a state
(action) space. The functions of interest include policy functions speci-
fying the desired action to take, reward functions specifying the imme-
diate payoff for taking a particular action, transition distributions
describing the stochastic effects of doing actions, as well as value func-
tions that represent the long-term sum of rewards of acting according
to a given policy. Our aim is to illustrate the major ideas in an informal
setting, leaving more precise definitions to later sections. The concept
of a Laplacian operator is introduced, and its importance to MDPs is
explained. The general problem of dimensionality reduction in MDPs
is discussed. A roadmap to the remainder of the paper is also provided.

1.1 Motivation

A variety of problems of practical interest to researchers across a diverse
range of areas, from artificial intelligence (AI) [117] to operations

1
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2 Introduction

research (OR) [109, 110], can be abstractly characterized as “sequential
decision-making.” Namely, in all these problems, the task can be for-
mulated in terms of a set of discrete or continuous set of states, in each
of which a decision maker has to select one of a discrete set of actions,
which incurs a reward or cost. The objective of the decision maker is to
choose actions “optimally,” that is, to compute a policy function that
maps states to actions maximizing some long-term cumulative measure
of rewards. Examples range from game-playing [132] and manufactur-
ing [33] to robotics [81, 97], and scheduling [143]. MDPs [56, 110] have
emerged as the standard mathematical framework to model sequential
decision-making. A MDP is mathematically defined in terms of a set of
states S; a set of actions A (which may often be conditionally defined in
terms of choices available in the current state as As); a stochastic tran-
sition distribution P ass′ describing the set of outcomes s′ of performing
action a in state s; and a payoff or “reward” function Rass′ . The opti-
mization objective is to find a mapping or policy from states to actions
that maximize some cumulative measure of rewards. Commonly used
objective measures include maximizing the expected “discounted” sum
of rewards (where rewards in the future are geometrically attenuated by
powers of a fixed positive scalar value γ < 1), or maximizing the aver-
age reward or expected reward per decision. Crucially, the optimization
goal takes into account the uncertainty associated with actions. Every
policy defines a value function on the state space, where the value of
a state is the sum of the immediate reward received and the expected
value of the next state that results from choosing the action dictated by
the policy. A MDP is typically solved through the well-known Bellman
equation [110], which is a recursive equation relating the value of the
current state to values of adjacent states.

Exact solution methods, such as linear programming [36], policy
iteration [56], and value iteration [110], assume value functions are
represented using a table (or more generally on a fixed set of basis
functions). The complexity of these algorithms is typically polynomial
(cubic) in the size of the discrete state space |S| (or exponential in the
size of any compact description of the state space). When the number of
states is large or if the state space is continuous, exact representations
become infeasible, and some parametric or nonparametric function

Full text available at: http://dx.doi.org/10.1561/2200000003



1.1 Motivation 3

approximation method needs to be used. For example, if the states S of
a discrete MDP are enumerated from s = 1, . . . ,s = |S|, where |S| = n,
then functions over this discrete state space can be viewed as vectors
that lie in a Euclidean space R|S|. Most previous work on approximately
solving large MDPs surveyed in books on approximate dynamic pro-
gramming [109], neuro-dynamic programming [12], and reinforcement
learning [129], assume that MDPs are solved approximately by a set
of handcoded “features” or basis functions mapping a state s to a k-
dimensional real vector φ(s) ∈ Rk, where k� |S|.

Popular choices of parametric bases include radial basis functions
(RBFs), neural networks, CMACs, and polynomials. Concretely, a poly-
nomial basis can be viewed as an |S| × k matrix, where the ith column
represents the basis function 1,2i,3i, . . . , |S|i. A radial basis function

φk(s) = e−
||s−sk||

2

2σ2 , where σ is a scaling factor, and sk is the “center” of
the basis function. A value function V is approximated as a linear com-
bination of basis functions, namely: V ≈ Φw, where Φ is a matrix whose
columns are the specified basis functions, and w is a weight vector. If
the number of columns of Φ is k� |S|, then Φ can be viewed as provid-
ing a low-dimensional projection of the original value function ∈ R|S|

to a subspace ∈ Rk.
It has long been recognized that traditional parametric function

approximators, such as RBFs, may have difficulty accurately approxi-
mating value functions due to nonlinearities in a MDP’s state space (see
Figure 1.1). Dayan [35] and Drummond [40] have noted that states close
in Euclidean distance may have values that are very far apart (e.g., two
states on opposite sides of a wall in a spatial navigation task). A tradi-
tional parametric architecture, such as an RBF, makes the simplifying
assumption that the underlying space has Euclidean geometry.

The same issues arise in continuous MDPs as well. Figure 1.2 shows
a set of samples produced by doing a random walk in a 2D inverted
pendulum task. Here, the state variables are θ, the pole angle, and θ̇,
the angular velocity. Note that in this task, and in many other con-
tinuous control tasks, there are often physical constraints that limit
the “degrees of freedom” to a lower-dimensional manifold, resulting in
motion along highly constrained regions of the state space. Figure 1.2

Full text available at: http://dx.doi.org/10.1561/2200000003



4 Introduction

Fig. 1.1 Left : Dimensionality reduction of a MDP M involves finding a set of bases Φ such
that any function on a MDP’s state space, such as its optimal value function V ∗, can be

compressed effectively. Right : The optimal value function in a “two-room” discrete MDP
with 400 states. The agent can take actions in the four compass directions. Each action

succeeds with probability 0.9, otherwise leaves the agent in the same state. The agent is

“rewarded” only for reaching a corner “goal” state. Access to each room from the other is
available only through a central door, and this “bottleneck” results in a nonlinear optimal

value function. This value function is ostensibly a high dimensional vector ∈ R400, but can

be compressed onto a much lower-dimensional subspace.

also shows an approximation to the optimal value function constructed
using a linear combination of “proto-value” basis functions [77], or
eigenfunctions obtained by diagonalizing a random walk operator on
a graph connecting nearby samples.

Both the discrete MDP shown in Figure 1.1 and the continuous
MDP shown in Figure 1.2 have “inaccessible” regions of the state space,
which can be exploited in focusing the function approximator to accessi-
ble regions. Parametric approximators, as typically constructed, do not
distinguish between accessible and inaccessible regions. The approaches
described below go beyond modeling just the reachable state space, in
that they also build representations based on the transition matrix asso-
ciated with a specific policy and a particular reward function [103, 106].
By constructing basis functions adapted to the nonuniform density and
geometry of the state space, as well as the transition matrix and reward
function, the approaches described in this paper are able to construct
adaptive representations that can outperform parametric bases.

Full text available at: http://dx.doi.org/10.1561/2200000003
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6 Introduction

1.2 Laplacian Operators

A unique perspective adopted in this paper is based on exploring links
between a family of singular matrices, termed Laplacians, and the
solution of MDPs.1 In continuous spaces, the (symmetric) Laplacian
operator has been the object of study for almost two centuries: it
has been called “the most beautiful object in all of mathematics and
physics” [95] as it has played a central role in physics and in many
areas of mathematics. On graphs, the discretized (symmetric and non-
symmetric) Laplacian has been studied extensively in graph theory,
where its spectra reveal structural properties of undirected and directed
graphs [26, 27]. Stated in its most general form, the (nonsymmetric)
Laplacian matrix is one whose off-diagonal elements are nonpositive
and whose row sums are equal to 0 [2, 22, 24]. As we show in this paper,
there are strong connections between Laplacian matrices and MDPs.
In particular, for any MDP, either in the discounted or average-reward
seting, its solution can be shown to involve computing a generalized
Laplacian matrix.

Since their row sums are equal to 0, Laplacian matrices are singular,
and they do not have a direct inverse (the nullspace is nontrivial since
the constant vector of all 1s is an eigenvector associated with the 0
eigenvalue). However, a family of generalized inverses exist for low-rank
and singular matrices. The well-known Moore-Penrose pseudo-inverse
is widely used in least-squares approximation, which will be useful later
in this paper. However, a less well-known family of spectral inverses —
the Drazin inverse (and a special instance of it called the group inverse)
is of foundational importance to the study of Markov chains. Indeed,
Campbell and Meyer [20] state that:

For an m-state [Markov] chain whose transition matrix
is T , we will be primarily concerned with the matrix
A = I − T . Virtually everything that one wants to know
about a chain can be extracted from A and its Drazin
inverse.

1 In this paper, we use the term “operator” to mean a mapping on a finite or infinite-

dimensional space, and the term “matrix” to denote its representation on a specific set of
bases.
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1.2 Laplacian Operators 7

L = I − P =
[

0.7 −0.7

−0.6 0.6

]

Fig. 1.3 Illustration of a Laplacian operator associated with a MDP. Left : A simple two-

state Markov chain with transition matrix P . Right : Its associated Laplacian matrix. Exact

(and approximate) solutions to MDPs can be expressed in terms of a generalized spectral
inverse of such singular Laplacian matrices.

We denote transition matrices generally as P , and define the
Laplacian associated with a transition matrix as L = I − P [2, 22, 24]
(see Figure 1.3). It has long been known that the Drazin inverse of the
singular Laplacian matrix L reveals a great deal of information about
the structure of the Markov chain [92, 121]. In particular, the states in
a Markov chain can be partitioned into its various recurrent classes or
transient classes based on the Drazin inverse. Also, the sensitivity of
the invariant distribution of an ergodic Markov chain to perturbations
in the transition matrix can be quantified by the size of the entries in
the Drazin inverse of the Laplacian.2 The solution to average-reward
and discounted MDPs can be shown to depend on the Drazin inverse
of the Laplacian [21, 110].

As we will show in this paper, Laplacian matrices play a crucial role
in the approximate solution of MDPs as well. We will explore a specific
set of bases, called Drazin bases, to approximate solutions to MDPs
(see Figure 1.4). In continuous as well as discrete MDPs, approxima-
tion requires interpolation of noisy samples of the true value function.
A growing body of work in machine learning on nonlinear dimension-
ality reduction [73], manifold learning [8, 30, 116, 131], regression on
graphs [99] and representation discovery [80] exploit the remarkable
properties of the symmetric Laplacian operator on graphs and man-
ifolds [115]. We will describe how regularization based on symmetric
and nonsymmetric graph Laplacians can be shown to provide an auto-
matic method of constructing basis functions for approximately solving

2 Meyer [92] defines the condition number of a Markov chain with transition matrix P by
the absolute value of the largest element in the Drazin inverse of I − P .

Full text available at: http://dx.doi.org/10.1561/2200000003



8 Introduction

Fig. 1.4 Top right : The optimal value function in a two-room MDP with 100 states.

Top left : Using just 4 Drazin bases, the original MDP is compressed onto a 4D problem,

whose solution yields an optimal policy. Bottom left : The approximation plotted in 2D
showing the state space layout. Bottom right : The learned policy using the approximation

is optimal.

Table 1.1 Some Laplacian operators on undirected graphs. W is a symmetric weight matrix

reflecting pairwise similarities. D is a diagonal matrix whose entries are row sums of W . All

these operators are represented by matrices whose row sums are 0 and have non-positive
off-diagonal entries.

Operator Definition Spectrum

Combinatorial Laplacian L = D −W λ ∈ [0,2maxv dv ]

Normalized Laplacian L = I − D−1/2WD−1/2 λ ∈ [0,2]

Random Walk Laplacian Lr = I − D−1W λ ∈ [0,2]

MDPs [57, 77, 83, 102]. Table 1.1 describes a few examples of graph
Laplacian matrices. The spectral properties of the graph Laplacian
reveal a great deal of information about the structure of a graph.
In particular, the eigevectors of the symmetric Laplacian yield a low-
dimensional representation of a MDP, generating an orthogonal basis

Full text available at: http://dx.doi.org/10.1561/2200000003



1.3 Dimensionality Reduction of MDPs 9

that reflects the nonlinear geometry of the state space. We turn to
describe the problem of dimensionality reduction in MDPs next.

1.3 Dimensionality Reduction of MDPs

Constructing a low-dimensional representation of a MDP means finding
a basis Φ with respect to which the original MDP can be represented
“compactly” and solved “efficiently.”

Definition 1.1. Basis Construction Problem in MDPs: Given a
Markov decision process M , find an “optimal” basis matrix Φ that
provides a “low-dimensional” representation of M , and enables solving
M as “accurately” as possible with the “least” computational effort.

Notions like “optimal,” “accurately,” and “least” will for now be left
somewhat vague, but will be defined more precisely later. Note that the
solution to the basis construction problem involves managing a set of
mutually incompatible trade-offs. For example, a discrete MDP can be
solved exactly using the unit vector (“table lookup”) representation:
this choice of basis optimizes the “accuracy’ dimension, and requires
no effort in finding the basis, but incurs a sizable computational cost.
Exact algorithms like policy iteration [56] have a computational com-
plexity cubic in the size of the state space |S|, or exponential in the
size of any compact encoding of a state. On the other extreme, it is
easy to project a high-dimensional value function V ∈ R|S| on a low-
order basis space of dimension Rk, where k� |S| by trivially choosing
a set of random vectors (e.g., each vector is normalized to have length 1
and whose entries are distributed uniformly between 0 and 1). In this
case, the cost of solving the MDP may be dramatically reduced, and
the effort in finding the basis matrix is again trivial, but the resulting
solution may be far from optimal.

It is possible to design an extremely compact basis matrix Φ if the
optimal value function V ∗ is known — namely, use V ∗ itself! How-
ever, knowing V ∗ presupposes solving the original MDP (presumably
on some initial basis, say the unit vectors). This latter solution illus-
trates the somewhat paradoxical situation that the basis construction

Full text available at: http://dx.doi.org/10.1561/2200000003



10 Introduction

problem may require as much or more computational effort than that
required to solve the original MDP. An example of an efficient basis is
given in Figure 1.4. Here, the optimal policy is found by compressing
a 100 state MDP into an effectively 4D space, whose solution gives
an optimal policy. However, the cost of finding the Drazin bases is
quite significant, since it involves finding the generalized inverse of the
Laplacian. In many applications, a decision maker is required to solve
many instances of the same problem. An example may be a robot that
is tasked to retrieve a set of objects in a given environment, where each
object is located in a different room. Thus, the cost of finding such
low-dimensional representations may be amortized over the solution of
a range of MDPs Mi, say all of which are defined on the same state
(action) space, and differ only in the reward function. Finally, in the
fully general setting of learning to solve MDPs, the decision maker may
only have access to samples from the underlying MDP, say by simu-
lation whereby training data are available in the form of trajectories
(st,at, rt,st+1). Here, st is the state at time t, at is the action selected,
rt is the payoff or reward received, and st+1 is the resulting state from
performing action at. This setting is commonly studied in a variety of
areas, such as approximate dynamic programming [12, 109] and rein-
forcement learning [129]. The methods described later will illustrate
these competing trade-offs and how to balance them. It is worthwhile
to point out that these similar issues often arise in other domains, e.g.,
the use of wavelet methods to compress images [86].

1.3.1 Invariant Subspaces of a MDP

This paper describes a range of methods for constructing adaptive bases
that are customized to the nonlinear geometry of a state space, or to a
particular policy and reward function. The overarching theme under-
lying the various methods described in this paper is the notion of con-
structing representations by decomposing the effect of a linear operator
T on the space of functions on a state (or state-action) space, princi-
pally by finding its invariant subspaces.3 There are many reasons to
find invariant subspaces of an operator T . The solution to a MDP can

3 If T : X→ X is an operator, a subspace Y ⊆ X is called invariant if for each x ∈ Y, Tx ∈ Y.
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1.3 Dimensionality Reduction of MDPs 11

be expressed abstractly in terms of finding the fixed point of an oper-
ator on the space of value functions. More formally, it can be shown
that the value function V π associated with a policy π is a fixed point
of the Bellman operator T π:

T π(V π)(x) = V π(x). (1.1)

Thus, the value function V π forms a 1D invariant subspace of the
Bellman operator. We will see, however, that there are compelling rea-
sons for finding other larger invariant spaces. The invariant subspaces
associated with a transition matrix P have the attractive property of
eliminating prediction errors [11, 104]. Two main principles for con-
structing invariant subspaces of operators are explored: diagonalization
and dilation.

1.3.2 Diagonalization and Dilation

In this paper, we explore two broad principles for solving the basis
construction problem in MDPs by finding invariant subspaces, based
on widely used principles in a variety of subfields in mathematics from
group theory [123], harmonic analysis [52, 86], linear algebra [127], and
statistics [59]. Diagonalization corresponds to finding eigenvectors of
an operator: it reduces a possibly full matrix to a diagonal matrix. For
example, in linear algebra [127], eigenvectors form invariant subspaces
of T since Tx = λx = xλ. Here, λ is the representation of T on the
space spanned by x.

Diagonalization: One generic principle for basis construction involves
remapping functions over the state space into a frequency-oriented
coordinate system, generically termed Fourier analysis [125]. Exam-
ples include dimensionality reduction methods in statistics, such as
principal components analysis (PCA) [59], low-rank approximations of
matrices such as singular value decomposition (SVD) [49], and time-
series and image-compression methods, such as the fast Fourier trans-
form [136]. In the case of MDPs, the basis functions can be constructed
by diagonalizing the state transition matrix. Often, these matrices are
not diagonalizable or are simply not known. In this case, it is possi-
ble to construct bases by diagonalizing a “weaker” operator, namely a
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random walk operator on a graph induced from a MDP’s state space,
similar to recent work on manifold learning [28, 98, 116, 131]. The graph
Laplacian [26] is often used, since it is symmetric and its eigenvectors
are closely related to that of the natural random walk. We call the
bases resulting from diagonalizing the graph Laplacian “proto-value
functions” or PVFs [77]. Unlike applications of graph-based machine
learning, such as spectral clustering [96] or semi-supervised learning
[98], approximating value functions on graphs involves new challenges
as samples of the desired function are not readily available. Instead,
an iterative procedure is used to sample from a series of functions V̂t,
each of which is progressively closer to the desired optimal value func-
tion V ∗. Furthermore, samples are not available a priori, but must
be collected by exploration of the MDP’s state space. The concept of
invariant eigenspaces generalizes to infinite-dimensional Hilbert spaces
[37]; one example of which is Fourier analysis in Euclidean spaces.
We will explore building finite-dimensional Fourier bases on graphs,
and see how to generalize these ideas to eigenfunctions on continuous
spaces.

Dilation: Another general method for constructing invariant sub-
spaces uses the principle of dilation. For example, a dilation operator
on the space of functions on real numbers is Tf(x) = f(2x). Several
dilation-based approaches will be compared, including methods based
on Krylov spaces, a standard approach of solving systems of linear equa-
tions [41, 118]. Applied to MDPs, this approach results in the reward
function being “dilated” by powers of some operator, such as the transi-
tion matrix [106, 103]. A novel basis construction method called Drazin
bases is described in this paper, which uses the Drazin inverse of the
Laplacian LD. These are a new family of bases building on a theoreti-
cal result showing that the discounted value function of a MDP can be
written in terms of a series of powers of the Drazin inverse.

Another dilation-based procedure involves a multiscale construc-
tion where functions over space or time are progressively remapped
into time–frequency or space–frequency atoms [34, 86]. This multiscale
construction is most characteristic of a family of more recent methods
called wavelets [34, 86]. We will explore multiscale basis construction
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on graphs and manifolds using a recent graph-based approach called
diffusion wavelets [30]. There has been much work on multiscale wavelet
methods in image compression and signal processing [87], which can
also be viewed using the framework of invariance. We will construct
multiscale wavelet bases on discrete graphs, building on the recently
developed diffusion wavelet framework [76]. These approaches can be
applied to a range of different operators, ranging from a model-based
setting using the system dynamics transition matrix to “weaker” oper-
ators such as the natural random-walk on the (sampled) underlying
state (action) space.

Combined with any of the procedures described above for construct-
ing task-adaptive bases, it is possible to design a variety of architec-
tures for simultaneously learning representation and control. One such
framework is generically referred to as representation policy iteration
[78], comprising of an outer loop where basis functions are constructed
and an inner loop where the optimal policy within the linear span of
the constructed bases is learned.

1.4 Roadmap to the Paper

The rest of the paper is organized as follows. Section 2 provides an
overview of MDPs. Section 3 introduces a general family of Laplacian
matrices, and shows how they are intimately connected to solving
MDPs. Section 4 surveys various methods for approximately solving
MDPs, including least-squares methods, linear programming methods,
and reproducing kernel Hilbert space methods. Section 5 formulates
the problem of constructing low-dimensional representations of MDPs
more precisely, and describes a set of trade-offs that need to be bal-
anced in coming up with effective solutions. Section 6 describes the first
of the two main approaches to building basis functions by diagonal-
ization. Section 7 describes methods for constructing representations
by dilations of operators. Section 8 shows how these basis construc-
tion methods can be combined with methods for approximately solv-
ing MDPs to yield model-based techniques that simultaneously learn
representation and control. Section 9 describes a generalization of the
graph Laplacian operator to continuous sets called manifolds, as well as

Full text available at: http://dx.doi.org/10.1561/2200000003



14 Introduction

an interpolation method for approximating continuous eigenfunctions
of the manifold Laplacian. Section 10 describes a model-free version of
the RPI framework, and evaluates its performance in continuous MDPs.
Finally, Section 11 concludes with a brief survey of related work, and
a discussion of directions for future work.
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