
Learning Deep

Architectures for AI

Full text available at: http://dx.doi.org/10.1561/2200000006



Learning Deep
Architectures for AI

Yoshua Bengio

Dept. IRO, Université de Montréal
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Abstract

Theoretical results suggest that in order to learn the kind of com-
plicated functions that can represent high-level abstractions (e.g., in
vision, language, and other AI-level tasks), one may need deep architec-
tures. Deep architectures are composed of multiple levels of non-linear
operations, such as in neural nets with many hidden layers or in com-
plicated propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult task, but learning
algorithms such as those for Deep Belief Networks have recently been
proposed to tackle this problem with notable success, beating the state-
of-the-art in certain areas. This monograph discusses the motivations
and principles regarding learning algorithms for deep architectures, in
particular those exploiting as building blocks unsupervised learning of
single-layer models such as Restricted Boltzmann Machines, used to
construct deeper models such as Deep Belief Networks.
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1

Introduction

Allowing computers to model our world well enough to exhibit what
we call intelligence has been the focus of more than half a century of
research. To achieve this, it is clear that a large quantity of informa-
tion about our world should somehow be stored, explicitly or implicitly,
in the computer. Because it seems daunting to formalize manually all
that information in a form that computers can use to answer ques-
tions and generalize to new contexts, many researchers have turned
to learning algorithms to capture a large fraction of that information.
Much progress has been made to understand and improve learning
algorithms, but the challenge of artificial intelligence (AI) remains. Do
we have algorithms that can understand scenes and describe them in
natural language? Not really, except in very limited settings. Do we
have algorithms that can infer enough semantic concepts to be able to
interact with most humans using these concepts? No. If we consider
image understanding, one of the best specified of the AI tasks, we real-
ize that we do not yet have learning algorithms that can discover the
many visual and semantic concepts that would seem to be necessary to
interpret most images on the web. The situation is similar for other AI
tasks.

1
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2 Introduction

Fig. 1.1 We would like the raw input image to be transformed into gradually higher levels of

representation, representing more and more abstract functions of the raw input, e.g., edges,
local shapes, object parts, etc. In practice, we do not know in advance what the “right”

representation should be for all these levels of abstractions, although linguistic concepts

might help guessing what the higher levels should implicitly represent.

Consider for example the task of interpreting an input image such as
the one in Figure 1.1. When humans try to solve a particular AI task
(such as machine vision or natural language processing), they often
exploit their intuition about how to decompose the problem into sub-
problems and multiple levels of representation, e.g., in object parts
and constellation models [138, 179, 197] where models for parts can be
re-used in different object instances. For example, the current state-
of-the-art in machine vision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier [134, 145], with
intermediate modules mixing engineered transformations and learning,
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3

e.g., first extracting low-level features that are invariant to small geo-
metric variations (such as edge detectors from Gabor filters), transform-
ing them gradually (e.g., to make them invariant to contrast changes
and contrast inversion, sometimes by pooling and sub-sampling), and
then detecting the most frequent patterns. A plausible and common
way to extract useful information from a natural image involves trans-
forming the raw pixel representation into gradually more abstract rep-
resentations, e.g., starting from the presence of edges, the detection of
more complex but local shapes, up to the identification of abstract cat-
egories associated with sub-objects and objects which are parts of the
image, and putting all these together to capture enough understanding
of the scene to answer questions about it.

Here, we assume that the computational machinery necessary
to express complex behaviors (which one might label “intelligent”)
requires highly varying mathematical functions, i.e., mathematical func-
tions that are highly non-linear in terms of raw sensory inputs, and
display a very large number of variations (ups and downs) across the
domain of interest. We view the raw input to the learning system as
a high dimensional entity, made of many observed variables, which
are related by unknown intricate statistical relationships. For example,
using knowledge of the 3D geometry of solid objects and lighting, we
can relate small variations in underlying physical and geometric fac-
tors (such as position, orientation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We call these factors
of variation because they are different aspects of the data that can vary
separately and often independently. In this case, explicit knowledge of
the physical factors involved allows one to get a picture of the math-
ematical form of these dependencies, and of the shape of the set of
images (as points in a high-dimensional space of pixel intensities) asso-
ciated with the same 3D object. If a machine captured the factors that
explain the statistical variations in the data, and how they interact to
generate the kind of data we observe, we would be able to say that the
machine understands those aspects of the world covered by these factors
of variation. Unfortunately, in general and for most factors of variation
underlying natural images, we do not have an analytical understand-
ing of these factors of variation. We do not have enough formalized
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4 Introduction

prior knowledge about the world to explain the observed variety of
images, even for such an apparently simple abstraction as MAN, illus-
trated in Figure 1.1. A high-level abstraction such as MAN has the
property that it corresponds to a very large set of possible images,
which might be very different from each other from the point of view
of simple Euclidean distance in the space of pixel intensities. The set
of images for which that label could be appropriate forms a highly con-
voluted region in pixel space that is not even necessarily a connected
region. The MAN category can be seen as a high-level abstraction
with respect to the space of images. What we call abstraction here can
be a category (such as the MAN category) or a feature, a function of
sensory data, which can be discrete (e.g., the input sentence is at the

past tense) or continuous (e.g., the input video shows an object moving

at 2 meter/second). Many lower-level and intermediate-level concepts
(which we also call abstractions here) would be useful to construct
a MAN-detector. Lower level abstractions are more directly tied to
particular percepts, whereas higher level ones are what we call “more
abstract” because their connection to actual percepts is more remote,
and through other, intermediate-level abstractions.

In addition to the difficulty of coming up with the appropriate inter-
mediate abstractions, the number of visual and semantic categories
(such as MAN) that we would like an “intelligent” machine to cap-
ture is rather large. The focus of deep architecture learning is to auto-
matically discover such abstractions, from the lowest level features to
the highest level concepts. Ideally, we would like learning algorithms
that enable this discovery with as little human effort as possible, i.e.,
without having to manually define all necessary abstractions or hav-
ing to provide a huge set of relevant hand-labeled examples. If these
algorithms could tap into the huge resource of text and images on the
web, it would certainly help to transfer much of human knowledge into
machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchies with fea-
tures from higher levels of the hierarchy formed by the composition of

Full text available at: http://dx.doi.org/10.1561/2200000006



1.1 How do We Train Deep Architectures? 5

lower level features. Automatically learning features at multiple levels
of abstraction allow a system to learn complex functions mapping the
input to the output directly from data, without depending completely
on human-crafted features. This is especially important for higher-level
abstractions, which humans often do not know how to specify explic-
itly in terms of raw sensory input. The ability to automatically learn
powerful features will become increasingly important as the amount of
data and range of applications to machine learning methods continues
to grow.

Depth of architecture refers to the number of levels of composition
of non-linear operations in the function learned. Whereas most cur-
rent learning algorithms correspond to shallow architectures (1, 2 or
3 levels), the mammal brain is organized in a deep architecture [173]
with a given input percept represented at multiple levels of abstrac-
tion, each level corresponding to a different area of cortex. Humans
often describe such concepts in hierarchical ways, with multiple levels
of abstraction. The brain also appears to process information through
multiple stages of transformation and representation. This is partic-
ularly clear in the primate visual system [173], with its sequence of
processing stages: detection of edges, primitive shapes, and moving up
to gradually more complex visual shapes.

Inspired by the architectural depth of the brain, neural network
researchers had wanted for decades to train deep multi-layer neural
networks [19, 191], but no successful attempts were reported before
20061: researchers reported positive experimental results with typically
two or three levels (i.e., one or two hidden layers), but training deeper
networks consistently yielded poorer results. Something that can be
considered a breakthrough happened in 2006: Hinton et al. at Univer-
sity of Toronto introduced Deep Belief Networks (DBNs) [73], with a
learning algorithm that greedily trains one layer at a time, exploiting
an unsupervised learning algorithm for each layer, a Restricted Boltz-
mann Machine (RBM) [51]. Shortly after, related algorithms based
on auto-encoders were proposed [17, 153], apparently exploiting the

1 Except for neural networks with a special structure called convolutional networks, dis-
cussed in Section 4.5.
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6 Introduction

same principle: guiding the training of intermediate levels of represen-
tation using unsupervised learning, which can be performed locally at
each level. Other algorithms for deep architectures were proposed more
recently that exploit neither RBMs nor auto-encoders and that exploit
the same principle [131, 202] (see Section 4).

Since 2006, deep networks have been applied with success not
only in classification tasks [2, 17, 99, 111, 150, 153, 195], but also
in regression [160], dimensionality reduction [74, 158], modeling tex-
tures [141], modeling motion [182, 183], object segmentation [114],
information retrieval [154, 159, 190], robotics [60], natural language
processing [37, 130, 202], and collaborative filtering [162]. Although
auto-encoders, RBMs and DBNs can be trained with unlabeled data,
in many of the above applications, they have been successfully used
to initialize deep supervised feedforward neural networks applied to a
specific task.

1.2 Intermediate Representations: Sharing Features and
Abstractions Across Tasks

Since a deep architecture can be seen as the composition of a series of
processing stages, the immediate question that deep architectures raise
is: what kind of representation of the data should be found as the output
of each stage (i.e., the input of another)? What kind of interface should
there be between these stages? A hallmark of recent research on deep
architectures is the focus on these intermediate representations: the
success of deep architectures belongs to the representations learned in
an unsupervised way by RBMs [73], ordinary auto-encoders [17], sparse
auto-encoders [150, 153], or denoising auto-encoders [195]. These algo-
rithms (described in more detail in Section 7.2) can be seen as learn-
ing to transform one representation (the output of the previous stage)
into another, at each step maybe disentangling better the factors of
variations underlying the data. As we discuss at length in Section 4,
it has been observed again and again that once a good representa-
tion has been found at each level, it can be used to initialize and
successfully train a deep neural network by supervised gradient-based
optimization.

Full text available at: http://dx.doi.org/10.1561/2200000006



Sharing Features and Abstractions Across Tasks 7

Each level of abstraction found in the brain consists of the “activa-
tion” (neural excitation) of a small subset of a large number of features
that are, in general, not mutually exclusive. Because these features are
not mutually exclusive, they form what is called a distributed represen-
tation [68, 156]: the information is not localized in a particular neuron
but distributed across many. In addition to being distributed, it appears
that the brain uses a representation that is sparse: only a around 1-
4% of the neurons are active together at a given time [5, 113]. Sec-
tion 3.2 introduces the notion of sparse distributed representation and
Section 7.1 describes in more detail the machine learning approaches,
some inspired by the observations of the sparse representations in the
brain, that have been used to build deep architectures with sparse rep-
resentations.

Whereas dense distributed representations are one extreme of a
spectrum, and sparse representations are in the middle of that spec-
trum, purely local representations are the other extreme. Locality of
representation is intimately connected with the notion of local gener-
alization. Many existing machine learning methods are local in input
space: to obtain a learned function that behaves differently in different
regions of data-space, they require different tunable parameters for each
of these regions (see more in Section 3.1). Even though statistical effi-
ciency is not necessarily poor when the number of tunable parameters is
large, good generalization can be obtained only when adding some form
of prior (e.g., that smaller values of the parameters are preferred). When
that prior is not task-specific, it is often one that forces the solution
to be very smooth, as discussed at the end of Section 3.1. In contrast
to learning methods based on local generalization, the total number of
patterns that can be distinguished using a distributed representation
scales possibly exponentially with the dimension of the representation
(i.e., the number of learned features).

In many machine vision systems, learning algorithms have been lim-
ited to specific parts of such a processing chain. The rest of the design
remains labor-intensive, which might limit the scale of such systems.
On the other hand, a hallmark of what we would consider intelligent
machines includes a large enough repertoire of concepts. Recognizing
MAN is not enough. We need algorithms that can tackle a very large

Full text available at: http://dx.doi.org/10.1561/2200000006



8 Introduction

set of such tasks and concepts. It seems daunting to manually define
that many tasks, and learning becomes essential in this context. Fur-
thermore, it would seem foolish not to exploit the underlying common-
alities between these tasks and between the concepts they require. This
has been the focus of research on multi-task learning [7, 8, 32, 88, 186].
Architectures with multiple levels naturally provide such sharing and
re-use of components: the low-level visual features (like edge detec-
tors) and intermediate-level visual features (like object parts) that are
useful to detect MAN are also useful for a large group of other visual
tasks. Deep learning algorithms are based on learning intermediate rep-
resentations which can be shared across tasks. Hence they can leverage
unsupervised data and data from similar tasks [148] to boost perfor-
mance on large and challenging problems that routinely suffer from
a poverty of labelled data, as has been shown by [37], beating the
state-of-the-art in several natural language processing tasks. A simi-
lar multi-task approach for deep architectures was applied in vision
tasks by [2]. Consider a multi-task setting in which there are different
outputs for different tasks, all obtained from a shared pool of high-
level features. The fact that many of these learned features are shared
among m tasks provides sharing of statistical strength in proportion
to m. Now consider that these learned high-level features can them-
selves be represented by combining lower-level intermediate features
from a common pool. Again statistical strength can be gained in a sim-
ilar way, and this strategy can be exploited for every level of a deep
architecture.

In addition, learning about a large set of interrelated concepts might
provide a key to the kind of broad generalizations that humans appear
able to do, which we would not expect from separately trained object
detectors, with one detector per visual category. If each high-level cate-
gory is itself represented through a particular distributed configuration
of abstract features from a common pool, generalization to unseen cate-
gories could follow naturally from new configurations of these features.
Even though only some configurations of these features would present
in the training examples, if they represent different aspects of the data,
new examples could meaningfully be represented by new configurations
of these features.

Full text available at: http://dx.doi.org/10.1561/2200000006



1.3 Desiderata for Learning AI 9

1.3 Desiderata for Learning AI

Summarizing some of the above issues, and trying to put them in the
broader perspective of AI, we put forward a number of requirements we
believe to be important for learning algorithms to approach AI, many
of which motivate the research are described here:

• Ability to learn complex, highly-varying functions, i.e., with
a number of variations much greater than the number of
training examples.
• Ability to learn with little human input the low-level,

intermediate, and high-level abstractions that would be use-
ful to represent the kind of complex functions needed for AI
tasks.
• Ability to learn from a very large set of examples: computa-

tion time for training should scale well with the number of
examples, i.e., close to linearly.
• Ability to learn from mostly unlabeled data, i.e., to work in

the semi-supervised setting, where not all the examples come
with complete and correct semantic labels.
• Ability to exploit the synergies present across a large num-

ber of tasks, i.e., multi-task learning. These synergies exist
because all the AI tasks provide different views on the same
underlying reality.
• Strong unsupervised learning (i.e., capturing most of the sta-

tistical structure in the observed data), which seems essential
in the limit of a large number of tasks and when future tasks
are not known ahead of time.

Other elements are equally important but are not directly connected
to the material in this monograph. They include the ability to learn to
represent context of varying length and structure [146], so as to allow
machines to operate in a context-dependent stream of observations and
produce a stream of actions, the ability to make decisions when actions
influence the future observations and future rewards [181], and the
ability to influence future observations so as to collect more relevant
information about the world, i.e., a form of active learning [34].
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10 Introduction

1.4 Outline of the Paper

Section 2 reviews theoretical results (which can be skipped without
hurting the understanding of the remainder) showing that an archi-
tecture with insufficient depth can require many more computational
elements, potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task. We claim that
insufficient depth can be detrimental for learning. Indeed, if a solution
to the task is represented with a very large but shallow architecture
(with many computational elements), a lot of training examples might
be needed to tune each of these elements and capture a highly varying
function. Section 3.1 is also meant to motivate the reader, this time to
highlight the limitations of local generalization and local estimation,
which we expect to avoid using deep architectures with a distributed
representation (Section 3.2).

In later sections, the monograph describes and analyzes some of the
algorithms that have been proposed to train deep architectures. Sec-
tion 4 introduces concepts from the neural networks literature relevant
to the task of training deep architectures. We first consider the previous
difficulties in training neural networks with many layers, and then intro-
duce unsupervised learning algorithms that could be exploited to ini-
tialize deep neural networks. Many of these algorithms (including those
for the RBM) are related to the auto-encoder: a simple unsupervised
algorithm for learning a one-layer model that computes a distributed
representation for its input [25, 79, 156]. To fully understand RBMs and
many related unsupervised learning algorithms, Section 5 introduces
the class of energy-based models, including those used to build gen-
erative models with hidden variables such as the Boltzmann Machine.
Section 6 focuses on the greedy layer-wise training algorithms for Deep
Belief Networks (DBNs) [73] and Stacked Auto-Encoders [17, 153, 195].
Section 7 discusses variants of RBMs and auto-encoders that have been
recently proposed to extend and improve them, including the use of
sparsity, and the modeling of temporal dependencies. Section 8 dis-
cusses algorithms for jointly training all the layers of a Deep Belief
Network using variational bounds. Finally, we consider in Section 9 for-
ward looking questions such as the hypothesized difficult optimization
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1.4 Outline of the Paper 11

problem involved in training deep architectures. In particular, we fol-
low up on the hypothesis that part of the success of current learning
strategies for deep architectures is connected to the optimization of
lower layers. We discuss the principle of continuation methods, which
minimize gradually less smooth versions of the desired cost function,
to make a dent in the optimization of deep architectures.
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[31] M. A. Carreira-Perpiñan and G. E. Hinton, “On contrastive divergence learn-
ing,” in Proceedings of the Tenth International Workshop on Artificial Intelli-
gence and Statistics (AISTATS’05), (R. G. Cowell and Z. Ghahramani, eds.),
pp. 33–40, Society for Artificial Intelligence and Statistics, 2005.

[32] R. Caruana, “Multitask connectionist learning,” in Proceedings of the 1993
Connectionist Models Summer School, pp. 372–379, 1993.

[33] P. Clifford, “Markov random fields in statistics,” in Disorder in Physical
Systems: A Volume in Honour of John M. Hammersley, (G. Grimmett and
D. Welsh, eds.), pp. 19–32, Oxford University Press, 1990.

[34] D. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with statistical
models,” in Advances in Neural Information Processing Systems 7 (NIPS’94),
(G. Tesauro, D. Touretzky, and T. Leen, eds.), pp. 705–712, Cambridge MA:
MIT Press, 1995.

[35] T. F. Coleman and Z. Wu, “Parallel continuation-based global optimization
for molecular conformation and protein folding,” Technical Report Cornell
University, Dept. of Computer Science, 1994.

[36] R. Collobert and S. Bengio, “Links between perceptrons, MLPs and SVMs,” in
Proceedings of the Twenty-first International Conference on Machine Learning
(ICML’04), (C. E. Brodley, ed.), p. 23, New York, NY, USA: ACM, 2004.

[37] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings of
the Twenty-fifth International Conference on Machine Learning (ICML’08),
(W. W. Cohen, A. McCallum, and S. T. Roweis, eds.), pp. 160–167, ACM,
2008.

[38] C. Cortes, P. Haffner, and M. Mohri, “Rational kernels: Theory and algo-
rithms,” Journal of Machine Learning Research, vol. 5, pp. 1035–1062, 2004.

[39] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

Full text available at: http://dx.doi.org/10.1561/2200000006



120 References

[40] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, “On kernel-
target alignment,” in Advances in Neural Information Processing Systems 14
(NIPS’01), (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 367–373,
2002.

[41] F. Cucker and D. Grigoriev, “Complexity lower bounds for approximation
algebraic computation trees,” Journal of Complexity, vol. 15, no. 4, pp. 499–
512, 1999.

[42] P. Dayan, G. E. Hinton, R. Neal, and R. Zemel, “The Helmholtz machine,”
Neural Computation, vol. 7, pp. 889–904, 1995.

[43] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, “Indexing by latent semantic analysis,” Journal of the American Society
for Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[44] O. Delalleau, Y. Bengio, and N. L. Roux, “Efficient non-parametric function
induction in semi-supervised learning,” in Proceedings of the Tenth Interna-
tional Workshop on Artificial Intelligence and Statistics, (R. G. Cowell and
Z. Ghahramani, eds.), pp. 96–103, Society for Artificial Intelligence and Statis-
tics, January 2005.

[45] G. Desjardins and Y. Bengio, “Empirical evaluation of convolutional RBMs for
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