
Distributed Optimization

and Statistical Learning via

the Alternating Direction

Method of Multipliers

Full text available at: http://dx.doi.org/10.1561/2200000016



Distributed Optimization

and Statistical Learning via

the Alternating Direction

Method of Multipliers

Stephen Boyd

Stanford University, USA
boyd@stanford.edu

Neal Parikh

Stanford University, USA
npparikh@cs.stanford.edu

Eric Chu

Stanford University, USA
echu508@stanford.edu

Borja Peleato

Stanford University, USA
peleato@stanford.edu

Jonathan Eckstein

Rutgers University, USA
jeckstei@rci.rutgers.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/2200000016



Foundations and Trends R© in
Machine Learning

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is S. Boyd, N. Parikh, E. Chu, B. Peleato
and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternat-

ing Direction Method of Multipliers, Foundation and Trends R© in Machine Learning,
vol 3, no 1, pp 1–122, 2010

ISBN: 978-1-60198-460-9
c© 2011 S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2200000016



Foundations and Trends R© in
Machine Learning

Volume 3 Issue 1, 2010

Editorial Board

Editor-in-Chief:
Michael Jordan
Department of Electrical Engineering and Computer Science
Department of Statistics
University of California, Berkeley
Berkeley, CA 94720-1776

Editors

Peter Bartlett (UC Berkeley)

Yoshua Bengio (Université de Montréal)
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Abstract

Many problems of recent interest in statistics and machine learning
can be posed in the framework of convex optimization. Due to the
explosion in size and complexity of modern datasets, it is increasingly
important to be able to solve problems with a very large number of fea-
tures or training examples. As a result, both the decentralized collection
or storage of these datasets as well as accompanying distributed solu-
tion methods are either necessary or at least highly desirable. In this
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review, we argue that the alternating direction method of multipliers
is well suited to distributed convex optimization, and in particular to
large-scale problems arising in statistics, machine learning, and related
areas. The method was developed in the 1970s, with roots in the 1950s,
and is equivalent or closely related to many other algorithms, such
as dual decomposition, the method of multipliers, Douglas–Rachford
splitting, Spingarn’s method of partial inverses, Dykstra’s alternating
projections, Bregman iterative algorithms for `1 problems, proximal
methods, and others. After briefly surveying the theory and history of
the algorithm, we discuss applications to a wide variety of statistical
and machine learning problems of recent interest, including the lasso,
sparse logistic regression, basis pursuit, covariance selection, support
vector machines, and many others. We also discuss general distributed
optimization, extensions to the nonconvex setting, and efficient imple-
mentation, including some details on distributed MPI and Hadoop
MapReduce implementations.
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1

Introduction

In all applied fields, it is now commonplace to attack problems through
data analysis, particularly through the use of statistical and machine
learning algorithms on what are often large datasets. In industry, this
trend has been referred to as ‘Big Data’, and it has had a significant
impact in areas as varied as artificial intelligence, internet applications,
computational biology, medicine, finance, marketing, journalism, net-
work analysis, and logistics.

Though these problems arise in diverse application domains, they
share some key characteristics. First, the datasets are often extremely
large, consisting of hundreds of millions or billions of training examples;
second, the data is often very high-dimensional, because it is now possi-
ble to measure and store very detailed information about each example;
and third, because of the large scale of many applications, the data is
often stored or even collected in a distributed manner. As a result, it
has become of central importance to develop algorithms that are both
rich enough to capture the complexity of modern data, and scalable
enough to process huge datasets in a parallelized or fully decentral-
ized fashion. Indeed, some researchers [92] have suggested that even
highly complex and structured problems may succumb most easily to
relatively simple models trained on vast datasets.

1
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2 Introduction

Many such problems can be posed in the framework of convex opti-
mization. Given the significant work on decomposition methods and
decentralized algorithms in the optimization community, it is natural
to look to parallel optimization algorithms as a mechanism for solving
large-scale statistical tasks. This approach also has the benefit that one
algorithm could be flexible enough to solve many problems.

This review discusses the alternating direction method of multipli-
ers (ADMM), a simple but powerful algorithm that is well suited to
distributed convex optimization, and in particular to problems aris-
ing in applied statistics and machine learning. It takes the form of a
decomposition-coordination procedure, in which the solutions to small
local subproblems are coordinated to find a solution to a large global
problem. ADMM can be viewed as an attempt to blend the benefits
of dual decomposition and augmented Lagrangian methods for con-
strained optimization, two earlier approaches that we review in §2. It
turns out to be equivalent or closely related to many other algorithms
as well, such as Douglas-Rachford splitting from numerical analysis,
Spingarn’s method of partial inverses, Dykstra’s alternating projec-
tions method, Bregman iterative algorithms for `1 problems in signal
processing, proximal methods, and many others. The fact that it has
been re-invented in different fields over the decades underscores the
intuitive appeal of the approach.

It is worth emphasizing that the algorithm itself is not new, and that
we do not present any new theoretical results. It was first introduced
in the mid-1970s by Gabay, Mercier, Glowinski, and Marrocco, though
similar ideas emerged as early as the mid-1950s. The algorithm was
studied throughout the 1980s, and by the mid-1990s, almost all of the
theoretical results mentioned here had been established. The fact that
ADMM was developed so far in advance of the ready availability of
large-scale distributed computing systems and massive optimization
problems may account for why it is not as widely known today as we
believe it should be.

The main contributions of this review can be summarized as follows:

(1) We provide a simple, cohesive discussion of the extensive
literature in a way that emphasizes and unifies the aspects
of primary importance in applications.
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(2) We show, through a number of examples, that the algorithm
is well suited for a wide variety of large-scale distributed mod-
ern problems. We derive methods for decomposing a wide
class of statistical problems by training examples and by fea-
tures, which is not easily accomplished in general.

(3) We place a greater emphasis on practical large-scale imple-
mentation than most previous references. In particular, we
discuss the implementation of the algorithm in cloud com-
puting environments using standard frameworks and provide
easily readable implementations of many of our examples.

Throughout, the focus is on applications rather than theory, and a main
goal is to provide the reader with a kind of ‘toolbox’ that can be applied
in many situations to derive and implement a distributed algorithm of
practical use. Though the focus here is on parallelism, the algorithm
can also be used serially, and it is interesting to note that with no
tuning, ADMM can be competitive with the best known methods for
some problems.

While we have emphasized applications that can be concisely
explained, the algorithm would also be a natural fit for more compli-
cated problems in areas like graphical models. In addition, though our
focus is on statistical learning problems, the algorithm is readily appli-
cable in many other cases, such as in engineering design, multi-period
portfolio optimization, time series analysis, network flow, or scheduling.

Outline

We begin in §2 with a brief review of dual decomposition and the
method of multipliers, two important precursors to ADMM. This sec-
tion is intended mainly for background and can be skimmed. In §3,
we present ADMM, including a basic convergence theorem, some vari-
ations on the basic version that are useful in practice, and a survey of
some of the key literature. A complete convergence proof is given in
appendix A.

In §4, we describe some general patterns that arise in applications
of the algorithm, such as cases when one of the steps in ADMM can
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4 Introduction

be carried out particularly efficiently. These general patterns will recur
throughout our examples. In §5, we consider the use of ADMM for some
generic convex optimization problems, such as constrained minimiza-
tion and linear and quadratic programming. In §6, we discuss a wide
variety of problems involving the `1 norm. It turns out that ADMM
yields methods for these problems that are related to many state-of-the-
art algorithms. This section also clarifies why ADMM is particularly
well suited to machine learning problems.

In §7, we present consensus and sharing problems, which provide
general frameworks for distributed optimization. In §8, we consider
distributed methods for generic model fitting problems, including reg-
ularized regression models like the lasso and classification models like
support vector machines.

In §9, we consider the use of ADMM as a heuristic for solving some
nonconvex problems. In §10, we discuss some practical implementation
details, including how to implement the algorithm in frameworks suit-
able for cloud computing applications. Finally, in §11, we present the
details of some numerical experiments.
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[99] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
Springer, 2001.

[100] P. J. Huber, “Robust estimation of a location parameter,” Annals of Mathe-
matical Statistics, vol. 35, pp. 73–101, 1964.

[101] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “`1 Trend filtering,” SIAM
Review, vol. 51, no. 2, pp. 339–360, 2009.

[102] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point
method for large-scale `1-regularized least squares,” IEEE Journal of Selected
Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.

[103] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-scale `1-
regularized logistic regression,” Journal of Machine Learning Research, vol. 1,
no. 8, pp. 1519–1555, 2007.

[104] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[105] S. A. Kontogiorgis, Alternating directions methods for the parallel solution of
large-scale block-structured optimization problems. PhD thesis, University of
Wisconsin-Madison, 1994.

[106] S. A. Kontogiorgis and R. R. Meyer, “A variable-penalty alternating direc-
tions method for convex optimization,” Mathematical Programming, vol. 83,
pp. 29–53, 1998.

[107] L. S. Lasdon, Optimization Theory for Large Systems. MacMillan, 1970.
[108] J. Lawrence and J. E. Spingarn, “On fixed points of non-expansive piecewise

isometric mappings,” Proceedings of the London Mathematical Society, vol. 3,
no. 3, p. 605, 1987.

[109] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear
algebra subprograms for Fortran usage,” ACM Transactions on Mathematical
Software, vol. 5, no. 3, pp. 308–323, 1979.

[110] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factoriza-
tion,” Advances in Neural Information Processing Systems, vol. 13, 2001.

[111] J. Lin and M. Schatz, “Design Patterns for Efficient Graph Algorithms in
MapReduce,” in Proceedings of the Eighth Workshop on Mining and Learning
with Graphs, pp. 78–85, 2010.

[112] P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear
operators,” SIAM Journal on Numerical Analysis, vol. 16, pp. 964–979, 1979.

[113] D. C. Liu and J. Nocedal, “On the Limited Memory Method for Large Scale
Optimization,” Mathematical Programming B, vol. 45, no. 3, pp. 503–528,
1989.

Full text available at: http://dx.doi.org/10.1561/2200000016



122 References

[114] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
“GraphLab: A New Parallel Framework for Machine Learning,” in Conference
on Uncertainty in Artificial Intelligence, 2010.

[115] Z. Lu, “Smooth optimization approach for sparse covariance selection,” SIAM
Journal on Optimization, vol. 19, no. 4, pp. 1807–1827, 2009.

[116] Z. Lu, T. K. Pong, and Y. Zhang, “An Alternating Direction Method for
Finding Dantzig Selectors,” arXiv:1011.4604, 2010.

[117] D. G. Luenberger, Introduction to Linear and Nonlinear Programming.
Addison-Wesley: Reading, MA, 1973.

[118] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Network flow algorithms
for structured sparsity,” Advances in Neural Information Processing Systems,
vol. 24, 2010.

[119] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,” in
Proceedings of the 2010 International Conference on Management of Data,
pp. 135–146, 2010.

[120] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P.
Xing, “An Augmented Lagrangian Approach to Constrained MAP Inference,”
in International Conference on Machine Learning, 2011.

[121] G. Mateos, J.-A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Transactions on Signal Processing, vol. 58, pp. 5262–5276,
Oct. 2010.

[122] P. J. McCullagh and J. A. Nelder, Generalized Linear Models. Chapman &
Hall, 1991.
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