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Abstract

Multi-armed bandit problems are the most basic examples of sequential

decision problems with an exploration–exploitation trade-off. This is

the balance between staying with the option that gave highest payoffs

in the past and exploring new options that might give higher payoffs

in the future. Although the study of bandit problems dates back to

the 1930s, exploration–exploitation trade-offs arise in several modern

applications, such as ad placement, website optimization, and packet

routing. Mathematically, a multi-armed bandit is defined by the payoff

process associated with each option. In this monograph, we focus on two

extreme cases in which the analysis of regret is particularly simple and

elegant: i.i.d. payoffs and adversarial payoffs. Besides the basic setting

of finitely many actions, we also analyze some of the most important

variants and extensions, such as the contextual bandit model.
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1

Introduction

A multi-armed bandit problem (or, simply, a bandit problem) is a

sequential allocation problem defined by a set of actions. At each time

step, a unit resource is allocated to an action and some observable

payoff is obtained. The goal is to maximize the total payoff obtained

in a sequence of allocations. The name bandit refers to the colloquial

term for a slot machine (“one-armed bandit” in American slang). In a

casino, a sequential allocation problem is obtained when the player is

facing many slot machines at once (a “multi-armed bandit”) and must

repeatedly choose where to insert the next coin.

Bandit problems are basic instances of sequential decision making

with limited information and naturally address the fundamental trade-

off between exploration and exploitation in sequential experiments.

Indeed, the player must balance the exploitation of actions that did

well in the past and the exploration of actions that might give higher

payoffs in the future.

Although the original motivation of Thompson [162] for studying

bandit problems came from clinical trials (when different treatments

are available for a certain disease and one must decide which treat-

ment to use on the next patient), modern technologies have created

1
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2 Introduction

many opportunities for new applications, and bandit problems now

play an important role in several industrial domains. In particular,

online services are natural targets for bandit algorithms, because there

one can benefit from adapting the service to the individual sequence of

requests. We now describe a few concrete examples in various domains.

Ad placement is the problem of deciding which advertisement to

display on the web page delivered to the next visitor of a website.

Similarly, website optimization deals with the problem of sequentially

choosing design elements (font, images, layout) for the web page. Here

the payoff is associated with visitor’s actions, e.g., clickthroughs or

other desired behaviors. Of course there are important differences with

the basic bandit problem: in ad placement the pool of available ads

(bandit arms) may change over time, and there might be a limit on the

number of times each ad could be displayed.

In source routing a sequence of packets must be routed from a source

host to a destination host in a given network, and the protocol allows to

choose a specific source-destination path for each packet to be sent. The

(negative) payoff is the time it takes to deliver a packet, and depends

additively on the congestion of the edges in the chosen path.

In computer game-playing, each move is chosen by simulating

and evaluating many possible game continuations after the move.

Algorithms for bandits (more specifically, for a tree-based version of the

bandit problem) can be used to explore more efficiently the huge tree of

game continuations by focusing on the most promising subtrees. This

idea has been successfully implemented in the MoGo player of Gelly

et al. [85], which plays Go at world-class level. MoGo is based on the

UCT strategy for hierarchical bandits of Kocsis and Szepesvári [123],

which in turn is derived from the UCB bandit algorithm — see

Section 2.

There are three fundamental formalizations of the bandit problem

depending on the assumed nature of the reward process: stochastic,

adversarial, and Markovian. Three distinct playing strategies have been

shown to effectively address each specific bandit model: the UCB algo-

rithm in the stochastic case, the Exp3 randomized algorithm in the

adversarial case, and the so-called Gittins indices in the Markovian

case. In this monograph, we focus on stochastic and adversarial bandits,
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3

and refer the reader to the monograph by Mahajan and Teneketzis [130]

or to the recent monograph by Gittins et al. [86] for an extensive anal-

ysis of Markovian bandits.

In order to analyze the behavior of a player or forecaster (i.e.,

the agent implementing a bandit strategy), we may compare its per-

formance with that of an optimal strategy that, for any horizon of

n time steps, consistently plays the arm that is best in the first n

steps. In other terms, we may study the regret of the forecaster for

not playing always optimally. More specifically, given K ≥ 2 arms and

sequences Xi,1,Xi,2, . . . of unknown rewards associated with each arm

i = 1, . . . ,K, we study forecasters that at each time step t = 1,2, . . .

select an arm It and receive the associated reward XIt,t. The regret

after n plays I1, . . . , In is defined by

Rn = max
i=1,...,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t. (1.1)

If the time horizon is not known in advance we say that the forecaster

is anytime.

In general, both rewards Xi,t and forecaster’s choices It might be

stochastic. This allows to distinguish between the two following notions

of averaged regret: the expected regret

ERn = E

[
max

i=1,...,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
(1.2)

and the pseudo-regret

Rn = max
i=1,...,K

E

[
n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
. (1.3)

In both definitions, the expectation is taken with respect to the random

draw of both rewards and forecaster’s actions. Note that pseudo-regret

is a weaker notion of regret, since one competes against the action which

is optimal only in expectation. The expected regret, instead, is the

expectation of the regret with respect to the action which is optimal on

the sequence of reward realizations. More formally one has Rn ≤ ERn.

In the original formalization of Robbins [146], which builds on the

work of Wald [164] — see also Arrow et al. [16], each arm i = 1, . . . ,K

Full text available at: http://dx.doi.org/10.1561/2200000024



4 Introduction

corresponds to an unknown probability distribution νi on [0,1], and

rewardsXi,t are independent draws from the distribution νi correspond-

ing to the selected arm.

The stochastic bandit problem

Known parameters: number of arms K and (possibly) number of rounds n ≥K.
Unknown parameters: K probability distributions ν1, . . . ,νK on [0,1].

For each round t = 1,2, . . .

(1) the forecaster chooses It ∈ {1, . . . ,K};
(2) given It, the environment draws the reward XIt,t ∼ νIt indepen-

dently from the past and reveals it to the forecaster.

For i = 1, . . . ,K we denote by µi the mean of νi (mean reward of arm i).

Let

µ∗ = max
i=1,...,K

µi and i∗ ∈ argmax
i=1,...,K

µi.

In the stochastic setting, it is easy to see that the pseudo-regret can be

written as

Rn = nµ∗ −
n∑
t=1

E[µIt ]. (1.4)

The analysis of the stochastic bandit model was pioneered in the sem-

inal paper of Lai and Robbins [125], who introduced the technique

of upper confidence bounds for the asymptotic analysis of regret. In

Section 2 we describe this technique using the simpler formulation of

Agrawal [9], which naturally lends itself to a finite-time analysis.

In parallel to the research on stochastic bandits, a game-theoretic

formulation of the trade-off between exploration and exploitation

has been independently investigated, although for quite some time

this alternative formulation was not recognized as an instance of

the multi-armed bandit problem. In order to motivate these game-

theoretic bandits, consider again the initial example of gambling on

slot machines. We now assume that we are in a rigged casino, where

for each slot machine i = 1, . . . ,K and time step t ≥ 1 the owner sets

the gain Xi,t to some arbitrary (and possibly maliciously chosen) value

Full text available at: http://dx.doi.org/10.1561/2200000024



5

gi,t ∈ [0,1]. Note that it is not in the interest of the owner to simply set

all the gains to zero (otherwise, no gamblers would go to that casino).

Now recall that a forecaster selects sequentially one arm It ∈ {1, . . . ,K}
at each time step t = 1,2, . . . and observes (and earns) the gain gIt,t. Is

it still possible to minimize regret in such a setting?

Following a standard terminology, we call adversary, or opponent,

the mechanism setting the sequence of gains for each arm. If this mecha-

nism is independent of the forecaster’s actions, then we call it an obliv-

ious adversary. In general, however, the adversary may adapt to the

forecaster’s past behavior, in which case we speak of a nonoblivious

adversary. For instance, in the rigged casino the owner may observe

the way a gambler plays in order to design even more evil sequences

of gains. Clearly, the distinction between oblivious and nonoblivious

adversary is only meaningful when the player is randomized (if the

player is deterministic, then the adversary can pick a bad sequence of

gains right at the beginning of the game by simulating the player’s

future actions). Note, however, that in the presence of a nonoblivious

adversary the interpretation of regret is ambiguous. Indeed, in this case

the assignment of gains gi,t to arms i = 1, . . . ,K made by the adver-

sary at each step t is allowed to depend on the player’s past random-

ized actions I1, . . . , It−1. In other words, gi,t = gi,t(I1, . . . , It−1) for each

i and t. Now, the regret compares the player’s cumulative gain to that

obtained by playing the single best arm for the first n rounds. However,

had the player consistently chosen the same arm i in each round, namely

It = i for t = 1, . . . ,n, the adversarial gains gi,t(I1, . . . , It−1) would

have been possibly different than those actually experienced by the

player.

The study of nonoblivious regret is mainly motivated by the con-

nection between regret minimization and equilibria in games — see,

e.g., [24, Section 9]. Here we just observe that game-theoretic equilibria

are indeed defined similarly to regret: in equilibrium, the player has nSo

incentive to behave differently, provided the opponent does not react

to changes in the player’s behavior. Interestingly, regret minimization

has been also studied against reactive opponents, see for instance the

works of Pucci de Farias and Megiddo [144] and Arora et al. [14].

Full text available at: http://dx.doi.org/10.1561/2200000024



6 Introduction

The adversarial bandit problem

Known parameters: number of arms K ≥ 2 and (possibly) number of rounds
n ≥K.

For each round t = 1,2, . . .

(1) the forecaster chooses It ∈ {1, . . . ,K}, possibly with the help of
external randomization,

(2) simultaneously, the adversary selects a gain vector gt =
(g1,t, . . . ,gK,t) ∈ [0,1]K , possibly with the help of external random-
ization, and

(3) the forecaster receives (and observes) the reward gIt,t, while the
gains of the other arms are not observed.

In this adversarial setting the goal is to obtain regret bounds in high

probability or in expectation with respect to any possible randomiza-

tion in the strategies used by the forecaster or the opponent, and irre-

spective of the opponent. In the case of a nonoblivious adversary this

is not an easy task, and for this reason we usually start by bounding

the pseudo-regret

Rn = max
i=1,...,K

E

[
n∑
t=1

gi,t −
n∑
t=1

gIt,t

]
.

Note that the randomization of the adversary is not very important

here since we ask for bounds which hold for any opponent. On the other

hand, it is fundamental to allow randomization for the forecaster — see

Section 3 for details and basic results in the adversarial bandit model.

This adversarial, or nonstochastic, version of the bandit problem was

originally proposed as a way of playing an unknown game against an

opponent. The problem of playing a game repeatedly, now a classi-

cal topic in game theory, was initiated by the groundbreaking work

of James Hannan and David Blackwell. In Hannan’s seminal paper

Hannan [92], the game (i.e., the payoff matrix) is assumed to be known

by the player, who also observes the opponent’s moves in each play.

Later, Baños [28] considered the problem of a repeated unknown game,

where in each game round the player only observes its own payoff. This

problem turns out to be exactly equivalent to the adversarial bandit

Full text available at: http://dx.doi.org/10.1561/2200000024
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problem with a nonoblivious adversary. Simpler strategies for playing

unknown games were more recently proposed by Foster and Vohra [81]

and Hart and Mas-Colell [93, 94]. Approximately at the same time, the

problem was re-discovered in computer science by Auer et al. [24]. It

was them who made apparent the connection to stochastic bandits by

coining the term nonstochastic multi-armed bandit problem.

The third fundamental model of multi-armed bandits assumes that

the reward processes are neither i.i.d. (like in stochastic bandits) nor

adversarial. More precisely, arms are associated with K Markov pro-

cesses, each with its own state space. Each time an arm i is chosen in

state s, a stochastic reward is drawn from a probability distribution νi,s,

and the state of the reward process for arm i changes in a Markovian

fashion, based on an underlying stochastic transition matrix Mi. Both

reward and new state are revealed to the player. On the other hand,

the state of arms that are not chosen remains unchanged. Going back

to our initial interpretation of bandits as sequential resource allocation

processes, here we may think of K competing projects that are sequen-

tially allocated a unit resource of work. However, unlike the previous

bandit models, in this case the state of a project that gets the resource

may change. Moreover, the underlying stochastic transition matrices

Mi are typically assumed to be known, thus the optimal policy can be

computed via dynamic programming and the problem is essentially of

computational nature. The seminal result of Gittins [87] provides an

optimal greedy policy which can be computed efficiently.

A notable special case of Markovian bandits is that of Bayesian

bandits. These are parametric stochastic bandits, where the parame-

ters of the reward distributions are assumed to be drawn from known

priors, and the regret is computed by also averaging over the draw

of parameters from the prior. The Markovian state change associated

with the selection of an arm corresponds here to updating the posterior

distribution of rewards for that arm after observing a new reward.

Markovian bandits are a standard model in the areas of Operations

Research and Economics. However, the techniques used in their analysis

are significantly different from those used to analyze stochastic and

adversarial bandits. For this reason, in this monograph we do not cover

Markovian bandits and their many variants.
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References

[1] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvári, “Improved algorithms for linear
stochastic bandits,” in Advances in Neural Information Processing Systems
(NIPS), 2011.

[2] N. Abe and P. M. Long, “Associative reinforcement learning using linear prob-
abilistic concepts,” in Proceedings of the International Conference on Machine
Learning (ICML), 1999.

[3] J. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark: An effi-
cient algorithm for bandit linear optimization,” in Proceedings of the Annual
Conference on Learning Theory (COLT), 2008.

[4] J. Abernethy and A. Rakhlin, “Beating the adaptive bandit with high prob-
ability,” in In Proceedings of the Annual Conference on Learning Theory
(COLT), 2009.

[5] A. Agarwal, P. Bartlett, and M. Dama, “Optimal allocation strategies for the
dark pool problem,” in Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), JMLR Workshop and Conference
Proceedings Volume 9, 2010.

[6] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online convex
optimization with multi-point bandit feedback,” in Proceedings of the Annual
Conference on Learning Theory (COLT), 2010.

[7] A. Agarwal, J. Duchi, P. L. Bartlett, and C. Levrard, “Oracle inequalities
for computationally budgeted model selection,” in Proceedings of the Annual
Conference on Learning Theory (COLT), JMLR Workshop and Conference
Proceedings Volume 19, 2011.

117

Full text available at: http://dx.doi.org/10.1561/2200000024



118 References

[8] A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin, “Stochastic
convex optimization with bandit feedback,” in Advances in Neural Information
Processing Systems (NIPS), 2011.

[9] R. Agrawal, “Sample mean based index policies with O(logn) regret for the
multi-armed bandit problem,” Advances in Applied Mathematics, vol. 27,
pp. 1054–1078, 1995.

[10] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the multi-
armed bandit problem,” in Proceedings of the Annual Conference on Learning
Theory (COLT), JMLR Workshop and Conference Proceedings Volume 23,
2012.

[11] C. Allenberg, P. Auer, L. Györfi, and G. Ottucsák, “Hannan consistency in
on-line learning in case of unbounded losses under partial monitoring,” in
Proceedings of the International Conference on Algorithmic Learning Theory
(ALT), 2006.

[12] K. Amin, M. Kearns, and U. Syed, “Bandits, query learning, and the haystack
dimension,” in Proceedings of the Annual Conference on Learning Theory
(COLT), JMLR Workshop and Conference Proceedings Volume 19, 2011.

[13] A. Antos, V. Grover, and C. Szepesvári, “Active learning in multi-armed ban-
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nal of Machine Learning Research, vol. 12, pp. 1587–1627, 2011.

[53] S. Bubeck and A. Slivkins, “The best of both worlds: Stochastic and adver-
sarial bandits,” in Proceedings of the Annual Conference on Learning Theory
(COLT), JMLR Workshop and Conference Proceedings Volume 23, 2012.

[54] S. Bubeck, T. Wang, and N. Viswanathan, “Multiple identifications in multi-
armed bandits,” Arxiv preprint arXiv:1205.3181, 2012.

[55] L. Bui, R. Johari, and S. Mannor, “Committing bandits,” in Advances in
Neural Information Processing Systems (NIPS), 2011.

[56] A. N. Burnetas and M. N. Katehakis, “Optimal adaptive policies for Markov
decision processes,” Mathematics of Operations Research, pp. 222–255, 1997.

Full text available at: http://dx.doi.org/10.1561/2200000024



References 121

[57] R. Busa-Fekete and B. Kegl, “Fast boosting using adversarial bandits,” in
Proceedings of the International Conference on Machine Learning (ICML),
2011.

[58] O. Cappé, A. Garivier, O. Maillard, R. Munos, and G. Stoltz, “Kullback-
Leibler upper confidence bounds for optimal sequential allocation,” Arxiv
preprint arXiv:1210.1136, 2012.

[59] A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer, “Upper
confidence bounds algorithms for active learning in multi-armed bandits,” in
Proceedings of the International Conference on Algorithmic Learning Theory
(ALT), 2011.

[60] A. Carpentier and R. Munos, “Finite time analysis of stratified sampling for
Monte Carlo,” in Advances in Neural Information Processing Systems (NIPS),
2011.

[61] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge
University Press, 2006.

[62] N. Cesa-Bianchi and G. Lugosi, “Combinatorial bandits,” Journal of Com-
puter and System Sciences, vol. 78, no. 5, pp. 1404–1422, 2012.

[63] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz, “Minimizing regret with label
efficient prediction,” IEEE Transactions on Information Theory, vol. 51,
pp. 2152–2162, 2005.

[64] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz, “Improved second-order bounds
for prediction with expert advice,” Machine Learning, vol. 66, pp. 321–352,
2007.

[65] O. Chapelle and L. Li, “An empirical evaluation of Thompson sampling,” in
Advances in Neural Information Processing Systems (NIPS), 2011.

[66] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with linear
payoff functions,” in Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), JMLR Workshop and Conference
Proceedings Volume 15, 2011.

[67] A. Conn, K. Scheinberg, and L. Vicente, “Introduction to derivative-free opti-
mization,” in Society for Industrial and Applied Mathematics (SIAM), 2009.

[68] E. W. Cope, “Regret and convergence bounds for a class of continuum-armed
bandit problems,” IEEE Transactions on Automatic Control, vol. 54, no. 6,
pp. 1243–1253, 2009.

[69] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” in Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),
2007.

[70] K. Crammer and C. Gentile, “Multiclass classification with bandit feedback
using adaptive regularization,” in Proceedings of the International Conference
on Machine Learning (ICML), 2011.

[71] V. Dani, T. Hayes, and S. Kakade, “The price of bandit information for online
optimization,” in Advances in Neural Information Processing Systems (NIPS),
2008.

[72] V. Dani, T. Hayes, and S. Kakade, “Stochastic linear optimization under ban-
dit feedback,” in Proceedings of the Annual Conference on Learning Theory
(COLT), 2008.

Full text available at: http://dx.doi.org/10.1561/2200000024



122 References

[73] N. Devanur and S. M. Kakade, “The price of truthfulness for pay-per-
click auctions,” in ACM Conference on Electronic Commerce 2009 (EC),
2009.

[74] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and
T. Zhang, “Efficient optimal learning for contextual bandits,” in Proceedings
of the Conference on Uncertainty in Artificial Intelligence (UAI), 2011.

[75] E. Even-Dar, S. Mannor, and Y. Mansour, “PAC bounds for multi-armed ban-
dit and Markov decision processes,” in Proceedings of the Annual Conference
on Computational Learning Theory (COLT), 2002.

[76] E. Even-Dar, S. Mannor, and Y. Mansour, “Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems,”
Journal of Machine Learning Research, vol. 7, pp. 1079–1105, 2006.
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tive bandit problems,” in Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2007.

[91] A. György, T. Linder, G. Lugosi, and G. Ottucsák, “The on-line shortest path
problem under partial monitoring,” Journal of Machine Learning Research,
vol. 8, pp. 2369–2403, 2007.

[92] J. Hannan, “Approximation to Bayes risk in repeated play,” Contributions to
the Theory of Games, vol. 3, pp. 97–139, 1957.

[93] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated
equilibrium,” Econometrica, vol. 68, pp. 1127–1150, 2000.

[94] S. Hart and A. Mas-Colell, “A general class of adaptive strategies,” Journal
of Economic Theory, vol. 98, pp. 26–54, 2001.

[95] E. Hazan, “The convex optimization approach to regret minimization,” in
Optimization for Machine Learning, (S. Sra, S. Nowozin, and S. Wright, eds.),
pp. 287–303, MIT Press, 2011.

[96] E. Hazan and S. Kale, “Better algorithms for benign bandits,” in Proceed-
ings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 38–47, 2009.

[97] E. Hazan and S. Kale, “NEWTRON: An efficient bandit algorithm for online
multiclass prediction,” in Advances in Neural Information Processing Systems
(NIPS), 2011.

[98] E. Hazan, S. Kale, and M. Warmuth, “Learning rotations with little regret,”
in Proceedings of the Annual Conference on Learning Theory (COLT),
2010.

[99] D. Helmbold and S. Panizza, “Some label efficient learning results,” in Proceed-
ings of the Annual Conference on Computational Learning Theory (COLT),
1997.

[100] D. P. Helmbold and M. Warmuth, “Learning permutations with exponential
weights,” Journal of Machine Learning Research, vol. 10, pp. 1705–1736, 2009.

[101] M. Herbster and M. Warmuth, “Tracking the best expert,” Machine Learning,
vol. 32, pp. 151–178, 1998.

[102] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
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