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Abstract

Kernel methods are among the most popular techniques in machine

learning. From a regularization perspective they play a central role

in regularization theory as they provide a natural choice for the

hypotheses space and the regularization functional through the notion

of reproducing kernel Hilbert spaces. From a probabilistic perspec-

tive they are the key in the context of Gaussian processes, where

the kernel function is known as the covariance function. Traditionally,

kernel methods have been used in supervised learning problems with

scalar outputs and indeed there has been a considerable amount of

work devoted to designing and learning kernels. More recently there
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has been an increasing interest in methods that deal with multiple

outputs, motivated partially by frameworks like multitask learning. In

this monograph, we review different methods to design or learn valid

kernel functions for multiple outputs, paying particular attention to the

connection between probabilistic and functional methods.
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1

Introduction

Many modern applications of machine learning require solving several

decision making or prediction problems and exploiting dependencies

between the problems is often the key to obtain better results and

coping with a lack of data (to solve a problem we can borrow strength

from a distinct but related problem).

In sensor networks, for example, missing signals from certain sensors

may be predicted by exploiting their correlation with observed signals

acquired from other sensors [72]. In geostatistics, predicting the concen-

tration of heavy pollutant metals, which are expensive to measure, can

be done using inexpensive and oversampled variables as a proxy [37].

In computer graphics, a common theme is the animation and simula-

tion of physically plausible humanoid motion. Given a set of poses that

delineate a particular movement (for example, walking), we are faced

with the task of completing a sequence by filling in the missing frames

with natural-looking poses. Human movement exhibits a high degree

of correlation. Consider, for example, the way we walk. When moving

the right leg forward, we unconsciously prepare the left leg, which is

currently touching the ground, to start moving as soon as the right leg

reaches the floor. At the same time, our hands move synchronously with

1
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2 Introduction

our legs. We can exploit these implicit correlations for predicting new

poses and for generating new natural-looking walking sequences [106].

In text categorization, one document can be assigned to multiple topics

or have multiple labels [50]. In all the examples above, the simplest

approach ignores the potential correlation among the different output

components of the problem and employ models that make predictions

individually for each output. However, these examples suggest a dif-

ferent approach through a joint prediction exploiting the interaction

between the different components to improve on individual predictions.

Within the machine learning community this type of modeling is often

broadly referred to as multitask learning. Again the key idea is that

information shared between different tasks can lead to improved per-

formance in comparison to learning the same tasks individually. These

ideas are related to transfer learning [12, 20, 74, 97], a term which

refers to systems that learn by transferring knowledge between different

domains, for example: “what can we learn about running through seeing

walking?”

More formally, the classical supervised learning problem requires

estimating the output for any given input x∗; an estimator f∗(x∗)

is built on the basis of a training set consisting of N input–output

pairs S = (X,Y) = (x1,y1), . . . ,(xN ,yN ). The input space X is usually

a space of vectors, while the output space is a space of scalars. In mul-

tiple output learning (MOL) the output space is a space of vectors;

the estimator is now a vector-valued function f . Indeed, this situation

can also be described as the problem of solving D distinct classical

supervised problems, where each problem is described by one of the

components f1, . . . ,fD of f . As mentioned before, the key idea is to

work under the assumption that the problems are in some way related.

The idea is then to exploit the relation among the problems to improve

upon solving each problem separately.

The goal of this survey is twofold. First, we aim at discussing recent

results in multi-output/multitask learning based on kernel methods

and Gaussian processes providing an account of the state of the art in

the field. Second, we analyze systematically the connections between

Bayesian and regularization (frequentist) approaches. Indeed, related

techniques have been proposed from different perspectives and drawing
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3

clearer connections can boost advances in the field, while fostering col-

laborations between different communities.

The plan of the monograph follows. In Section 2 we give a brief

review of the main ideas underlying kernel methods for scalar learning,

introducing the concepts of regularization in reproducing kernel

Hilbert spaces and Gaussian processes. In Section 3 we describe how

similar concepts extend to the context of vector-valued functions and

discuss different settings that can be considered. In Sections 4 and 5 we

discuss approaches to constructing multiple output kernels, drawing

connections between the Bayesian and regularization frameworks.

The parameter estimation problem and the computational complexity

problem are both described in Section 6. In Section 7 we discuss

some potential applications that can be seen as multi-output learning.

Finally we conclude in Section 8 with some remarks and discussion.
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[75] A. Papritz, H. Künsch, and R. Webster, “On the Pseudo cross-variogram,”
Mathematical Geology, vol. 25, no. 8, pp. 1015–1026, 1993.

[76] B. Pelletier, P. Dutilleul, G. Larocque, and J. W. Fyles, “Fitting the lin-
ear model of coregionalization by generalized least squares,” Mathematical
Geology, vol. 36, no. 3, pp. 323–343, 2004.

[77] N. S. Pillai, Q. Wu, F. Liang, S. Mukherjee, and R. L. Wolpert, “Charac-
terizing the function space for Bayesian kernel models,” Journal of Machine
Learning Research, vol. 8, pp. 1769–1797, 2007.

[78] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[79] P. Z. G. Qian, H. Wu, and C. F. J. Wu, “Gaussian process models for computer
experiments with qualitative and quantitative factors,” Technometrics, vol. 50,
no. 3, pp. 383–396, 2008.
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