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Abstract

Determinantal point processes (DPPs) are elegant probabilistic models

of repulsion that arise in quantum physics and random matrix theory.

In contrast to traditional structured models like Markov random fields,

which become intractable and hard to approximate in the presence

of negative correlations, DPPs offer efficient and exact algorithms for

sampling, marginalization, conditioning, and other inference tasks. We

provide a gentle introduction to DPPs, focusing on the intuitions, algo-

rithms, and extensions that are most relevant to the machine learn-

ing community, and show how DPPs can be applied to real-world

applications like finding diverse sets of high-quality search results,

building informative summaries by selecting diverse sentences from doc-

uments, modeling nonoverlapping human poses in images or video, and

automatically building timelines of important news stories.
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1

Introduction

Probabilistic modeling and learning techniques have become

indispensable tools for analyzing data, discovering patterns, and

making predictions in a variety of real-world settings. In recent years,

the widespread availability of both data and processing capacity

has led to new applications and methods involving more complex,

structured output spaces, where the goal is to simultaneously make a

large number of interrelated decisions. Unfortunately, the introduction

of structure typically involves a combinatorial explosion of output

possibilities, making inference computationally impractical without

further assumptions.

A popular compromise is to employ graphical models, which are

tractable when the graph encoding local interactions between variables

is a tree. For loopy graphs, inference can often be approximated in the

special case when the interactions between variables are positive and

neighboring nodes tend to have the same labels. However, dealing with

global, negative interactions in graphical models remain intractable,

and heuristic methods often fail in practice.

Determinantal point processes (DPPs) offer a promising and com-

plementary approach. Arising in quantum physics and random matrix

1

Full text available at: http://dx.doi.org/10.1561/2200000044



2 Introduction

theory, DPPs are elegant probabilistic models of global, negative cor-

relations, and offer efficient algorithms for sampling, marginalization,

conditioning, and other inference tasks. While they have been studied

extensively by mathematicians, giving rise to a deep and beautiful

theory, DPPs are relatively new in machine learning. We aim to pro-

vide a comprehensible introduction to DPPs, focusing on the intuitions,

algorithms, and extensions that are most relevant to our community.

1.1 Diversity

A DPP is a distribution over subsets of a fixed ground set, for instance,

sets of search results selected from a large database. Equivalently, a

DPP over a ground set of N items can be seen as modeling a binary

characteristic vector of length N . The essential characteristic of a DPP

is that these binary variables are negatively correlated; that is, the

inclusion of one item makes the inclusion of other items less likely. The

strengths of these negative correlations are derived from a kernel matrix

that defines a global measure of similarity between pairs of items, so

that more similar items are less likely to co-occur. As a result, DPPs

assign higher probability to sets of items that are diverse; for example,

a DPP will prefer search results that cover multiple distinct aspects of

a user’s query, rather than focusing on the most popular or salient one.

This focus on diversity places DPPs alongside a number of recently

developed techniques for working with diverse sets, particularly in

the information retrieval community [23, 26, 121, 122, 140, 158, 159].

However, unlike these methods, DPPs are fully probabilistic, opening

the door to a wider variety of potential applications, without compro-

mising algorithmic tractability.

The general concept of diversity can take on a number of forms

depending on context and application. Including multiple kinds of

search results might be seen as covering or summarizing relevant

interpretations of the query or its associated topics; see Figure 1.1.

Alternatively, items inhabiting a continuous space may exhibit diversity

as a result of repulsion, as in Figure 1.2. In fact, certain repulsive quan-

tum particles are known to be precisely described by a DPP; however,

a DPP can also serve as a model for general repulsive phenomena, such

Full text available at: http://dx.doi.org/10.1561/2200000044



1.1 Diversity 3

Fig. 1.1 Diversity is used to generate a set of summary timelines describing the most impor-
tant events from a large news corpus.

Fig. 1.2 On the left, points are sampled randomly; on the right, repulsion between points
leads to the selection of a diverse set of locations.

Fig. 1.3 On the left, the output of a human pose detector is noisy and uncertain; on the
right, applying diversity as a filter leads to a clean, separated set of predictions.

as the locations of trees in a forest, which appear diverse due to physi-

cal and resource constraints. Finally, diversity can be used as a filtering

prior when multiple selections must be based on a single detector or

scoring metric. For instance, in Figure 1.3 a weak pose detector favors

large clusters of poses that are nearly identical, but filtering through a

DPP ensures that the final predictions are well separated.

Throughout this survey we demonstrate applications for DPPs in a

variety of settings, including:

• The DUC 2003/2004 text summarization task, where we form

extractive summaries of news articles by choosing diverse

subsets of sentences (Section 4.2.1);

Full text available at: http://dx.doi.org/10.1561/2200000044



4 Introduction

• An image search task, where we model human judgments

of diversity for image sets returned by Google Image Search

(Section 5.3),
• A multiple pose estimation task, where we improve the

detection of human poses in images from television shows

by incorporating a bias toward nonoverlapping predictions

(Section 6.4), and
• A news threading task, where we automatically extract

timelines of important news stories from a large corpus

by balancing intra-timeline coherence with inter-timeline

diversity (Section 6.6.4).

1.2 Outline

In this monograph we present general mathematical background on

DPPs along with a range of modeling extensions, efficient algorithms,

and theoretical results that aim to enable practical modeling and

learning. The material is organized as follows.

Section 2: Determinantal Point Processes. We begin with an

introduction to determinantal point processes tailored to the inter-

ests of the machine learning community. We focus on discrete DPPs,

emphasizing intuitions and including new, simplified proofs for some

theoretical results. We provide descriptions of known efficient inference

algorithms and characterize their computational properties.

Section 3: Representation and Algorithms. We describe a

decomposition of the DPP that makes explicit its fundamental trade-

off between quality and diversity. We compare the expressive power of

DPPs and MRFs, characterizing the trade-offs in terms of modeling

power and computational efficiency. We also introduce a dual repre-

sentation for DPPs, showing how it can be used to perform efficient

inference over large ground sets. When the data are high-dimensional

and dual inference is still too slow, we show that random projections

can be used to maintain a provably close approximation to the original

model while greatly reducing computational requirements.

Full text available at: http://dx.doi.org/10.1561/2200000044



1.2 Outline 5

Section 4: Learning. We derive an efficient algorithm for learn-

ing the parameters of a quality model when the diversity model is

held fixed. We employ this learning algorithm to perform extractive

summarization of news text.

Section 5: k-DPPs. We present an extension of DPPs that allows

for explicit control over the number of items selected by the model.

We show not only that this extension solves an important practical

problem, but also that it increases expressive power: a k-DPP can

capture distributions that a standard DPP cannot. The extension to

k-DPPs necessitates new algorithms for efficient inference based on

recursions for the elementary symmetric polynomials. We validate the

new model experimentally on an image search task.

Section 6: Structured DPPs. We extend DPPs to model diverse

sets of structured items, such as sequences or trees, where there

are combinatorially many possible configurations. In this setting the

number of possible subsets is doubly exponential, presenting a daunting

computational challenge. However, we show that a factorization of the

quality and diversity models together with the dual representation for

DPPs makes efficient inference possible using second-order message

passing. We demonstrate structured DPPs on a toy geographical paths

problem, a still-image multiple pose estimation task, and two high-

dimensional text threading tasks.

Full text available at: http://dx.doi.org/10.1561/2200000044
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