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Abstract

Monte Carlo methods, in particular those based on Markov chains and

on interacting particle systems, are by now tools that are routinely

used in machine learning. These methods have had a profound impact

on statistical inference in a wide range of application areas where

probabilistic models are used. Moreover, there are many algorithms

in machine learning which are based on the idea of processing the data

sequentially, first in the forward direction and then in the backward

direction. In this tutorial, we will review a branch of Monte Carlo

methods based on the forward–backward idea, referred to as backward

simulators. These methods are useful for learning and inference in prob-

abilistic models containing latent stochastic processes. The theory and

practice of backward simulation algorithms have undergone a signifi-

cant development in recent years and the algorithms keep finding new

applications. The foundation for these methods is sequential Monte

Carlo (SMC). SMC-based backward simulators are capable of address-

ing smoothing problems in sequential latent variable models, such as

Full text available at: http://dx.doi.org/10.1561/2200000045



general, nonlinear/non-Gaussian state-space models (SSMs). However,

we will also clearly show that the underlying backward simulation idea

is by no means restricted to SSMs. Furthermore, backward simulation

plays an important role in recent developments of Markov chain Monte

Carlo (MCMC) methods. Particle MCMC is a systematic way of using

SMC within MCMC. In this framework, backward simulation gives us

a way to significantly improve the performance of the samplers. We

review and discuss several related backward-simulation-based methods

for state inference as well as learning of static parameters, both using

a frequentistic and a Bayesian approach.
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1

Introduction

A basic strategy to address many inferential problems in machine

learning is to process data sequentially, first in the forward direc-

tion and then in the backward direction. Examples of this approach

are the well-known forward–backward algorithm for hidden Markov

models (HMMs) and the Rauch–Tung–Striebel smoother [119] for lin-

ear Gaussian state-space models. Moreover, two decades of research on

sequential Monte Carlo and Markov chain Monte Carlo have enabled

inference in increasingly more challenging models. Many developments

have been made in order to make use of the forward–backward idea

together with these Monte Carlo methods, providing inferential tech-

niques collectively referred to as backward simulation. This tutorial

provides a unifying view of these methods. In this introductory section

we review some relevant background materials and also derive a first

backward simulator for the special case of linear Gaussian state-space

models.

1.1 Background and Motivation

For over half a century, Monte Carlo methods have been recog-

nized as potent tools for statistical inference in complex probabilistic

1
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2 Introduction

models; see [103] for an early discussion. A continuous development

and refinement of these methods have enabled inference in increasingly

more challenging models. A key milestone in this development was the

introduction of Markov chain Monte Carlo (MCMC) methods through

the inventions of the Metropolis–Hastings algorithm [71, 102] and the

Gibbs sampler [58]. Parallel to this, sequential importance sampling

[70] and sampling/importance resampling [122] laid the foundation of

sequential Monte Carlo (SMC). In its modern form, SMC was first

introduced in [64, 129]. During the 1990s, several independent develop-

ments were made by, among others, [77, 83]. Recently, SMC and MCMC

have been combined in a systematic manner through the developments

of pseudo-marginal methods [6, 11] and particle MCMC [3].

Backward simulation is a strategy which is useful as a Monte Carlo

method for learning of probabilistic models containing latent stochastic

processes. In particular, we will consider inference in dynamical sys-

tems, i.e., systems that evolve over time. Dynamical systems play a

central role in a wide range of scientific fields, such as signal pro-

cessing, automatic control, epidemiology and econometrics, to mention

a few.

One of the most widely used models of a dynamical system is the

state-space model (SSM), reviewed in more detail in Sections 1.4–1.6.

The structure of an SSM can be seen as influenced by the notion of

a physical system. At each time t, the system is assumed to be in a

certain state xt. The state contains all relevant information about the

system, i.e., if we would know the state of the system we would have

full insight into its internal condition. However, the state is typically

not known. Instead, we measure some quantity yt which depend on the

state in some way. Given a sequence of observations y1:T , (y1, . . . , yT ),

we seek to draw inference about the latent state process x1:T (state

inference), as well as about unknown static parameters of the model

(parameter inference).

The class of SSMs will play a central role in this tutorial. Indeed,

many of the inferential methods that we will review have been

developed explicitly for SSMs. However, as will become apparent in

Sections 4 and 5, most of the methods are more general and can be

used for learning interesting models outside the class of SSMs.
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1.2 Notation and Definitions 3

Backward simulation is based on the forward–backward idea. That

is, the data is processed first in the forward direction and then in the

backward direction. In the backward pass, the state process is simu-

lated backward in time, i.e., by first simulating xT , then xT−1 etc., until

a complete state trajectory x1:T is generated. This procedure gives us

a tool to address the state smoothing problem in models for which no

closed form solution is available. This is done by simulating multiple

backward trajectories from the smoothing distribution, i.e., condition-

ally on the observations y1:T , which can then be used for Monte Carlo

integration. State smoothing is of key relevance, e.g., to obtain refined

state estimates in offline settings. Furthermore, it lies at the core of

many parameter inference methods (see Section 1.5) and it can be used

to address problems in optimal control (see Section 4.1).

Backward simulation is also useful in MCMC, as a way of grouping

variables to improve the mixing of the sampler. A common way to con-

struct an MCMC sampler for an SSM is to sample the state variables xt,

for different t, one at a time (referred to as single-state sampling). How-

ever, since the states are often strongly dependent across time, this can

lead to poor performance. Backward simulation provides a mean of

grouping the state variables and sampling the entire trajectory x1:T

as one entity. As we will illustrate in Section 1.3, this can lead to a

considerable improvement upon the single-state sampler.

In Section 1.7 we will derive a first backward simulator for the

class of linear Gaussian state-space (LGSS) models. Apart from LGSS

models, exact backward simulation is tractable, basically only for finite

state-space HMMs (see also Section 4.1.1). The main focus in this tuto-

rial will be on models outside these restricted classes, for which exact

backward simulation is not possible. Instead, we will make use of SMC

(and MCMC) to enable backward simulation in challenging probabilis-

tic models, such as nonlinear/non-Gaussian SSMs, as well as more gen-

eral non-Markovian latent variable models.

1.2 Notation and Definitions

For any sequence {xk}k∈N and integers m ≤ n we write xm:n ,
(xm, . . . , xn). We let ∧ be the minimum operator, i.e., a ∧ b , min(a,b).

Full text available at: http://dx.doi.org/10.1561/2200000045



4 Introduction

For a matrix A, the matrix transpose is written as AT. For two prob-

ability distributions µ1 and µ2, the total variation distance is given

by ‖µ1 − µ2‖TV , supA |µ1(A) − µ2(A)|. A Dirac point-mass located

at some point x′ is denoted as δx′(dx). We write X ∼ µ to mean that

the random variable X is either distributed according to µ, or sam-

pled from µ. The uniform probability distribution on the interval [a,b]

is written as U([a,b]). Cat({pi}ni=1), with
∑n

i=1 pi = 1, is the categor-

ical (i.e., discrete) probability distribution on the set {1, . . . , n}, with

probabilities {pi}ni=1. Finally, N (m,Σ) and N (x;m,Σ) are the Gaus-

sian (i.e., normal) probability distribution and density function, respec-

tively, with mean vector m, covariance matrix Σ and argument x.

1.3 A Preview Example

Before we continue with this section on background theory, we con-

sider an example to illustrate the potential benefit of using backward

simulation. A simple stochastic volatility SSM is given by,

xt+1 = axt + vt, vt ∼ N (0, q), (1.1a)

yt = et exp
(

1
2xt
)
, et ∼ N (0,1), (1.1b)

where the state process {xt}t≥1 is latent and observations are made

only via the measurement process {yt}t≥1. Similar models have been

used to generalize the Black–Scholes option pricing equation to allow

for the variance to change over time [27, 101]. The same model was used

by [30] to illustrate the poor mixing of a single-state Gibbs sampler; an

example which is replicated here.

For simplicity, we assume that the parameters a = 0.99 and q = 0.01

are known. We seek the density p(x1:T | y1:T ), i.e., the conditional den-

sity of the state process x1:T given a sequence of observations y1:T

for some fixed final time point T . This conditional density is referred

to as the joint smoothing density (JSD). For the model under study,

the JSD is not available in closed form due to the nonlinear measure-

ment Equation (1.1b). To remedy this, we construct an MCMC method

to approximately sample from it. MCMC will be reviewed in more

detail in Section 2.2. However, the basic idea is to simulate a Markov

chain which is constructed in such a way that it admits the target

Full text available at: http://dx.doi.org/10.1561/2200000045



1.3 A Preview Example 5

distribution as limiting distribution. The sample path from the Markov

chain can then be used to draw inference about the target density

p(x1:T | y1:T ).

As an initial attempt, we try a single-state Gibbs sampler. That is,

we sample each state xt conditionally on {x1:t−1,xt+1:T } (and the obser-

vations y1:T ). At each iteration of the Gibbs sampler we thus simulate

according to,

x′1 ∼ p(x1 | x2:T ,y1:T );

...

x′t ∼ p(xt | x′1:t−1,xt+1:T ,y1:T );

...

x′T ∼ p(xT | x′1:T−1,y1:T ).

This procedure will leave p(x1:T | y1:T ) invariant (see Section 2.2 for

more on Gibbs sampling) and it results in a valid MCMC sampler.

The conditional densities p(xt | x1:t−1,xt+1:T ,y1:T ) are not available in

closed form. However, for this model (Equation (1.1)), they are log-

concave and we can employ the efficient rejection sampling strategy by

[145] to sample exactly from these distributions.

The single-state Gibbs sampler will indeed converge to samples from

p(x1:T | y1:T ). However, it is well recognized that single-state samplers

can suffer from poor mixing, due to the often strong dependencies

between consecutive state variables. That is, the convergence can be

slow in the sense that we need to iterate the above sampling scheme a

large number of times to get reliable samples.

To analyze this, we generate T = 100 samples from the model

(Equation (1.1)) and run the Gibbs sampler for 100000 iterations (in

each iteration, we loop over all the state variables for t = 1, . . . , T ). The

first 10000 iterations are discarded, to avoid transient effects. We then

compute the empirical autocorrelation function (ACF) of the state x50,

which is given in Figure 1.1. As can be seen, the ACF decreases very

slowly, indicating a poorly mixing Gibbs kernel. This simply reflects

the fact that, when the state variables are highly correlated, the single-

state sampler will be inefficient at exploring the state-space. This is a

Full text available at: http://dx.doi.org/10.1561/2200000045



6 Introduction

Fig. 1.1 (Top left) Part of sample path for the single-state Gibbs sampler; (Top right)
Part of sample path for PGBS; (Bottom) Empirical ACF for x50 for the single-state Gibbs

sampler and for PGBS using N = 15 particles.

common and well-recognized problem when addressing the state infer-

ence problem for SSMs.

One way to remedy this is to group the variables and sample a full

state trajectory x1:T jointly. This is what a backward simulator aims

to accomplish. Grouping variables in a Gibbs sampler will in general

improve upon the mixing of the single-state sampler [97, Section 6.7],

and in practice the improvement can be quite considerable.

To illustrate this, we have included the ACF for a backward-

simulation-based method in Figure 1.1. Since the model (Equa-

tion (1.1)) is nonlinear, exact backward simulation is not possible.

Instead, the results reported here are from a backward simulator based

on SMC, using (only) N = 15 particles. The specific method that

we have used is denoted as particle Gibbs with backward simulation

(PGBS), and it will be discussed in detail in Section 5.4. For the PGBS,

Full text available at: http://dx.doi.org/10.1561/2200000045



1.4 State-Space Models 7

the ACF drops off much more rapidly, indicating a more efficient sam-

pler. Furthermore, a key property of PGBS is that, despite the fact

that it relies on a crude SMC approximation, it does not alter the sta-

tionary distribution of the Gibbs sampler, nor does it introduce any

additional bias. That is, PGBS will, just as the single-state Gibbs sam-

pler, target the exact JSD p(x1:T | y1:T ). This property is known as

exact approximation, a concept that we will return to in Section 5.

1.4 State-Space Models

State-space models (SSMs) are commonly used to model time series and

dynamical systems. Additionally, many models that are not sequential

“by nature” can also be written on state-space form. It is a compre-

hensive and important class of models, and it serves as a good starting

point for introducing the concepts that will be discussed throughout

this tutorial.

We consider here discrete-time SSMs on a general state-space X.

The system state is a Markov process {xt}t≥1 on X, evolving according

to a Markov transition kernel F (dxt+1 | xt) and with initial distribution

ν(dx1). The state xt is assumed to summarize all relevant information

about the system at time t. However, the state process is latent and it is

observed only implicitly through the observations {yt}t≥1, taking values

in some set Y. Given xt, the measurement yt is conditionally indepen-

dent of past and future states and observations, and it is distributed

according to a kernel G(dyt | xt). A graphical model, illustrating the

conditional dependencies in an SSM, is given in Figure 1.2.

Fig. 1.2 Graphical model of an SSM. The white nodes represent latent variables and the
gray nodes represent observed variables.

Full text available at: http://dx.doi.org/10.1561/2200000045



8 Introduction

We shall assume that the observation kernel G admits a probability

density g w.r.t. some dominating measure, which we simply denote dy.

Such models are referred to as partially dominated. If, in addition,

the transition kernel F admits a density f and the initial distribution

ν admits a density µ, both w.r.t. some dominating measure dx, the

model is called fully dominated. In summary, a fully dominated SSM

can be expressed as,

xt+1 ∼ f(xt+1 | xt), (1.2a)

yt ∼ g(yt | xt), (1.2b)

and x1 ∼ µ(x1). Two examples of SSMs follow below.

Example 1.1 (Finite state-space hidden Markov model). A

finite state-space HMM, or simply HMM, is an SSM with X =

{1, . . . , K} for some finite K. The transition density (w.r.t. counting

measure) can be summarized in a K × K transition matrix Π, where

the (i, j)th entry is given by,

Πi,j = P (xt+1 = j | xt = i) = f(j | i).

Hence, f(j | i) denotes the probability of moving from state i at time

t, to state j at time t + 1.

Example 1.2(Additive noise model). In engineering applications,

SSMs are often expressed on functional form with additive noise,

xt+1 = a(xt) + vt,

yt = c(xt) + et,

for some functions a and c. Here, the noises vt and et are commonly

referred to as process noise and measurement noise, respectively. If the

noise distributions admit densities w.r.t. dominating measures, then

the model is fully dominated. The transition density is then given

by f(xt+1 | xt) = pvt(xt+1 − a(xt)) and similarly for the observation

density.
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1.5 Parameter Learning in SSMs 9

Throughout this tutorial, we will mostly be concerned with fully

dominated SSMs and therefore do most of our derivations in terms of

probability densities. There are, however, several examples of interest-

ing models that are degenerate, i.e., that are not fully dominated. We

will return to this in the sequel and discuss how it affects the methods

presented in here.

1.5 Parameter Learning in SSMs

The basic inference problem for SSMs is typically that of state

inference, i.e., to infer the latent states given measurements from the

system. In fact, even when the actual task is to learn a model of the

system dynamics, state inference tends to play a crucial role as an inter-

mediate step of the learning algorithm. To illustrate this, assume that

the SSM (Equation (1.2)) is parameterized by some unknown parame-

ter θ ∈ Θ,

xt+1 ∼ fθ(xt+1 | xt), (1.3a)

yt ∼ gθ(yt | xt), (1.3b)

and x1 ∼ µθ(x1). Given a batch of measurements y1:T , we wish to draw

inference about θ. In the Bayesian setting, a prior distribution π(θ) is

assigned to the parameter and the learning problem amounts to com-

puting the posterior distribution p(θ | y1:T ).

A complicating factor is that the likelihood p(y1:T | θ) in general

cannot be computed in closed form. To address this difficulty, it is

common to make use of data augmentation [136, 132]. That is, we target

the joint state and parameter posterior p(θ,x1:T | y1:T ), rather than

the marginal posterior p(θ | y1:T ). The latent states are thus viewed

as auxiliary variables. This opens up for using Gibbs sampling (see

Section 2.2), for instance by initializing θ[0] ∈ Θ and iterating;

(i) Draw x1:T [r] ∼ p(x1:T | θ[r − 1],y1:T );

(ii) Draw θ[r] ∼ p(θ | x1:T [r],y1:T ).

Under weak assumptions, this procedure will generate a Markov chain

{θ[r],x1:T [r]}r≥1 with stationary distribution p(θ,x1:T | y1:T ). Conse-

quently, the stationary distribution of the subchain {θ[r]}r≥1 will be the
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10 Introduction

marginal parameter posterior distribution p(θ | y1:T ). Note that Step (i)

of the above sampling scheme requires the computation of the JSD, for

a fixed value of the parameter θ. That is, we need to address an inter-

mediate smoothing problem in order to implement this Gibbs sampler.

Data augmentation is commonly used also in the frequentistic

setting. Assume that we, instead of the posterior distribution, seek

the maximum likelihood estimator (MLE),

θ̂ML = argmax
θ∈Θ

logpθ(y1:T ), (1.4)

where pθ(y1:T ) is the likelihood of the observed data for a given value

of the system parameter θ. Again, since the log-likelihood logpθ(y1:T )

is not available in closed form, direct maximization in Equation (1.4) is

problematic. Instead, we can make use of the expectation maximization

(EM) algorithm [33] (see also [100]). The EM algorithm is an iterative

method, which maximizes pθ(y1:T ) by iteratively maximizing an auxil-

iary quantity,

Q(θ,θ′) =

∫
logpθ(x1:T ,y1:T )pθ′(x1:T | y1:T )dx1:T . (1.5)

The EM algorithm is useful when maximization of θ 7→ Q(θ,θ′), for

fixed θ′, is simpler than direct maximization of the log-likelihood,

θ 7→ logpθ(y1:T ). The procedure is initialized at some θ[0] ∈ Θ and then

iterates between two steps, expectation (E) and maximization (M);

(E) Compute Q(θ,θ[r − 1]);

(M) Compute θ[r] = argmaxθ∈ΘQ(θ,θ[r − 1]).

The resulting sequence {θ[r]}r≥0 will, under weak assumptions, con-

verge to a stationary point of the likelihood pθ(y1:T ) [148].

Using the conditional independence properties of an SSM, we can

write the complete data log-likelihood as

logpθ(x1:T ,y1:T )

= logµθ(x1) +

T∑
t=1

loggθ(yt | xt) +

T−1∑
t=1

logfθ(xt+1 | xt). (1.6)
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From Equation (1.5), we note that the auxiliary quantity is defined as

the expectation of expression (1.6) under the JSD. Hence, to carry out

the E-step of the EM algorithm, we again need to address an interme-

diate smoothing problem for fixed values of the system parameters.

1.6 Smoothing Recursions

As noted above, the JSD is a quantity of central interest for learning and

inference problems in SSMs. It summarizes all the information about

the latent states which is available in the observations. Many densities

that arise in various state inference problems are given as marginals

of the JSD. There are a few that are of particular interest, which we

summarize in Table 1.1. To avoid a cluttered notation, we now drop the

(possible) dependence on an unknown parameter θ from the notation

and write the JSD as p(x1:T | y1:T ).

As in Equation (1.6), the conditional independence properties of an

SSM implies that the complete data likelihood can be written as,

p(x1:T ,y1:T ) = µ(x1)

T∏
t=1

g(yt | xt)
T−1∏
t=1

f(xt+1 | xt). (1.7)

The JSD is related to the above expression by Bayes’ rule,

p(x1:T | y1:T ) =
p(x1:T ,y1:T )∫

p(x1:T ,y1:T )dx1:T
. (1.8)

Despite the simplicity of this expression, it is of limited use in practice

due to the high-dimensional integration needed to compute the nor-

malization factor in the denominator. Instead, most practical methods

Table 1.1 Filtering and smoothing densities of particular interest.

Density

Filteringa p(xt | y1:t)
Joint smoothing p(x1:T | y1:T )
Marginal smoothing (t ≤ T ) p(xt | y1:T )

Fixed-interval smoothing (s < t ≤ T ) p(xs:t | y1:T )

Fixed-lag smoothing (` fixed)a p(xt−`+1:t | y1:t)

a The filtering and fixed-lag smoothing densities are marginals of

the JSD at time t, p(x1:t | y1:t).
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(and in particular the ones discussed in this tutorial) are based on a

recursive evaluation of the JSD.

Again by using Bayes’ rule, we get the following two-step procedure,

p(x1:t | y1:t) =
g(yt | xt)p(x1:t | y1:t−1)

p(yt | y1:t−1)
, (1.9a)

p(x1:t+1 | y1:t) = f(xt+1 | xt)p(x1:t | y1:t). (1.9b)

The above equations will be denoted as the forward recursion for the

JSD, since they evolve forward in time. Step (1.9a) is often referred

to as the measurement update, since the current measurement yt is

taken into account. Step (1.9b) is known as the time update, moving

the density forward in time, from t to t + 1.

An interesting fact about SSMs is that, conditioned on y1:T , the

state process {xt}Tt=1 is an inhomogeneous Markov process. Under weak

assumptions (see [23, Section 3.3.2] for details), the same holds true for

the time-reversed chain, starting at time T and evolving backward in

time according to the so-called backward kernel,

Bt(A | xt+1) , P (xt ∈ A | xt+1,y1:T ). (1.10)

Note that the backward kernel is time inhomogeneous. In the general

case, it is not possible to give an explicit expression for the backward

kernel. However, for a fully dominated model, this can always be done,

and its density is given by

p(xt | xt+1,y1:T ) =
f(xt+1 | xt)p(xt | y1:t)∫
f(xt+1 | xt)p(xt | y1:t)dxt

. (1.11)

From the conditional independence properties of an SSM, it also holds

that p(xt | xt+1,y1:T ) = p(xt | xt+1,y1:t).

Using the backward kernel, we get an alternative recursion for the

JSD, evolving backward in time,

p(xt:T | y1:T ) = p(xt | xt+1,y1:t)p(xt+1:T | y1:T ), (1.12)

starting with the filtering density at time T , p(xT | y1:T ). This is known

as the backward recursion. At time t = 1, the JSD for the time interval

1, . . . , T is obtained.
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The backward kernel density at time t depends only on the

transition density f(xt+1 | xt) and on the filtering density p(xt | y1:t), a

property which is of key relevance. Hence, to utilise the backward recur-

sion (Equation (1.12)) for computing the JSD, the filtering densities

must first be computed for t = 1, . . . , T . Consequently, this procedure

is generally called forward filtering/backward smoothing.

1.7 Backward Simulation in Linear Gaussian SSMs

An important special case of Equation (1.2) is the class of linear Gaus-

sian state-space models. A functional representation of an LGSS model

is given by,

xt+1 = Axt + vt, vt ∼ N (0,Q), (1.13a)

yt = Cxt + et, et ∼ N (0,R). (1.13b)

Here, yt is an ny-dimensional vector of observations, xt is an

nx-dimensional state vector and the system matrices A and C are of

appropriate dimensions. The process and measurement noises are multi-

variate Gaussian with zero means and covariancesQ andR, respectively.

Example 1.3 (Partially or fully dominated SSM). Assume that

the measurement noise covariance R in Equation (1.13b) is full rank.

Then, the observation kernel is Gaussian and dominated by Lebesgue

measure. Hence, the model is partially dominated. If, in addition, the

process noise covariance Q in Equation (1.13a) is full rank, then the

transition kernel is also Gaussian and dominated by Lebesgue measure.

In this case, the model is fully dominated.

However, for singular Q the model is degenerate (i.e., not fully dom-

inated). Rank deficient process noise covariances arise in many appli-

cations, for instance if there is a physical connection between some of

the states (such as between position and velocity).

A fully dominated LGSS model can equivalently be expressed as in

Equation (1.2) with,

f(xt+1 | xt) = N (xt+1;Axt,Q), (1.14a)

g(yt | xt) = N (yt;Cxt,R). (1.14b)
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LGSS models are without doubt one of the most important and

well-studied classes of SSMs. There are basically two reasons for this.

First, LGSS models provide sufficiently accurate descriptions of many

interesting dynamical systems. Second, LGSS models are one of the few

model classes, simple enough to allow for a fully analytical treatment.

When addressing inferential problems for SSMs, we are often asked

to generate samples from the JSD, typically as part of an MCMC sam-

pler used to learn a model of the system dynamics, as discussed above.

For an LGSS model, the JSD is Gaussian and it can be computed using

Kalman filtering and smoothing techniques (see e.g., [80]). Hence, we

can make use of standard results for Gaussian distributions to gener-

ate a sample from p(x1:T | y1:T ). This is possible for small T , but for

increasing T it soon becomes infeasible due to the large matrix inver-

sions involved.

To address this issue, it was recognized by [24, 56] that we can

instead use the backward recursion (Equation (1.12)). It follows that

the JSD can be factorized as,

p(x1:T | y1:T ) =

(
T−1∏
t=1

p(xt | xt+1,y1:t)

)
p(xT | y1:T ). (1.15)

Initially, we generate a sample from the filtering density at time T ,

x̃T ∼ p(xT | y1:T ). (1.16a)

We then, successively, augment this backward trajectory by generating

samples from the backward kernel,

x̃t ∼ p(xt | x̃t+1,y1:t), (1.16b)

for t = T − 1, . . . , 1. After a complete backward sweep, the back-

ward trajectory x̃1:T is (by construction) a realization from the JSD

(Equation (1.15)).

To compute the backward kernel, we first run a forward filter to find

the filtering densities p(xt | y1:t) for t = 1, . . . , T . For an LGSS model,

this is done by a standard Kalman filter [81]. It follows that the filtering

densities are Gaussian according to,

p(xt | y1:t) = N (xt; x̂t|t,Pt|t), (1.17)
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for some tractable sequences of mean vectors {x̂t|t}t≥1 and covariance

matrices {Pt|t}t≥1, respectively. From Equation (1.14a), we note that

the transition density function is Gaussian and affine in xt. Using Equa-

tions (1.11) and (1.17) and standard results on affine transformations

of Gaussian variables, it then follows that

p(xt | xt+1,y1:t) = N (xt;µt,Mt), (1.18a)

with

µt = x̂t|t + Pt|tA
T(Q + APt|tA

T)−1(xt+1 − Ax̂t|t), (1.18b)

Mt = Pt|t − Pt|tAT(Q + APt|tA
T)−1APt|t. (1.18c)

Note that, if more than one sample is desired, multiple backward tra-

jectories can be generated independently, without having to rerun the

forward Kalman filter. We illustrate the backward simulator in the

example below.

Example 1.4. To illustrate the possibility of generating samples from

the JSD using backward simulation, we consider a first-order LGSS

model,

xt+1 = 0.9xt + vt, vt ∼ N (0,0.1),

yt = xt + et, et ∼ N (0,1),

and x1 ∼ N (x1;0,10). We simulate T = 50 samples y1:T from the model.

Since the model is linear Gaussian, the marginal smoothing densities

p(xt | y1:T ) can be computed by running a Kalman filter followed by

a Rauch–Tung–Striebel smoother [119]. However, we can also gener-

ate samples from the JSD p(x1:T | y1:T ) by running a backward simula-

tor. We simulate M = 5000 independent trajectories {x̃j1:T }Mj=1, by first

running a Kalman filter and then repeating the backward simulation

procedure given by Equations (1.16) and (1.18) M times. Histograms

over the simulated states at three specific time points, t = 1, t = 25 and

t = 50, are given in Figure 1.3. As expected, the histograms are in close

agreement with the true marginal smoothing distributions.

The strategy given by Equation (1.16), i.e., to sequentially sample

(either exactly or approximately) from the backward kernel to gen-

erate a realization from the JSD, is what we collectively refer to as
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Fig. 1.3 Histograms of {x̃jt}Mj=1 for t = 1, t = 25 and t = 50 (from left to right). The true

marginal smoothing densities p(xt | y1:T ) are shown as black lines.

backward simulation. We will now leave the world of LGSS models.

In the remainder of this tutorial we address backward simulation for

general nonlinear/non-Gaussian models. In these cases, the backward

kernels will in general not be available in closed form. Instead, we will

rely on SMC approximations of the kernels to carry out the backward

simulation.

Before we leave this section, it should be noted that the backward

simulator for LGSS models derived here is provided primarily to illus-

trate the concept. For LGSS models, more efficient samplers exist, e.g.,

based on disturbance simulation. See [30, 47, 146] for further details

and extensions.

1.8 Outline

The rest of this tutorial is organized as follows. Section 2 reviews the

two main Monte Carlo methods that are used throughout SMC and

MCMC. The section is self-contained, but for obvious reasons it does

not provide an in-depth coverage of these methods. Several references

which may be useful for readers with no background in this area are

given in Section 2.

Section 3 addresses SMC-based backward simulation for SSMs.

The focus in this section is on smoothing in general nonlinear/non-

Gaussian SSMs. More precisely, we discuss algorithms for generating
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state trajectories, approximately distributed according to the joint

smoothing distribution. These algorithms can be categorized as par-

ticle smoothers. Hence, readers with particular interest in smoothing

problems may want to focus their attention on this section. However,

smoothing is also addressed in Section 5 (see in particular Section 5.7),

and the methods presented there can be useful alternatives to the par-

ticle smoothers discussed in Section 3.

Section 4 generalizes the backward simulation idea to latent vari-

able models outside the class of SSMs. A general backward simulator

is introduced and we discuss its properties and the type of models for

which it is applicable. As a special case of the general backward simula-

tor, we derive a Rao–Blackwellized particle smoother for conditionally

linear Gaussian SSMs.

In Section 5, we discuss backward simulation in the context of so-

called particle MCMC (PMCMC) methods. The focus in this section

is on parameter inference, primarily in the Bayesian setting, but we

also discuss PMCMC for maximum-likelihood-based inference. As men-

tioned above, the smoothing problem is also addressed. Finally, in

Section 6 we conclude with a discussion about the various methods

reviewed throughout this tutorial and outline possible directions for

future work.
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de Saint-Flour XIII–1983, (P. L. Hennequin, ed.), Springer, 1985.

[2] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1, pp. 5–43,
2003.

[3] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte
Carlo methods,” Journal of the Royal Statistical Society: Series B, vol. 72,
no. 3, pp. 269–342, 2010.

[4] C. Andrieu and S. J. Godsill, “A particle filter for model based audio source
separation,” in Proceedings of the 2000 International Workshop on Indepen-
dent Component Analysis and Blind Signal Separation (ICA), Helsinki, Fin-
land, June 2000.

[5] C. Andrieu, E. Moulines, and P. Priouret, “Stability of stochastic approxima-
tion under verifiable conditions,” SIAM Journal on Control and Optimization,
vol. 44, no. 1, pp. 283–312, 2005.

[6] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for efficient
Monte Carlo computations,” The Annals of Statistics, vol. 37, no. 2, pp. 697–
725, 2009.

[7] C. Andrieu and M. Vihola, “Markovian stochastic approximation with expand-
ing projections,” arXiv.org, arXiv:1111.5421, November 2011.

[8] C. Andrieu and M. Vihola, “Convergence properties of pseudo-marginal
Markov chain Monte Carlo algorithms,” arXiv.org, arXiv:1210.1484, October
2012.

137

Full text available at: http://dx.doi.org/10.1561/2200000045



138 References

[9] C. E. Antoniak, “Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems,” The Annals of Statistics, vol. 2, no. 6, pp. 1152–
1174, 1974.

[10] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[11] M. A. Beaumont, “Estimation of population growth or decline in genetically
monitored populations,” Genetics, vol. 164, no. 3, pp. 1139–1160, 2003.

[12] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and Stochas-
tic Approximations. New York, USA: Springer-Verlag, 1990.

[13] C. M. Bishop, Pattern Recognition and Machine Learning, Information Science
and Statistics. New York, USA: Springer, 2006.

[14] D. Blackwell and J. B. MacQueen, “Ferguson distributions via Polya urn
schemes,” The Annals of Statistics, vol. 1, no. 2, pp. 353–355, 1973.

[15] A. Blake, P. Kohli, and C. Rother, eds., Markov Random Fields For Vision
And Image Processing. MIT Press, 2011.
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