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Preface

In recent years, random matrices have come to play a major role in
computational mathematics, but most of the classical areas of random
matrix theory remain the province of experts. Over the last decade,
with the advent of matrix concentration inequalities, research has ad-
vanced to the point where we can conquer many (formerly) challenging
problems with a page or two of arithmetic.

My aim is to describe the most successful methods from this area
along with some interesting examples that these techniques can illu-
minate. I hope that the results in these pages will inspire future work
on applied random matrix theory as well as refinements of the matrix
concentration inequalities discussed herein.

I have chosen to present a coherent body of results based on a
generalization of the Laplace transform method for establishing scalar
concentration inequalities. In the last two years, Lester Mackey and I,
together with our coauthors, have developed an alternative approach
to matrix concentration using exchangeable pairs and Markov chain
couplings. With some regret, I have chosen to omit this theory because
the ideas seem less accessible to a broad audience of researchers. The
interested reader will find pointers to these articles in the annotated
bibliography.

The work described in these notes reflects the influence of many
researchers. These include Rudolf Ahlswede, Rajendra Bhatia, Eric

v
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Karampatziakis, and Guido Lagos. The anonymous reviewers tendered
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Abstract

Random matrices now play a role in many areas of theoretical, applied,
and computational mathematics. Therefore, it is desirable to have tools
for studying random matrices that are flexible, easy to use, and power-
ful. Over the last fifteen years, researchers have developed a remarkable
family of results, called matrix concentration inequalities, that achieve
all of these goals.

This monograph offers an invitation to the field of matrix concen-
tration inequalities. It begins with some history of random matrix the-
ory; it describes a flexible model for random matrices that is suitable
for many problems; and it discusses the most important matrix con-
centration results. To demonstrate the value of these techniques, the
presentation includes examples drawn from statistics, machine learn-
ing, optimization, combinatorics, algorithms, scientific computing, and
beyond.

J. A. Tropp. An Introduction to Matrix Concentration Inequalities. Foundations
and TrendsR© in Machine Learning, vol. 8, no. 1-2, pp. 1–230, 2015.
DOI: 10.1561/2200000048.
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1
Introduction

Random matrix theory has grown into a vital area of probability,
and it has found applications in many other fields. To motivate the
results in this monograph, we begin with an overview of the con-
nections between random matrix theory and computational mathe-
matics. We introduce the basic ideas underlying our approach, and
we state one of our main results on the behavior of random ma-
trices. As an application, we examine the properties of the sam-
ple covariance estimator, a random matrix that arises in statistics.
Afterward, we summarize the other types of results that appear
in this monograph, and we assess the novelties in this presenta-
tion.

1.1 Historical Origins

Random matrix theory sprang from several different sources in the first
half of the 20th century.

Geometry of Numbers. Peter Forrester [65, p. v] traces the field of
random matrix theory to work of Hurwitz, who defined the in-
variant integral over a Lie group. Specializing this analysis to the

2
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1.1. Historical Origins 3

orthogonal group, we can reinterpret this integral as the expec-
tation of a function of a uniformly random orthogonal matrix.

Multivariate Statistics. Another early example of a random ma-
trix appeared in the work of John Wishart [192]. Wishart was
studying the behavior of the sample covariance estimator for the
covariance matrix of a multivariate normal random vector. He
showed that the estimator, which is a random matrix, has the
distribution that now bears his name. Statisticians have often
used random matrices as models for multivariate data [123, 133].

Numerical Linear Algebra. In their remarkable work [189, 74] on
computational methods for solving systems of linear equations,
von Neumann and Goldstine considered a random matrix model
for the floating-point errors that arise from an LU decomposi-
tion.1 They obtained a high-probability bound for the norm of
the random matrix, which they interpreted as an estimate for
the error the procedure might typically incur. Curiously, in sub-
sequent years, numerical linear algebraists became very suspi-
cious of probabilistic techniques, and only in recent years have
randomized algorithms reappeared in this field. See the sur-
veys [120, 80, 193] for more details and references.

Nuclear Physics. In the early 1950s, physicists had reached the lim-
its of deterministic analytical techniques for studying the energy
spectra of heavy atoms undergoing slow nuclear reactions. Eu-
gene Wigner was the first researcher to surmise that a random
matrix with appropriate symmetries might serve as a suitable
model for the Hamiltonian of the quantum mechanical system
that describes the reaction. The eigenvalues of this random ma-
trix model the possible energy levels of the system. See Mehta’s
book [128, §1.1] for an account of all this.

In each area, the motivation was quite different and led to distinct
sets of questions. Later, random matrices began to percolate into other

1von Neumann and Goldstine invented and analyzed this algorithm before they
had any digital computer on which to implement it! See [76] for an historical account.
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4 Introduction

fields such as graph theory (the Erdős–Rényi model [61] for a random
graph) and number theory (as a model for the spacing of zeros of the
Riemann zeta function [131]).

1.2 The Modern Random Matrix

By now, random matrices are ubiquitous. They arise throughout mod-
ern mathematics and statistics, as well as in many branches of science
and engineering. Random matrices have several different purposes that
we may wish to distinguish. They can be used within randomized com-
puter algorithms; they serve as models for data and for physical phe-
nomena; and they are subjects of mathematical inquiry. This section
offers a taste of these applications. Note that the ideas and references
here reflect the author’s interests, and they are far from comprehensive!

1.2.1 Algorithmic Applications

The striking mathematical properties of random matrices can be har-
nessed to develop algorithms for solving many different problems.

Computing Matrix Approximations. Random matrices can be
used to develop fast algorithms for computing a truncated
singular-value decomposition. In this application, we multiply a
large input matrix by a smaller random matrix to extract infor-
mation about the dominant singular vectors of the input matrix.
The seed of this idea appears in [68, 53]. The survey [80] ex-
plains how to implement this method in practice, while the two
monographs [120, 193] cover more theoretical aspects.

Sparsification. One way to accelerate spectral computations on large
matrices is to replace the original matrix by a sparse proxy that
has similar spectral properties. An elegant way to produce the
sparse proxy is to zero out entries of the original matrix at ran-
dom while rescaling the entries that remain. This approach was
proposed in [3, 4], and the papers [2, 105] contain recent inno-
vations. Related ideas play an important role in Spielman and
Teng’s work [171] on fast algorithms for solving linear systems.

Full text available at: http://dx.doi.org/10.1561/2200000048



1.2. The Modern Random Matrix 5

Subsampling of Data. In large-scale machine learning, one may
need to subsample data randomly to reduce the computational
costs of fitting a model. For instance, we can combine random
sampling with the Nyström decomposition to obtain a random-
ized approximation of a kernel matrix. This method was intro-
duced to machine learning by Williams & Seeger [191]. The pa-
per [56] provides the first theoretical analysis, and the survey [70]
contains more complete results.

Dimension Reduction. To reduce the size of a computational prob-
lem, one may apply a randomized projection to the problem data.
This idea is used heavily in the theory of algorithms. Many types
of dimension reduction are based on properties of random matri-
ces. The two papers [92, 24] established the mathematical foun-
dations of this approach. The earliest applications in computer
science appear in the work [112]. Many contemporary variants
depend on ideas from [6] and [45].

Combinatorial Optimization. One approach to solving a computa-
tionally difficult optimization problem is to relax (i.e., enlarge)
the constraint set so the problem becomes tractable, to solve
the relaxed problem, and then to use a randomized procedure
to map the solution back to the original constraint set [17, §4.3].
This technique is called relaxation and rounding. For hard op-
timization problems involving a matrix variable, the analysis of
the rounding procedure often involves ideas from random matrix
theory [170, 134].

Compressed Sensing. When acquiring data about an object with
relatively few degrees of freedom as compared with the ambient
dimension, we may be able to sieve out the important information
from the object by taking a small number of random measure-
ments, where the number of measurements is comparable with
the number of degrees of freedom [69, 32, 52]. This observation
is now referred to as compressed sensing. Random matrices play
a central role in the design and analysis of measurement proce-
dures. For example, see [66, 36, 9, 185].
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6 Introduction

1.2.2 Modeling

Random matrices also appear as models for multivariate data or multi-
variate phenomena. By studying the properties of these models, we may
hope to understand the typical behavior of a data-analysis algorithm
or a physical system.

Sparse Approximation for Random Signals. Sparse approxima-
tion has become an important problem in statistics, signal pro-
cessing, machine learning and other areas. One model for a “typ-
ical” sparse signal poses the assumption that the nonzero coeffi-
cients that generate the signal are chosen at random. When an-
alyzing methods for identifying the sparse set of coefficients, we
must study the behavior of a random column submatrix drawn
from the model matrix [177, 176].

Demixing of Structured Signals. In data analysis, it is common
to encounter a mixture of two structured signals, and the goal
is to extract the two signals using prior information about the
structures [178, 37]. A common model for this problem assumes
that the signals are randomly oriented with respect to each other,
which means that it is usually possible to discriminate the under-
lying structures. Random orthogonal matrices arise in the anal-
ysis of estimation techniques for this problem [125, 9, 126].

Stochastic Block Model. One probabilistic framework for describ-
ing community structure in a network assumes that each pair of
individuals in the same community has a relationship with high
probability, while each pair of individuals drawn from different
communities has a relationship with lower probability. This is re-
ferred to as the stochastic block model [88]. It is quite common
to analyze algorithms for extracting community structure from
data by positing that this model holds. See [1] for a recent con-
tribution, as well as a summary of the extensive literature.

High-Dimensional Data Analysis. More generally, random mod-
els are pervasive in the analysis of statistical estimation proce-
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1.2. The Modern Random Matrix 7

dures for high-dimensional data. Random matrix theory plays a
key role in this field [123, 133, 101, 31].

Wireless Communication. Random matrices are commonly used as
models for wireless channels. See the book of Tulino and Verdú
for more information [187].

In these examples, it is important to recognize that random models
may not coincide very well with reality, but they allow us to get a
sense of what might be possible in some generic cases.

1.2.3 Theoretical Aspects

Random matrices are frequently studied for their intrinsic mathemat-
ical interest. In some fields, they provide examples of striking phe-
nomena. In other areas, they furnish counterexamples to “intuitive”
conjectures. Here are a few disparate problems where random matrices
play a role.

Combinatorics. An expander graph has the property that every
small set of vertices has edges linking it to a large proportion
of the other vertices. The expansion property is closely related to
the spectral behavior of the adjacency matrix of the graph. The
easiest construction of an expander involves a random matrix ar-
gument [8, §9.2].

Numerical Analysis. For worst-case examples, the Gaussian elim-
ination method for solving a linear system is not numerically
stable. In practice, however, stability problems rarely arise. One
explanation for this phenomenon is that, with high probability,
a small random perturbation of any fixed matrix is well condi-
tioned. As a consequence, it can be shown that Gaussian elimi-
nation is stable for most matrices [163].

High-Dimensional Geometry. Dvoretzky’s Theorem states that,
when N is large, the unit ball of each N -dimensional Banach
space has a slice of dimension n ≈ logN that is close to a Eu-
clidean ball with dimension n. It turns out that a random slice of
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8 Introduction

dimension n realizes this property [129]. This result can be framed
as a statement about spectral properties of a random matrix [75].

Quantum Information Theory. Random matrices appear as coun-
terexamples for a number of conjectures in quantum informa-
tion theory. Here is one instance. In classical information theory,
the total amount of information that we can transmit through a
pair of channels equals the sum of the information we can send
through each channel separately. It was conjectured that the same
property holds for quantum channels. In fact, a pair of quantum
channels can have strictly larger capacity than a single channel
because of entanglement. This result depends on a random matrix
construction [84]. See [85] for related work.

1.3 Random Matrices for the People

Historically, random matrix theory has been regarded as a very chal-
lenging field. Even now, many well-established methods are only com-
prehensible to researchers with significant experience, and it may take
months of intensive effort to prove new results. There are a small num-
ber of classes of random matrices that have been studied so completely
that we know almost everything about them. Yet, moving beyond this
terra firma, one quickly encounters examples where classical methods
are brittle.

We hope to democratize random matrix theory. This monograph
describes tools that deliver useful information about a wide range of
random matrices. In many cases, a modest amount of straightforward
arithmetic leads to strong results. The methods here should be acces-
sible to computational scientists working in a variety of fields. Indeed,
the techniques in this work have already found an extensive number of
applications.

1.4 Basic Questions in Random Matrix Theory

Random matrices merit special attention because they have spectral
properties that are quite different from familiar deterministic matrices.
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1.5. Random Matrices as Independent Sums 9

Here are some of the questions we might want to investigate.

• What is the expectation of the maximum eigenvalue of a random
Hermitian matrix? What about the minimum eigenvalue?

• How is the maximum eigenvalue of a random Hermitian matrix
distributed? What is the probability that it takes values substan-
tially different from its mean? What about the minimum eigen-
value?

• What is the expected spectral norm of a random matrix? What is
the probability that the norm takes a value substantially different
from its mean?

• What about the other eigenvalues or singular values? Can we say
something about the “typical” spectrum of a random matrix?

• Can we say anything about the eigenvectors or singular vectors?
For instance, is each one distributed almost uniformly on the
sphere?

• We can also ask questions about the operator norm of a random
matrix acting as a map between two normed linear spaces. In this
case, the geometry of the domain and codomain play a role.

In this work, we focus on the first three questions above. We study the
expectation of the extreme eigenvalues of a random Hermitian matrix,
and we attempt to provide bounds on the probability that they take
an unusual value. As an application of these results, we can control the
expected spectral norm of a general matrix and bound the probability
of a large deviation. These are the most relevant problems in many (but
not all!) applications. The remaining questions are also important, but
we will not touch on them here. We recommend the book [173] for a
friendly introduction to other branches of random matrix theory.

1.5 Random Matrices as Independent Sums

Our approach to random matrices depends on a fundamental principle:

Full text available at: http://dx.doi.org/10.1561/2200000048



10 Introduction

In applications, it is common that a random matrix
can be expressed as a sum of independent random
matrices.

The examples that appear in these notes should provide ample evidence
for this claim. For now, let us describe a specific problem that will serve
as an illustration throughout the Introduction. We hope this example
is complicated enough to be interesting but simple enough to elucidate
the main points.

1.5.1 Example: The Sample Covariance Estimator

Let x = (X1, . . . , Xp) be a complex random vector with zero mean:
Ex = 0. The covariance matrix A of the random vector x is the
positive-semidefinite matrix

A = E(xx∗) =
p∑

j,k=1
E
(
XjX

∗
k

)
·Ejk (1.5.1)

The star ∗ refers to the conjugate transpose operation, and the standard
basis matrix Ejk has a one in the (j, k) position and zeros elsewhere. In
other words, the (j, k) entry of the sample covariance matrix A records
the covariance between the jth and kth entry of the vector x.

One basic problem in statistical practice is to estimate the covari-
ance matrix from data. Imagine that we have access to n independent
samples x1, . . . ,xn, each distributed the same way as x. The sample
covariance estimator Y is the random matrix

Y = 1
n

n∑
k=1

xkx
∗
k. (1.5.2)

The random matrix Y is an unbiased estimator2 for the sample covari-
ance matrix: EY = A. Observe that the sample covariance estimator
Y fits neatly into our paradigm:

2The formula (1.5.2) supposes that the random vector x is known to have zero
mean. Otherwise, we have to make an adjustment to incorporate an estimate for
the sample mean.
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1.6. Exponential Concentration Inequalities for Matrices 11

The sample covariance estimator can be expressed
as a sum of independent random matrices.

This is precisely the type of decomposition that allows us to apply the
tools in these notes.

1.6 Exponential Concentration Inequalities for Matrices

An important challenge in probability theory is to study the probability
that a real random variable Z takes a value substantially different from
its mean. That is, we seek a bound of the form

P {|Z − EZ| ≥ t} ≤ ??? (1.6.1)

for a positive parameter t. When Z is expressed as a sum of independent
random variables, the literature contains many tools for addressing this
problem. See [23] for an overview.

For a random matrix Z, a variant of (1.6.1) is the question of
whether Z deviates substantially from its mean value. We might frame
this question as

P {‖Z − EZ‖ ≥ t} ≤ ??? . (1.6.2)

Here and elsewhere, ‖·‖ denotes the spectral norm of a matrix, also
known as the `2 operator norm. As noted, it is frequently possible to
decompose Z as a sum of independent random matrices. We might even
dream that established methods for studying the scalar concentration
problem (1.6.1) extend to (1.6.2).

1.6.1 The Bernstein Inequality

To explain what kind of results we have in mind, let us return to the
scalar problem (1.6.1). First, to simplify formulas, we assume that the
real random variable Z has zero mean: EZ = 0. If not, we can center
the random variable by subtracting its mean. Second, and more restric-
tively, we suppose that Z can be expressed as a sum of independent,
real random variables.

To control Z, we rely on two types of information: global properties
of the sum (such as its mean and variance) and local properties of
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the summands (such as their maximum fluctuation). These pieces of
data are usually easy to obtain. Together, they determine how well Z
concentrates around zero, its mean value.

Theorem 1.6.1 (Bernstein Inequality). Let S1, . . . , Sn be independent,
centered, real random variables, and assume that each one is uniformly
bounded:

ESk = 0 and |Sk| ≤ L for each k = 1, . . . , n.

Introduce the sum Z =
∑n
k=1 Sk, and let v(Z) denote the variance of

the sum:
v(Z) = EZ2 =

n∑
k=1

ES2
k .

Then
P {|Z| ≥ t} ≤ 2 exp

(
−t2/2

v(Z) + Lt/3

)
for all t ≥ 0.

See [23, §2.8] for a proof of this result. We refer to Theorem 1.6.1 as
an exponential concentration inequality because it yields exponentially
decaying bounds on the probability that Z deviates substantially from
its mean.

1.6.2 The Matrix Bernstein Inequality

What is truly astonishing is that the scalar Bernstein inequality, The-
orem 1.6.1, lifts directly to matrices. Let us emphasize this remarkable
fact:

There are exponential concentration inequalities for
the spectral norm of a sum of independent random
matrices.

As a consequence, once we decompose a random matrix as an indepen-
dent sum, we can harness global properties (such as the mean and the
variance) and local properties (such as a uniform bound on the sum-
mands) to obtain detailed information about the norm of the sum. As
in the scalar case, it is usually easy to acquire the input data for the
inequality. But the output of the inequality is highly nontrivial.

Full text available at: http://dx.doi.org/10.1561/2200000048



1.6. Exponential Concentration Inequalities for Matrices 13

To illustrate these claims, we will state one of the major results
from this monograph. This theorem is a matrix extension of Bernstein’s
inequality that was developed independently in the two papers [138,
183]. After presenting the result, we give some more details about its
interpretation. In the next section, we apply this result to study the
covariance estimation problem.

Theorem 1.6.2 (Matrix Bernstein). Let S1, . . . ,Sn be independent, cen-
tered random matrices with common dimension d1 × d2, and assume
that each one is uniformly bounded

ESk = 0 and ‖Sk‖ ≤ L for each k = 1, . . . , n.

Introduce the sum
Z =

n∑
k=1

Sk, (1.6.3)

and let v(Z) denote the matrix variance statistic of the sum:

v(Z) = max
{
‖E(ZZ∗)‖ , ‖E(Z∗Z)‖

}
= max

{∥∥∥∥∥
n∑
k=1

E
(
SkS

∗
k

)∥∥∥∥∥ ,
∥∥∥∥∥
n∑
k=1

E
(
S∗kSk

)∥∥∥∥∥
}
.

(1.6.4)

Then, for all t ≥ 0,

P {‖Z‖ ≥ t} ≤ (d1 + d2) · exp
(

−t2/2
v(Z) + Lt/3

)
. (1.6.5)

Furthermore,

E ‖Z‖ ≤
√

2v(Z) log(d1 + d2) + 1
3L log(d1 + d2). (1.6.6)

The proof of this result appears in Chapter 6.
To appreciate what Theorem 1.6.2 means, it is valuable to make

a direct comparison with the scalar version, Theorem 1.6.1. In both
cases, we express the object of interest as an independent sum, and
we instate a uniform bound on the summands. There are three salient
changes:

• The variance v(Z) in the result for matrices can be interpreted
as the magnitude of the expected squared deviation of Z from its
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mean. The formula reflects the fact that a general matrix B has
two different squares BB∗ and B∗B. For an Hermitian matrix,
the two squares coincide.

• The tail bound has a dimensional factor d1 + d2 that depends on
the size of the matrix. This factor reduces to two in the scalar
setting. In the matrix case, it limits the range of t where the tail
bound is informative.

• We have included a bound for E ‖Z‖. This estimate is not par-
ticularly interesting in the scalar setting, but it is usually quite
challenging to prove results of this type for matrices. In fact, the
expectation bound is often more useful than the tail bound.

The latter point deserves amplification:

The expectation bound (1.6.6) is the most important
aspect of the matrix Bernstein inequality.

For further discussion of this result, turn to Chapter 6. Chapters 4
and 7 contain related results and interpretations.

1.6.3 Example: The Sample Covariance Estimator

We will apply the matrix Bernstein inequality, Theorem 1.6.2, to mea-
sure how well the sample covariance estimator approximates the true
covariance matrix. As before, let x be a zero-mean random vector with
dimension p. Introduce the p× p covariance matrix A = E(xx∗). Sup-
pose we have n independent samples x1, . . . ,xn with the same distri-
bution as x. Form the p× p sample covariance estimator

Y = 1
n

n∑
k=1

xkx
∗
k.

Our goal is to study how the spectral-norm distance ‖Y −A‖ between
the sample covariance and the true covariance depends on the number
n of samples.

For simplicity, we will perform the analysis under the extra assump-
tion that the `2 norm of the random vector is bounded: ‖x‖2 ≤ B. This
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hypothesis can be relaxed if we apply a variant of the matrix Bernstein
inequality that reflects the typical magnitude of a summand Sk. One
such variant appears in the formula (6.1.6).

We are in a situation where it is quite easy to see how the matrix
Bernstein inequality applies. Define the random deviation Z of the
estimator Y from the true covariance matrix A:

Z = Y −A =
n∑
k=1

Sk where Sk = 1
n

(
xkx

∗
k −A

)
.

The random matrices Sk are independent, identically distributed, and
centered. To apply Theorem 1.6.2, we need to find a uniform bound L
for the summands, and we need to control the matrix variance statistic
v(Z).

First, let us develop a uniform bound on the spectral norm of each
summand. We may calculate that

‖Sk‖ = 1
n
‖xkx∗k −A‖ ≤

1
n

(
‖xkx∗k‖+ ‖A‖

)
≤ 2B

n
.

The first relation is the triangle inequality. The second follows from the
assumption that x is bounded and the observation that

‖A‖ = ‖E(xx∗)‖ ≤ E ‖xx∗‖ = E ‖x‖2 ≤ B.

This expression depends on Jensen’s inequality and the hypothesis that
x is bounded.

Second, we need to bound the matrix variance statistic v(Z) defined
in (1.6.4). The matrix Z is Hermitian, so the two squares in this formula
coincide with each other:

v(Z) = ‖EZ2‖ =
∥∥∥∥∥
n∑
k=1

ES2
k

∥∥∥∥∥ .
We need to determine the variance of each summand. By direct calcu-
lation,

ES2
k = 1

n2 E
(
xkx

∗
k −A

)2
= 1
n2 E

[
‖xk‖2 · xkx∗k −

(
xkx

∗
k

)
A−A

(
xkx

∗
k

)
+A2]
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4
1
n2
[
B · E

(
xkx

∗
k

)
−A2 −A2 +A2]

4
B

n2 ·A

The expression H 4 T means that T −H is positive semidefinite. We
used the norm bound for the random vector x and the fact that ex-
pectation preserves the semidefinite order. In the last step, we dropped
the negative-semidefinite term −A2. Summing this relation over k, we
reach

0 4
n∑
k=1

ES2
k 4

B

n
·A.

The sum is a positive-semidefinite matrix because S2
k is positive

semidefinite. Extract the spectral norm to arrive at

v(Z) =
∥∥∥∥∥
n∑
k=1

ES2
k

∥∥∥∥∥ ≤ B ‖A‖
n

.

We have now collected the information we need to analyze the sample
covariance estimator.

We can invoke the estimate (1.6.6) from the matrix Bernstein in-
equality, Theorem 1.6.2, with the uniform bound L = 2B/n and the
variance bound v(Z) ≤ B ‖A‖ /n. We attain

E ‖Y −A‖ = E ‖Z‖ ≤

√
2B ‖A‖ log(2p)

n
+ 2B log(2p)

3n .

In other words, the error in approximating the sample covariance ma-
trix is not too large when we have a sufficient number of samples. If we
wish to obtain a relative error on the order of ε, we may take

n ≥ 2B log(2p)
ε2 ‖A‖

.

This selection yields

E ‖Y −A‖ ≤
(
ε+ ε2) · ‖A‖ .

It is often the case that ‖A‖ = Const and B = Const ·p, so we discover
that n = Const · ε−2p log p samples are sufficient for the sample co-
variance estimator to provide a relatively accurate estimate of the true
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covariance matrix A. This bound is qualitatively sharp for worst-case
distributions.

The analysis in this section applies to many other examples. We
encapsulate the argument in Corollary 6.2.1, which we use to study
several more problems.

1.6.4 History of this Example

Covariance estimation may be the earliest application of matrix concen-
tration tools in random matrix theory. Mark Rudelson [158], building
on a suggestion of Gilles Pisier, showed how to use the noncommutative
Khintchine inequality [116, 117, 29, 30] to obtain essentially optimal
bounds on the sample covariance estimator of a bounded random vec-
tor. The tutorial [188] of Roman Vershynin offers an overview of this
problem as well as many results and references. The analysis of the sam-
ple covariance matrix here is adapted from the technical report [72]. It
leads to a result similar with the one Rudelson obtained in [158].

1.6.5 Optimality of the Matrix Bernstein Inequality

Theorem 1.6.2 can be sharpened very little because it applies to every
random matrix Z of the form (1.6.3). Let us say a few words about
optimality now, postponing the details to §6.1.2.

Suppose that Z is a random matrix of the form (1.6.3) where the
summands Sk are independent and have zero mean. Introduce the
quantity

L2
? = E maxk ‖Sk‖2 .

In §6.1.2, we will argue that these assumptions imply

const ·
[
v(Z) + L2

?

]
≤ E ‖Z‖2

≤ Const ·
[
v(Z) log(d1 + d2) + L2

? log2(d1 + d2)
]
. (1.6.7)

In other words, the scale of E ‖Z‖2 must depend on the matrix variance
statistic v(Z) and the average upper bound L2

? for the summands. The
quantity L = sup ‖Sk‖ that appears in the matrix Bernstein inequality
always exceeds L?, sometimes by a large margin, but they capture the
same type of information.
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The difference between the lower and upper bound in (1.6.7) comes
from the dimensional factor log(d1 +d2). There are random matrices Z
for which the lower bound gives a more accurate reflection of E ‖Z‖2,
but there are also many random matrices where the upper bound de-
scribes the behavior correctly. At present, we do not understand how
to distinguish between the two extremes, but some recent progress ap-
pears in [186].

The tail bound (1.6.5) provides a useful tool in practice, but it
is not necessarily the best way to collect information about large de-
viation probabilities. To obtain more precise results, we recommend
using the expectation bound (1.6.6) to control E ‖Z‖ and then apply-
ing scalar concentration inequalities to estimate P {‖Z‖ ≥ E ‖Z‖+ t}.
The book [23] offers a good treatment of the methods that are available
for establishing scalar concentration.

1.7 The Arsenal of Results

The Bernstein inequality is probably the most familiar exponential tail
bound for a sum of independent random variables, but there are many
more. It turns out that essentially all of these scalar results admit ex-
tensions that hold for random matrices. In fact, many of the established
techniques for scalar concentration have analogs in the matrix setting.

1.7.1 What’s Here...

This monograph focuses on a few key exponential concentration in-
equalities for a sum of independent random matrices, and it describes
some specific applications of these results.

Matrix Gaussian Series. A matrix Gaussian series is a random ma-
trix that can be expressed as a sum of fixed matrices, each
weighted by an independent standard normal random variable.
This formulation includes a surprising number of examples. The
most important are undoubtedly Wigner matrices and rectan-
gular Gaussian matrices. Another interesting case is a Toeplitz
matrix with Gaussian entries. The analysis of matrix Gaussian
series appears in Chapter 4.
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Matrix Rademacher Series. A matrix Rademacher series is a ran-
dom matrix that can be written as a sum of fixed matrices, each
weighted by an independent Rademacher random variable.3 This
construction includes things like random sign matrices, as well
as a fixed matrix whose entries are modulated by random signs.
There are also interesting examples that arise in combinatorial
optimization. We treat these problems in Chapter 4.

Matrix Chernoff Bounds. The matrix Chernoff bounds apply to a
random matrix that can be decomposed as a sum of independent,
random positive-semidefinite matrices whose maximum eigenval-
ues are subject to a uniform bound. These results allow us to ob-
tain information about the norm of a random submatrix drawn
from a fixed matrix. They are also appropriate for studying the
Laplacian matrix of a random graph. See Chapter 5.

Matrix Bernstein Bounds. The matrix Bernstein inequality con-
cerns a random matrix that can be expressed as a sum of indepen-
dent, centered random matrices that admit a uniform spectral-
norm bound. This result has many applications, including the
analysis of randomized algorithms for matrix sparsification and
matrix multiplication. It can also be used to study the random
features paradigm for approximating a kernel matrix. Chapter 6
contains this material.

Intrinsic Dimension Bounds. Some matrix concentration inequali-
ties can be improved when the randommatrix has limited spectral
content in most dimensions. In this situation, we may be able to
obtain bounds that do not depend on the ambient dimension. See
Chapter 7 for details.

We have chosen to present these results because they are illustrative,
and they have already found concrete applications.

3A Rademacher random variable takes the two values ±1 with equal probability.
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1.7.2 What’s Not Here...

The program of extending scalar concentration results to the matrix
setting has been quite fruitful, and there are many useful results beyond
the ones that we detail. Let us mention some of the other tools that
are available. For further information, see the annotated bibliography.

First, there are additional exponential concentration inequalities for
a sum of independent random matrices. All of the following results can
be established within the framework of this monograph.

Matrix Hoeffding. This result concerns a sum of independent ran-
dom matrices whose squares are subject to semidefinite upper
bounds [183, §7].

Matrix Bennett. This estimate sharpens the tail bound from the
matrix Bernstein inequality [183, §6].

Matrix Bernstein, Unbounded Case. The matrix Bernstein in-
equality extends to the case where the moments of the summands
grow at a controlled rate. See [183, §6] or [101].

Matrix Bernstein, Nonnegative Summands. The lower tail of
the Bernstein inequality can be improved when the summands
are positive semidefinite [124]; this result extends to the matrix
setting. By a different argument, the dimensional factor can be
removed from this bound for a class of interesting examples [141,
Thm. 3.1].

The approach in this monograph can be adapted to obtain exponen-
tial concentration for matrix-valued martingales. Here are a few results
from this category:

Matrix Azuma. This is the martingale version of the matrix Hoeffd-
ing bound [183, §7].

Matrix Bounded Differences. The matrix Azuma inequality gives
bounds for the spectral norm of a matrix-valued function of in-
dependent random variables [183, §7].
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Matrix Freedman. This result can be viewed as the martingale ex-
tension of the matrix Bernstein inequality [138, 180].

The technical report [182] explains how to extend other bounds for a
sum of independent random matrices to the martingale setting.

Polynomial moment inequalities provide bounds for the expected
trace of a power of a random matrix. Moment inequalities for a sum of
independent random matrices can provide useful information when the
summands have heavy tails or else a uniform bound does not reflect
the typical size of the summands.

Matrix Khintchine. The matrix Khintchine inequality is the polyno-
mial version of the exponential bounds for matrix Gaussian series
and matrix Rademacher series. This result is presented in (4.7.1).
See the papers [116, 29, 30] or [118, Cor. 7.3] for proofs.

Matrix Moment Inequalities. The matrix Chernoff inequality ad-
mits a polynomial variant; the simplest form appears in (5.1.9).
The matrix Bernstein inequality also has a polynomial variant,
stated in (6.1.6). These bounds are drawn from [40, App.].

The methods that lead to polynomial moment inequalities differ sub-
stantially from the techniques in this monograph, so we cannot include
the proofs here. The annotated bibliography includes references to the
large literature on moment inequalities for random matrices.

Recently, Lester Mackey and the author, in collaboration with
Daniel Paulin and several other researchers [118, 143], have devel-
oped another framework for establishing matrix concentration. This
approach extends a scalar argument, introduced by Chatterjee [38, 39],
that depends on exchangeable pairs and Markov chain couplings. The
method of exchangeable pairs delivers both exponential concentration
inequalities and polynomial moment inequalities for random matrices,
and it can reproduce many of the bounds mentioned above. It also
leads to new results:

Polynomial Efron–Stein Inequality for Matrices. This bound is
a matrix version of the polynomial Efron–Stein inequality [21,
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Thm. 1]. It controls the polynomial moments of a centered ran-
dom matrix that is a function of independent random vari-
ables [143, Thm. 4.2].

Exponential Efron–Stein Inequality for Matrices. This bound
is the matrix extension of the exponential Efron–Stein inequal-
ity [22, Thm. 1]. It leads to exponential concentration inequalities
for a centered random matrix constructed from independent ran-
dom variables [143, Thm. 4.3].

Another significant advantage is that the method of exchangeable pairs
can sometimes handle random matrices built from dependent random
variables. Although the simplest version of the exchangeable pairs ar-
gument is more elementary than the approach in this monograph, it
takes a lot of effort to establish the more useful inequalities. With some
regret, we have chosen not to include this material because the method
and results are accessible to a narrower audience.

Finally, we remark that the modified logarithmic Sobolev inequal-
ities of [22, 21] also extend to the matrix setting [42]. Unfortunately,
the matrix variants do not seem to be as useful as the scalar results.

In addition to the matrix concentration tools mentioned above, the
field of random matrix theory offers a wide range of other methods.
For an introduction to some of the major ideas in this area, see the
book [173].

1.8 About This Monograph

This monograph is intended for graduate students and researchers in
computational mathematics who want to learn some modern tech-
niques for analyzing random matrices. The preparation required is
minimal. We assume familiarity with calculus, applied linear alge-
bra, the basic theory of normed spaces, and classical probability the-
ory up through the elementary concentration inequalities (such as
Markov and Bernstein). Beyond the basics, which can be gleaned from
any good textbook, we include all the required background in Chap-
ter 2.
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The material here is based primarily on the paper “User-Friendly
Tail Bounds for Sums of RandomMatrices” by the present author [183].
There are several significant revisions to this earlier work:

Examples and Applications. Many of the papers on matrix con-
centration give limited information about how the results can be
used to solve problems of interest. A major part of these notes
consists of worked examples and applications that indicate how
matrix concentration inequalities apply to practical questions.

Expectation Bounds. This work collects bounds for the expected
value of the spectral norm of a random matrix and bounds for the
expectation of the smallest and largest eigenvalues of a random
symmetric matrix. Some of these useful results have appeared
piecemeal in the literature [40, 118], but they have not been in-
cluded in a unified presentation.

Optimality. We explain why each matrix concentration inequality is
(nearly) optimal. This presentation includes examples to show
that each term in each bound is necessary to describe some par-
ticular phenomenon.

Intrinsic Dimension Bounds. Over the last few years, there have
been some refinements to the basic matrix concentration bounds
that improve the dependence on dimension [91, 130]. We describe
a new framework that allows us to prove these results with ease.

Lieb’s Theorem. The matrix concentration inequalities in this mono-
graph depend on a deep theorem [109, Thm. 6] from matrix anal-
ysis due to Elliott Lieb. We provide a complete proof of this
result, along with all the background required to understand the
argument.

Annotated Bibliography. We have included a list of the major
works on matrix concentration, including a short summary of
the main contributions of these papers. We hope this catalog will
be a valuable guide for further reading.
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The organization of the notes is straightforward. Chapter 2 con-
tains background material that is needed for the analysis. Chapter 3
describes the framework for developing exponential concentration in-
equalities for matrices. Chapter 4 presents the first set of results and
examples, concerning matrix Gaussian and Rademacher series. Chap-
ter 5 introduces the matrix Chernoff bounds and their applications,
and Chapter 6 expands on our discussion of the matrix Bernstein in-
equality. Chapter 7 shows how to sharpen some of the results so that
they depend on an intrinsic dimension parameter. Chapter 8 contains
the proof of Lieb’s theorem. We conclude with resources on matrix
concentration and a bibliography.

To make the presentation smoother, we have not followed all of
the conventions for scholarly articles in journals. In particular, almost
all the citations appear in the notes at the end of each chapter. Our
aim has been to explain the ideas as clearly as possible, rather than to
interrupt the narrative with an elaborate genealogy of results.

Full text available at: http://dx.doi.org/10.1561/2200000048



References

[1] E. Abbé and C. Sandon. Community detection in general stochas-
tic block models: fundamental limits and efficient recovery algorithms.
Available at http://arXiv.org/abs/1503.00609, Mar. 2015.

[2] D. Achlioptas, Z. Karnin, and E. Liberty. Near-optimal entrywise sam-
pling for data matrices. In Advances in Neural Information Processing
Systems 26, 2013.

[3] D. Achlioptas and F. McSherry. Fast computation of low rank ma-
trix approximations. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, pages 611–618 (electronic). ACM,
New York, 2001.

[4] D. Achlioptas and F. McSherry. Fast computation of low-rank matrix
approximations. J. Assoc. Comput. Mach., 54(2):Article 10, 2007. (elec-
tronic).

[5] R. Ahlswede and A. Winter. Strong converse for identification via quan-
tum channels. IEEE Trans. Inform. Theory, 48(3):569–579, Mar. 2002.

[6] N. Ailon and B. Chazelle. The fast Johnson–Lindenstrauss transform
and approximate nearest neighbors. SIAM J. Comput., 39(1):302–322,
2009.

[7] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of
one distribution from another. J. Roy. Statist. Soc. Ser. B, 28:131–142,
1966.

216

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1503.00609


References 217

[8] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience
[John Wiley & Sons], New York, second edition, 2000. With an appendix
on the life and work of Paul Erdős.

[9] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the
edge: A geometric theory of phase transitions in convex optimization.
Inform. Inference, 3(3):224–294, 2014. Preprint available at http://
arXiv.org/abs/1303.6672.

[10] T. Ando. Concavity of certain maps on positive definite matrices and
applications to Hadamard products. Linear Algebra Appl., 26:203–241,
1979.

[11] S. Arora, E. Hazan, and S. Kale. A fast random sampling algorithm for
sparsifying matrices. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, pages 272–279, 2006.

[12] Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional
random matrices. Springer Series in Statistics. Springer, New York,
second edition, 2010.

[13] Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large-
dimensional sample covariance matrix. Ann. Probab., 21(3):1275–1294,
1993.

[14] A. S. Bandeira and R. Van Handel. Sharp nonasymptotic bounds on
the norm of random matrices with independent entries. Available at
http://arXiv.org/abs/1408.6185, Aug. 2014.

[15] S. Barman. An approximate version of Carathéodory’s theorem with
applications to approximating Nash equilibria and dense bipartite sub-
graphs. Available at http://arXiv.org/abs/1406.2296, June 2014.

[16] A. R. Barron. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Trans. Inform. Theory, 39(3):930–945, May
1993.

[17] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization.
MPS/SIAM Series on Optimization. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA; Mathematical Programming
Society (MPS), Philadelphia, PA, 2001. Analysis, algorithms, and en-
gineering applications.

[18] J. Bendat and S. Sherman. Monotone and convex operator functions.
Trans. Amer. Math. Soc., 79:58–71, 1955.

[19] R. Bhatia. Matrix Analysis. Number 169 in Graduate Texts in Mathe-
matics. Springer, Berlin, 1997.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1303.6672
http://arXiv.org/abs/1303.6672
http://arXiv.org/abs/1408.6185
http://arXiv.org/abs/1406.2296


218 References

[20] R. Bhatia. Positive Definite Matrices. Princeton Univ. Press, Princeton,
NJ, 2007.

[21] S. Boucheron, O. Bousquet, G. Lugosi, and P. Massart. Moment in-
equalities for functions of independent random variables. Ann. Probab.,
33(2):514–560, 2005.

[22] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities
using the entropy method. Ann. Probab., 31(3):1583–1614, 2003.

[23] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities.
Oxford University Press, Oxford, 2013. A nonasymptotic theory of in-
dependence, With a foreword by Michel Ledoux.

[24] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert
space. Israel J. Math., 52(1-2):46–52, 1985.

[25] J. Bourgain and L. Tzafriri. Invertibility of “large” submatrices with
applications to the geometry of Banach spaces and harmonic analysis.
Israel J. Math., 57(2):137–224, 1987.

[26] J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J.
Reine Angew. Math., 420:1–43, 1991.

[27] L. M. Brègman. A relaxation method of finding a common point of
convex sets and its application to the solution of problems in convex
programming. Z̆. Vyčisl. Mat. i Mat. Fiz., 7:620–631, 1967.

[28] W. Bryc, A. Dembo, and T. Jiang. Spectral measure of large random
Hankel, Markov and Toeplitz matrices. Ann. Probab., 34(1):1–38, 2006.

[29] A. Buchholz. Operator Khintchine inequality in non-commutative prob-
ability. Math. Ann., 319:1–16, 2001.

[30] A. Buchholz. Optimal constants in Khintchine-type inequalities for
Fermions, Rademachers and q-Gaussian operators. Bull. Pol. Acad.
Sci. Math., 53(3):315–321, 2005.

[31] P. Bühlmann and S. van de Geer. Statistics for high-dimensional data.
Springer Series in Statistics. Springer, Heidelberg, 2011. Methods, the-
ory and applications.

[32] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[33] B. Carl. Inequalities of Bernstein–Jackson-type and the degree of com-
pactness in Banach spaces. Ann. Inst. Fourier (Grenoble), 35(3):79–118,
1985.

Full text available at: http://dx.doi.org/10.1561/2200000048



References 219

[34] E. Carlen. Trace inequalities and quantum entropy: an introductory
course. In Entropy and the quantum, volume 529 of Contemp. Math.,
pages 73–140. Amer. Math. Soc., Providence, RI, 2010.

[35] E. A. Carlen and E. H. Lieb. A Minkowski type trace inequality and
strong subadditivity of quantum entropy. II. Convexity and concavity.
Lett. Math. Phys., 83(2):107–126, 2008.

[36] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The
Convex Geometry of Linear Inverse Problems. Found. Comput. Math.,
12(6):805–849, 2012.

[37] V. Chandrasekaran, S. Sanghavi, P. A. Parillo, and A. S. Willsky. Rank-
sparsity incoherence for matrix decomposition. Available at http://
arXiv.org/abs/0906.2220, Jun. 2009.

[38] S. Chatterjee. Concentration Inequalities with Exchangeable Pairs. Pro-
Quest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–Stanford University.

[39] S. Chatterjee. Stein’s method for concentration inequalities. Probab.
Theory Related Fields, 138:305–321, 2007.

[40] R. Y. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance
estimator: An analysis using matrix concentration inequalities. Inform.
Inference, 1(1), 2012. doi:10.1093/imaiai/ias001.

[41] R. Y. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance
estimator: An analysis using matrix concentration inequalities. ACM
Report 2012-01, California Inst. Tech., Pasadena, CA, Feb. 2012.

[42] R. Y. Chen and J. A. Tropp. Subadditivity of matrix ϕ-entropy and
concentration of random matrices. Electron. J. Probab., 19(27):1–30,
2014.

[43] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Statistics, 23:493–507,
1952.

[44] S. Chrétien and S. Darses. Invertibility of random submatrices via tail-
decoupling and a matrix Chernoff inequality. Statist. Probab. Lett.,
82(7):1479–1487, 2012.

[45] K. L. Clarkson and D. P. Woodruff. Low rank approximation and re-
gression in input sparsity time. In STOC’13—Proceedings of the 2013
ACM Symposium on Theory of Computing, pages 81–90. ACM, New
York, 2013.

[46] A. Connes and E. Størmer. Entropy for automorphisms of II1 von
Neumann algebras. Acta Math., 134(3-4):289–306, 1975.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/0906.2220
http://arXiv.org/abs/0906.2220
doi:10.1093/imaiai/ias001


220 References

[47] D. Cristofides and K. Markström. Expansion properties of random Cay-
ley graphs and vertex transitive graphs via matrix martingales. Random
Structures Algs., 32(8):88–100, 2008.

[48] I. Csiszár. Information-type measures of difference of probability dis-
tributions and indirect observations. Studia Sci. Math. Hungar., 2:299–
318, 1967.

[49] A. d’Asprémont. Subsampling algorithms for semidefinite programming.
Stoch. Syst., 1(2):274–305, 2011.

[50] K. R. Davidson and S. J. Szarek. Local operator theory, random ma-
trices, and Banach spaces. In W. B. Johnson and J. Lindenstrauss,
editors, Handbook of Banach Space Geometry, pages 317–366. Elsevier,
Amsterdam, 2002.

[51] I. S. Dhillon and J. A. Tropp. Matrix nearness problems with Bregman
divergences. SIAM J. Matrix Anal. Appl., 29(4):1120–1146, 2007.

[52] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,
52(4):1289–1306, Apr. 2006.

[53] P. Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay.
Clustering in large graphs and matrices. In Proceedings of the Tenth An-
nual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD,
1999), pages 291–299. ACM, New York, 1999.

[54] P. Drineas and R. Kannan. Fast Monte Carlo algorithms for approxi-
mate matrix multiplication. In Proc. 42nd IEEE Symp. Foundations of
Computer Science (FOCS), pages 452–259, 2001.

[55] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algo-
rithms for matrices. I. Approximating matrix multiplication. SIAM J.
Comput., 36(1):132–157, 2006.

[56] P. Drineas and M. Mahoney. On the Nyström method for approximating
a Gram matrix for improved kernel-based learning. J. Mach. Learn.
Res., 6:2153–2175, 2005.

[57] P. Drineas and A. Zouzias. A note on element-wise matrix sparsifica-
tion via a matrix-valued Bernstein inequality. Inform. Process. Lett.,
111(8):385–389, 2011.

[58] A. Ebadian, I. Nikoufar, and M. E. Gordji. Perspectives of matrix
convex functions. Proc. Natl. Acad. Sci. USA, 108(18):7313–7314, 2011.

[59] E. G. Effros. A matrix convexity approach to some celebrated quantum
inequalities. Proc. Natl. Acad. Sci. USA, 106(4):1006–1008, Jan. 2009.

Full text available at: http://dx.doi.org/10.1561/2200000048



References 221

[60] H. Epstein. Remarks on two theorems of E. Lieb. Comm. Math. Phys.,
31:317–325, 1973.

[61] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar
Tud. Akad. Mat. Kutató Int. Közl., 5:17–61, 1960.

[62] W. Feller. An introduction to probability theory and its applications. Vol.
I. Third edition. John Wiley & Sons, Inc., New York-London-Sydney,
1968.

[63] W. Feller. An introduction to probability theory and its applications. Vol.
II. Second edition. John Wiley & Sons, Inc., New York-London-Sydney,
1971.

[64] X. Fernique. Regularité des trajectoires des fonctions aléatoires gaussi-
ennes. In École d’Été de Probabilités de Saint-Flour, IV-1974, pages
1–96. Lecture Notes in Math., Vol. 480. Springer, Berlin, 1975.

[65] P. J. Forrester. Log-gases and random matrices, volume 34 of London
Mathematical Society Monographs Series. Princeton University Press,
Princeton, NJ, 2010.

[66] S. Foucart and H. Rauhut. A mathematical introduction to
compressive sensing. Applied and Numerical Harmonic Analysis.
Birkhäuser/Springer, New York, 2013.

[67] D. A. Freedman. On tail probabilities for martingales. Ann. Probab.,
3(1):100–118, Feb. 1975.

[68] A. Frieze, R. Kannan, and S. Vempala. Fast Monte Carlo algorithms
for finding low-rank approximations. In Proc. 39th Ann. IEEE Symp.
Foundations of Computer Science (FOCS), pages 370–378, 1998.

[69] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss.
Near-optimal sparse Fourier representations via sampling. In Proceed-
ings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pages 152–161. ACM, New York, 2002.

[70] A. Gittens and M. Mahoney. Revisiting the Nyström method for im-
proved large-scale machine learning. J. Mach. Learn. Res., 2014. To
appear. Preprint available at http://arXiv.org/abs/1303.1849.

[71] A. Gittens and J. A. Tropp. Error bounds for random matrix approx-
imation schemes. ACM Report 2014-01, California Inst. Tech., Nov.
2009. Available at http://arXiv.org/abs/0911.4108.

[72] A. Gittens and J. A. Tropp. Tail bounds for all eigenvalues of a sum of
random matrices. ACM Report 2014-02, California Inst. Tech., 2014.
Available at http://arXiv.org/abs/1104.4513.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1303.1849
http://arXiv.org/abs/0911.4108
http://arXiv.org/abs/1104.4513


222 References

[73] C. Godsil and G.F. Royle. Algebraic Graph Theory. Number 207 in
Graduate Texts in Mathematics. Springer, 2001.

[74] H. H. Goldstine and J. von Neumann. Numerical inverting of matrices
of high order. II. Proc. Amer. Math. Soc., 2:188–202, 1951.

[75] Y. Gordon. Some inequalities for Gaussian processes and applications.
Israel J. Math., 50(4):265–289, 1985.

[76] J. F. Grcar. John von Neumann’s analysis of Gaussian elimination and
the origins of modern numerical analysis. SIAM Rev., 53(4):607–682,
2011.

[77] G. R. Grimmett and D. R. Stirzaker. Probability and random processes.
Oxford University Press, New York, third edition, 2001.

[78] D. Gross. Recovering low-rank matrices from few coefficients in any
basis. IEEE Trans. Inform. Theory, 57(3):1548–1566, Mar. 2011.

[79] D. Gross and V. Nesme. Note on sampling without replacing from
a finite collection of matrices. Available at http://arXiv.org/abs/
1001.2738.

[80] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with
randomness: Stochastic algorithms for constructing approximate matrix
decompositions. SIAM Rev., 53(2):217–288, June 2011.

[81] R. Hamid, Y. Xiao, A. Gittens, and D. DeCoste. Compact random
feature maps. In Proc. 31st Intl. Conf. Machine Learning, Beijing, July
2014.

[82] F. Hansen and G. K. Pedersen. Jensen’s inequality for operators and
Löwner’s theorem. Math. Ann., 258(3):229–241, 1982.

[83] F. Hansen and G. K. Pedersen. Jensen’s operator inequality. Bull.
London Math. Soc., 35(4):553–564, 2003.

[84] M. B. Hastings. Superadditivity of communication complexity using
entangled inputs. Nature Phys., 5:255–257, 2009.

[85] P. Hayden and A. Winter. Counterexamples to the maximal p-norm
multiplicity conjecture for all p > 1. Comm. Math. Phys., 284(1):263–
280, 2008.

[86] F. Hiai and D. Petz. Introduction to Matrix Analysis and Applications.
Springer, Feb. 2014.

[87] N. J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2008.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1001.2738
http://arXiv.org/abs/1001.2738


References 223

[88] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983.

[89] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge
University Press, Cambridge, 1994. Corrected reprint of the 1991 orig-
inal.

[90] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ.
Press, 2nd edition, 2013.

[91] D. Hsu, S. M. Kakade, and T. Zhang. Tail inequalities for sums of ran-
dom matrices that depend on the intrinsic dimension. Electron. Com-
mun. Probab., 17:no. 14, 13, 2012.

[92] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In Conference in modern analysis and probability
(New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189–
206. Amer. Math. Soc., Providence, RI, 1984.

[93] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequal-
ities. Ann. Probab., 31(2):948–995, 2003.

[94] M. Junge and Q. Xu. On the best constants in some non-commutative
martingale inequalities. Bull. London Math. Soc., 37:243–253, 2005.

[95] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequal-
ities II: Applications. Israel J. Math., 167:227–282, 2008.

[96] M. Junge and Q. Zeng. Noncommutative Bennett and Rosenthal in-
equalities. Ann. Probab., 41(6):4287–4316, 2013.

[97] M. Junge and Q. Zeng. Noncommutative martingale deviation and
Poincaré type inequalities with applications. Probab. Theory Related
Fields, Feb. 2014. Preprint available at http://arXiv.org/abs/1211.
3209.

[98] P. Kar and H. Karnick. Random feature maps for dot product kernels. In
Proc. 15th Intl. Conf. Artificial Intelligence and Statistics (AISTATS),
2012.

[99] B. Kashin and L. Tzafriri. Some remarks on coordinate restriction of
operators to coordinate subspaces. Insitute of Mathematics Preprint 12,
Hebrew University, Jerusalem, 1993–1994.

[100] T. Kemp. Math 247a: Introduction to random matrix theory. Available
at http://www.math.ucsd.edu/~tkemp/247A/247A.Notes.pdf, 2013.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1211.3209
http://arXiv.org/abs/1211.3209
http://www.math.ucsd.edu/~tkemp/247A/247A.Notes.pdf


224 References

[101] V. Koltchinskii. Oracle inequalities in empirical risk minimization and
sparse recovery problems, volume 2033 of Lecture Notes in Mathematics.
Springer, Heidelberg, 2011. Lectures from the 38th Probability Summer
School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-
Flour. [Saint-Flour Probability Summer School].

[102] V. Koltchinskii and S. Mendelson. Bounding the smallest singular value
of a random matrix without concentration. Available at http://arXiv.
org/abs/1312.3580, Dec. 2013.

[103] F. Kraus. Über konvexe Matrixfunktionen. Math. Z., 41(1):18–42, 1936.
[104] F. Kubo and T. Ando. Means of positive linear operators. Math. Ann.,

246(3):205–224, 1979/80.
[105] A. Kundu and P. Drineas. A note on randomized element-wise matrix

sparsification. Available at http://arXiv.org/abs/1404.0320, Apr.
2014.

[106] R. Latała. Some estimates of norms of random matrices. Proc. Amer.
Math. Soc., 133(5):1273–1282, 2005.

[107] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperime-
try and Processes. Springer, Berlin, 1991.

[108] W. S. Lee, P. L. Bartlett, and R. C. Williamson. Efficient agnostic
learning of neural networks with bounded fan-in. IEEE Trans. Inform.
Theory, 42(6):2118–2132, Nov. 1996.

[109] E. H. Lieb. Convex trace functions and the Wigner–Yanase–Dyson
conjecture. Adv. Math., 11:267–288, 1973.

[110] E. H. Lieb and R. Seiringer. Stronger subadditivity of entropy. Phys.
Rev. A, 71:062329–1–9, 2005.

[111] G. Lindblad. Entropy, information and quantum measurements. Comm.
Math. Phys., 33:305–322, 1973.

[112] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs
and some of its algorithmic applications. Combinatorica, 15(2):215–
245, 1995.

[113] D. Lopez-Paz, S. Sra, A. Smola, Z. Ghahramani, and B. Schölkopf.
Randomized nonlinear component analysis. In Proc. 31st Intl. Conf.
Machine Learning, Beijing, July 2014.

[114] K. Löwner. Über monotone Matrixfunktionen. Math. Z., 38(1):177–216,
1934.

[115] G. Lugosi. Concentration-of-measure inequalities. Available at http:
//www.econ.upf.edu/~lugosi/anu.pdf, 2009.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1312.3580
http://arXiv.org/abs/1312.3580
http://arXiv.org/abs/1404.0320
http://www.econ.upf.edu/~lugosi/anu.pdf
http://www.econ.upf.edu/~lugosi/anu.pdf


References 225

[116] F. Lust-Piquard. Inégalités de Khintchine dans Cp (1 < p <∞). C. R.
Math. Acad. Sci. Paris, 303(7):289–292, 1986.

[117] F. Lust-Piquard and G. Pisier. Noncommutative Khintchine and Paley
inequalities. Ark. Mat., 29(2):241–260, 1991.

[118] L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell, and J. A. Tropp. Matrix
concentration inequalities via the method of exchangable pairs. Ann.
Probab., 42(3):906–945, 2014. Preprint available at http://arXiv.org/
abs/1201.6002.

[119] A. Magen and A. Zouzias. Low rank matrix-valued Chernoff bounds
and approximate matrix multiplication. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1422–1436. SIAM, Philadelphia, PA, 2011.

[120] M. Mahoney. Randomized algorithms for matrices and data. Found.
Trends Mach. Learning, 3(2):123–224, Feb. 2011.

[121] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain
sets of random matrices. Mat. Sb. (N.S.), 72 (114):507–536, 1967.

[122] A. Marcus, D. A. Spielman, and N. Srivastava. Interlacing families
II: Mixed characteristic polynomials and the Kadison–Singer problem.
Ann. Math., June 2014. To appear. Preprint available at http://arXiv.
org/abs/1306.3969.

[123] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis.
Academic Press [Harcourt Brace Jovanovich, Publishers], London-New
York-Toronto, Ont., 1979. Probability and Mathematical Statistics: A
Series of Monographs and Textbooks.

[124] A. Maurer. A bound on the deviation probability for sums of non-
negative random variables. JIPAM. J. Inequal. Pure Appl. Math.,
4(1):Article 15, 6 pp. (electronic), 2003.

[125] M. McCoy and J. A. Tropp. Sharp recovery thresholds for convex decon-
volution, with applications. Found. Comput. Math., Apr. 2014. Preprint
available at http://arXiv.org/abs/1205.1580.

[126] M. B. McCoy and J. A. Tropp. The achievable performance of convex
demixing. Available at http://arXiv.org/abs/1309.7478, Sep. 2013.

[127] M. W. Meckes. On the spectral norm of a random Toeplitz matrix.
Electron. Comm. Probab., 12:315–325 (electronic), 2007.

[128] M. L. Mehta. Random matrices, volume 142 of Pure and Applied Math-
ematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edi-
tion, 2004.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1201.6002
http://arXiv.org/abs/1201.6002
http://arXiv.org/abs/1306.3969
http://arXiv.org/abs/1306.3969
http://arXiv.org/abs/1205.1580
http://arXiv.org/abs/1309.7478


226 References

[129] V. D. Milman. A new proof of A. Dvoretzky’s theorem on cross-sections
of convex bodies. Funkcional. Anal. i Priložen., 5(4):28–37, 1971.

[130] S. Minsker. Some extensions of Bernstein’s inequality for self-adjoint
operators. Available at http://arXiv.org/abs/1112.5448, Nov. 2011.

[131] H. L. Montgomery. The pair correlation of zeros of the zeta function.
In Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St.
Louis Univ., St. Louis, Mo., 1972), pages 181–193. Amer. Math. Soc.,
Providence, R.I., 1973.

[132] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
Univ. Press, Cambridge, 1995.

[133] R. J. Muirhead. Aspects of multivariate statistical theory. John Wiley
& Sons Inc., New York, 1982. Wiley Series in Probability and Mathe-
matical Statistics.

[134] A. Naor, O. Regev, and T. Vidick. Efficient rounding for the noncom-
mutative Grothendieck inequality (extended abstract). In STOC’13—
Proceedings of the 2013 ACM Symposium on Theory of Computing,
pages 71–80. ACM, New York, 2013.

[135] D. Needell and J. A. Tropp. Paved with good intentions: analysis of
a randomized block Kaczmarz method. Linear Algebra Appl., 441:199–
221, 2014.

[136] A. Nemirovski. Sums of random symmetric matrices and quadratic opti-
mization under orthogonality constraints. Math. Prog. Ser. B, 109:283–
317, 2007.

[137] A. Nica and R. Speicher. Lectures on the combinatorics of free proba-
bility, volume 335 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2006.

[138] R. I. Oliveira. Concentration of the adjacency matrix and of the
Laplacian in random graphs with independent edges. Available at
http://arXiv.org/abs/0911.0600, Feb. 2010.

[139] R. I. Oliveira. Sums of random Hermitian matrices and an inequality
by Rudelson. Electron. Commun. Probab., 15:203–212, 2010.

[140] R. I. Oliveira. The spectrum of random k-lifts of large graphs (with
possibly large k). J. Combinatorics, 1(3/4):285–306, 2011.

[141] R. I. Oliveira. The lower tail of random quadratic forms, with appli-
cations to ordinary least squares and restricted eigenvalue properties.
Available at http://arXiv.org/abs/1312.2903, Dec. 2013.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1112.5448
http://arXiv.org/abs/0911.0600
http://arXiv.org/abs/1312.2903


References 227

[142] B. N. Parlett. The symmetric eigenvalue problem, volume 20 of Clas-
sics in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980
original.

[143] D. Paulin, L. Mackey, and J. A. Tropp. Efron–Stein inequalities for ran-
dom matrices. Available at http://arXiv.org/abs/1408.3470, Aug.
2014.

[144] D. Petz. Quasi-entropies for finite quantum systems. Rep. Math. Phys.,
23(1):57–65, 1986.

[145] D. Petz. A survey of certain trace inequalities. In Functional analysis
and operator theory (Warsaw, 1992), volume 30 of Banach Center Publ.,
pages 287–298. Polish Acad. Sci., Warsaw, 1994.

[146] D. Petz. From f -divergence to quantum quasi-entropies and their use.
Entropy, 12(3):304–325, 2010.

[147] D. Petz. Matrix analysis with some applications. Available at bolyai.
cs.elte.hu/~petz/matrixbme.pdf, Feb. 2011.

[148] I. Pinelis. Optimum bounds for the distributions of martingales in Ba-
nach spaces. Ann. Probab., 22(4):1679–1706, 1994.

[149] G. Pisier. Remarques sur un résultat non publié de B. Maurey. In
Seminar on Functional Analysis, 1980–1981, pages Exp. No. V, 13.
École Polytech., Palaiseau, 1981.

[150] G. Pisier. The volume of convex bodies and Banach space geometry,
volume 94 of Cambridge Tracts in Mathematics. Cambridge University
Press, Cambridge, 1989.

[151] W. Pusz and S. L. Woronowicz. Functional calculus for sesquilinear
forms and the purification map. Rep. Mathematical Phys., 8(2):159–
170, 1975.

[152] A. Rahimi and B. Recht. Random features for large-scale kernel ma-
chines. In Advances in Neural Information Processing Systems 20, pages
1177–1184, Vancouver, Dec. 2007.

[153] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks:
replacing minimization with randomization in learning. In Advances in
Neural Information Processing Systems 21, 2008.

[154] B. Recht. A simpler approach to matrix completion. J. Mach. Learn.
Res., 12:3413–3430, 2011.

[155] M. D. Reid and R. C. Williamson. Information, divergence and risk for
binary experiments. J. Mach. Learn. Res., 12:731–817, 2011.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1408.3470
bolyai.cs.elte.hu/~petz/matrixbme.pdf
bolyai.cs.elte.hu/~petz/matrixbme.pdf


228 References

[156] S. Riemer and C. Schütt. On the expectation of the norm of random
matrices with non-identically distributed entries. Electron. J. Probab.,
18:no. 29, 13, 2013.

[157] H. P. Rosenthal. On subspaces of Lp (p > 2) spanned by sequences of
independent random variables. Israel J. Math., 8:273–303, 1970.

[158] M. Rudelson. Random vectors in the isotropic position. J. Funct. Anal.,
164:60–72, 1999.

[159] M. Rudelson and R. Vershynin. Sparse reconstruction by convex relax-
ation: Fourier and Gaussian measurements. In Proc. 40th Ann. Conf.
Information Sciences and Systems (CISS), Mar. 2006.

[160] M. Rudelson and R. Vershynin. Sampling from large matrices: An ap-
proach through geometric functional analysis. J. Assoc. Comput. Mach.,
54(4):Article 21, 19 pp., Jul. 2007. (electronic).

[161] M. B. Ruskai. Inequalities for quantum entropy: A review with condi-
tions for equality. J. Math. Phys., 43(9):4358–4375, Sep. 2002.

[162] M. B. Ruskai. Erratum: Inequalities for quantum entropy: A review
with conditions for equality [J. Math. Phys. 43, 4358 (2002)]. J. Math.
Phys., 46(1):0199101, 2005.

[163] A. Sankar, D. A. Spielman, and S.-H. Teng. Smoothed analysis of the
condition numbers and growth factors of matrices. SIAM J. Matrix
Anal. Appl., 28(2):446–476, 2006.

[164] T. Sarlós. Improved approximation algorithms for large matrices via
random projections. In Proc. 47th Ann. IEEE Symp. Foundations of
Computer Science (FOCS), pages 143–152, 2006.

[165] B. Schölkopf and S. Smola. Learning with Kernels. MIT Press, 1998.
[166] Y. Seginer. The expected norm of random matrices. Combin. Probab.

Comput., 9:149–166, 2000.
[167] A. Sen and B. Virág. The top eigenvalue of the random Toeplitz matrix

and the sine kernel. Ann. Probab., 41(6):4050–4079, 2013.
[168] S. Shalev-Shwartz and N. Srebro. Low `1-norm and guarantees on spar-

sifiability. In ICML/COLT/UAI Sparse Optimization and Variable Se-
lection Workshop, July 2008.

[169] A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, second edition, 1996. Translated from
the first (1980) Russian edition by R. P. Boas.

[170] A. M.-C. So. Moment inequalities for sums of random matrices and
their applications in optimization. Math. Prog. Ser. A, Dec. 2009.

Full text available at: http://dx.doi.org/10.1561/2200000048



References 229

[171] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 81–90 (electronic), New York, 2004. ACM.

[172] C. Stein. A bound for the error in the normal approximation to the dis-
tribution of a sum of dependent random variables. In Proc. 6th Berkeley
Symp. Math. Statist. Probab., Berkeley, 1972. Univ. California Press.

[173] T. Tao. Topics in random matrix theory, volume 132 ofGraduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2012.

[174] W. Thirring. Quantum mathematical physics. Springer-Verlag, Berlin,
second edition, 2002. Atoms, molecules and large systems, Translated
from the 1979 and 1980 German originals by Evans M. Harrell II.

[175] N. Tomczak-Jaegermann. The moduli of smoothness and convexity and
the Rademacher averages of trace classes Sp(1 ≤ p <∞). Studia Math.,
50:163–182, 1974.

[176] J. A. Tropp. Norms of random submatrices and sparse approximation.
C. R. Math. Acad. Sci. Paris, 346(23-24):1271–1274, 2008.

[177] J. A. Tropp. On the conditioning of random subdictionaries. Appl.
Comput. Harmon. Anal., 25:1–24, 2008.

[178] J. A. Tropp. On the linear independence of spikes and sines. J. Fourier
Anal. Appl., 14(5-6):838–858, 2008.

[179] J. A. Tropp. The random paving property for uniformly bounded ma-
trices. Studia Math., 185(1):67–82, 2008.

[180] J. A. Tropp. Freedman’s inequality for matrix martingales. Electron.
Commun. Probab., 16:262–270, 2011.

[181] J. A. Tropp. Improved analysis of the subsampled randomized
Hadamard transform. Adv. Adapt. Data Anal., 3(1-2):115–126, 2011.

[182] J. A. Tropp. User-friendly tail bounds for matrix martingales. ACM
Report 2011-01, California Inst. Tech., Pasadena, CA, Jan. 2011.

[183] J. A. Tropp. User-friendly tail bounds for sums of random matrices.
Found. Comput. Math., August 2011.

[184] J. A. Tropp. From joint convexity of quantum relative entropy to a
concavity theorem of Lieb. Proc. Amer. Math. Soc., 140(5):1757–1760,
2012.

Full text available at: http://dx.doi.org/10.1561/2200000048



230 References

[185] J. A. Tropp. Convex recovery of a structured signal from independent
random measurements. In Sampling Theory, a Renaissance. Birkhäuser
Verlag, 2014. To appear. Available at http://arXiv.org/abs/1405.
1102.

[186] J. A. Tropp. Second-order matrix concentration inequalities. Available
at http://www.arXiv.org/abs/1504.05919, Apr. 2015.

[187] A. M. Tulino and S. Verdú. Random matrix theory and wireless commu-
nications. Number 1(1) in Foundations and Trends in Communications
and Information Theory. Now Publ., 2004.

[188] R. Vershynin. Introduction to the non-asymptotic analysis of random
matrices. In Compressed sensing, pages 210–268. Cambridge Univ.
Press, Cambridge, 2012.

[189] J. von Neumann and H. H. Goldstine. Numerical inverting of matrices
of high order. Bull. Amer. Math. Soc., 53:1021–1099, 1947.

[190] E. P. Wigner. Characteristic vectors of bordered matrices with infinite
dimensions. Ann. of Math. (2), 62:548–564, 1955.

[191] C. K. I. Williams and M. Seeger. Using the Nyström method to spped up
kernel machines. In Advances in Neural Information Processing Systems
13, pages 682–688, Vancouver, 2001.

[192] J. Wishart. The generalised product moment distribution in samples
from a multivariate normal population. Biometrika, 20A(1–2):32–52,
1928.

[193] D. Woodruff. Sketching as a tool for numerical linear algebra. Found.
Trends Theor. Comput. Sci., 10(1–2):1–157, 2014.

[194] A. Zouzias. Randomized primitives for linear algebra and applications.
PhD thesis, Univ. Toronto, 2013.

Full text available at: http://dx.doi.org/10.1561/2200000048

http://arXiv.org/abs/1405.1102
http://arXiv.org/abs/1405.1102
http://www.arXiv.org/abs/1504.05919

	Preface
	Introduction
	Historical Origins
	The Modern Random Matrix
	Random Matrices for the People
	Basic Questions in Random Matrix Theory
	Random Matrices as Independent Sums
	Exponential Concentration Inequalities for Matrices
	The Arsenal of Results
	About This Monograph

	Matrix Functions & Probability with Matrices
	Matrix Theory Background
	Probability with Matrices
	Notes

	The Matrix Laplace Transform Method
	Matrix Moments and Cumulants
	The Matrix Laplace Transform Method
	The Failure of the Matrix Mgf
	A Theorem of Lieb
	Subadditivity of the Matrix Cgf
	Master Bounds for a Sum of Independent Random Matrices
	Notes

	Matrix Gaussian & Rademacher Series
	A Norm Bound for Random Series with Matrix Coefficients
	Example: Some Gaussian Matrices
	Example: Matrices with Randomly Signed Entries
	Example: Gaussian Toeplitz Matrices
	Application: Rounding for the MaxQP Relaxation
	Analysis of Matrix Gaussian & Rademacher Series
	Notes

	A Sum of Random Positive-Semidefinite Matrices
	The Matrix Chernoff Inequalities
	Example: A Random Submatrix of a Fixed Matrix
	Application: When is an Erdos–Rényi Graph Connected?
	Proof of the Matrix Chernoff Inequalities
	Notes

	A Sum of Bounded Random Matrices
	A Sum of Bounded Random Matrices
	Example: Matrix Approximation by Random Sampling
	Application: Randomized Sparsification of a Matrix
	Application: Randomized Matrix Multiplication
	Application: Random Features
	Proof of the Matrix Bernstein Inequality
	Notes

	Results Involving the Intrinsic Dimension
	The Intrinsic Dimension of a Matrix
	Matrix Chernoff with Intrinsic Dimension
	Matrix Bernstein with Intrinsic Dimension
	Revisiting the Matrix Laplace Transform Bound
	The Intrinsic Dimension Lemma
	Proof of the Intrinsic Chernoff Bound
	Proof of the Intrinsic Bernstein Bounds
	Notes

	A Proof of Lieb's Theorem
	Lieb's Theorem
	Analysis of the Relative Entropy for Vectors
	Elementary Trace Inequalities
	The Logarithm of a Matrix
	The Operator Jensen Inequality
	The Matrix Perspective Transformation
	The Kronecker Product
	The Matrix Relative Entropy is Convex
	Notes

	Appendices
	Matrix Concentration: Resources
	Exponential Matrix Concentration Inequalities
	Bounds with Intrinsic Dimension Parameters
	The Method of Ahlswede & Winter
	Noncommutative Moment Inequalities

	References




