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Abstract

Bayesian methods for machine learning have been widely investigated,
yielding principled methods for incorporating prior information into
inference algorithms. In this survey, we provide an in-depth review
of the role of Bayesian methods for the reinforcement learning (RL)
paradigm. The major incentives for incorporating Bayesian reasoning
in RL are: 1) it provides an elegant approach to action-selection (explo-
ration/exploitation) as a function of the uncertainty in learning; and
2) it provides a machinery to incorporate prior knowledge into the al-
gorithms. We first discuss models and methods for Bayesian inference
in the simple single-step Bandit model. We then review the extensive
recent literature on Bayesian methods for model-based RL, where prior
information can be expressed on the parameters of the Markov model.
We also present Bayesian methods for model-free RL, where priors are
expressed over the value function or policy class. The objective of the
paper is to provide a comprehensive survey on Bayesian RL algorithms
and their theoretical and empirical properties.

M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian Reinforcement
Learning: A Survey. Foundations and TrendsR© in Machine Learning, vol. 8,
no. 5-6, pp. 359–483, 2015.
DOI: 10.1561/2200000049.
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1
Introduction

A large number of problems in science and engineering, from robotics to
game playing, tutoring systems, resource management, financial port-
folio management, medical treatment design and beyond, can be char-
acterized as sequential decision-making under uncertainty. Many inter-
esting sequential decision-making tasks can be formulated as reinforce-
ment learning (RL) problems [Bertsekas and Tsitsiklis, 1996, Sutton
and Barto, 1998]. In an RL problem, an agent interacts with a dy-
namic, stochastic, and incompletely known environment, with the goal
of finding an action-selection strategy, or policy, that optimizes some
long-term performance measure.

One of the key features of RL is the focus on learning a con-
trol policy to optimize the choice of actions over several time steps.
This is usually learned from sequences of data. In contrast to su-
pervised learning methods that deal with independently and iden-
tically distributed (i.i.d.) samples from the domain, the RL agent
learns from the samples that are collected from the trajectories gen-
erated by its sequential interaction with the system. Another impor-
tant aspect is the effect of the agent’s policy on the data collec-
tion; different policies naturally yield different distributions of sam-

2
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3

pled trajectories, and thus, impacting what can be learned from the
data.

Traditionally, RL algorithms have been categorized as being ei-
ther model-based or model-free. In the former category, the agent uses
the collected data to first build a model of the domain’s dynamics
and then uses this model to optimize its policy. In the latter case,
the agent directly learns an optimal (or good) action-selection strat-
egy from the collected data. There is some evidence that the first
method provides better results with less data [Atkeson and Santa-
maria, 1997], and the second method may be more efficient in cases
where the solution space (e.g., policy space) exhibits more regular-
ity than the underlying dynamics, though there is some disagreement
about this,.

A major challenge in RL is in identifying good data collection strate-
gies, that effectively balance between the need to explore the space of
all possible policies, and the desire to focus data collection towards tra-
jectories that yield better outcome (e.g., greater chance of reaching a
goal, or minimizing a cost function). This is known as the exploration-
exploitation tradeoff. This challenge arises in both model-based and
model-free RL algorithms.

Bayesian reinforcement learning (BRL) is an approach to RL that
leverages methods from Bayesian inference to incorporate information
into the learning process. It assumes that the designer of the system can
express prior information about the problem in a probabilistic distri-
bution, and that new information can be incorporated using standard
rules of Bayesian inference. The information can be encoded and up-
dated using a parametric representation of the system dynamics, in
the case of model-based RL, or of the solution space, in the case of
model-free RL.

A major advantage of the BRL approach is that it provides a prin-
cipled way to tackle the exploration-exploitation problem. Indeed, the
Bayesian posterior naturally captures the full state of knowledge, sub-
ject to the chosen parametric representation, and thus, the agent can
select actions that maximize the expected gain with respect to this
information state.

Full text available at: http://dx.doi.org/10.1561/2200000049



4 Introduction

Another major advantage of BRL is that it implicitly facilitates reg-
ularization. By assuming a prior on the value function, the parameters
defining a policy, or the model parameters, we avoid the trap of letting
a few data points steer us away from the true parameters. On the other
hand, having a prior precludes overly rapid convergence. The role of
the prior is therefore to soften the effect of sampling a finite dataset,
effectively leading to regularization. We note that regularization in RL
has been addressed for the value function [Farahmand et al., 2008b]
and for policies [Farahmand et al., 2008a]. A major issue with these
regularization schemes is that it is not clear how to select the regu-
larization coefficient. Moreover, it is not clear why an optimal value
function (or a policy) should belong to some pre-defined set.

Yet another advantage of adopting a Bayesian view in RL is the
principled Bayesian approach for handling parameter uncertainty. Cur-
rent frequentist approaches for dealing with modelling errors in sequen-
tial decision making are either very conservative, or computationally
infeasible [Nilim and El Ghaoui, 2005]. By explicitly modelling the dis-
tribution over unknown system parameters, Bayesian methods offer a
promising approach for solving this difficult problem.

Of course, several challenges arise in applying Bayesian methods to
the RL paradigm. First, there is the challenge of selecting the correct
representation for expressing prior information in any given domain.
Second, defining the decision-making process over the information state
is typically computationally more demanding than directly considering
the natural state representation. Nonetheless, a large array of models
and algorithms have been proposed for the BRL framework, leverag-
ing a variety of structural assumptions and approximations to provide
feasible solutions.

The main objective of this paper is to provide a comprehensive
survey on BRL algorithms and their theoretical and empirical proper-
ties. In Chapter 2, we provide a review of the main mathematical con-
cepts and techniques used throughout this paper. Chapter 3 surveys the
Bayesian learning methods for the case of single-step decision-making,
using the bandit framework. This section serves both as an exposition of
the potential of BRL in a simpler setting that is well understood, but is
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also of independent interest, as bandits have widespread applications.
The main results presented here are of a theoretical nature, outlin-
ing known performance bounds for the regret minimization criteria.
Chapter 4 reviews existing methods for model-based BRL, where the
posterior is expressed over parameters of the system dynamics model.
Chapter 5 focuses on BRL methods that do not explicitly learn a model
of the system, but rather the posterior is expressed over the solution
space. Chapter 6 focuses on a particular advantage of BRL in dealing
with risk due to parameter-uncertainty, and surveys several approaches
for incorporating such risk into the decision-making process. Finally,
Chapter 7 discusses various extensions of BRL for special classes of
problems (PAC-Bayes model selection, inverse RL, multi-agent RL, and
multi-task RL). Figure 1.1 outlines the various BRL approaches cov-
ered throughout the paper.

An Example Domain

We present an illustrative domain suitable to be solved using the BRL
techniques surveyed in this paper. This running example will be used
throughout the paper to elucidate the difference between the various
BRL approaches and to clarify various BRL concepts.

Example 1.1 (The Online Shop). In the online shop domain, a retailer
aims to maximize profit by sequentially suggesting products to online
shopping customers. Formally, the domain is characterized by the fol-
lowing model:

• A set of possible customer states, X . States can represent intrinsic
features of the customer such as gender and age, but also dynamic
quantities such as the items in his shopping cart, or his willingness
to shop;

• A set of possible product suggestions and advertisements, A;

• A probability kernel, P , defined below.

An episode in the online shop domain begins at time t = 0, when
a customer with features x0 ∈ X enters the online shop. Then, a se-
quential interaction between the customer and the online shop begins,

Full text available at: http://dx.doi.org/10.1561/2200000049
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-‐  Finite	  state	  controllers	  
-‐  BEETLE	  
	  
-‐  Bayesian	  DP	  
-‐  VOI	  heuris9c	  
	  
-‐  Forward	  search	  
-‐  Bayesian	  sparse	  sampling	  
-‐  HMDP	  
-‐  BFS3	  
-‐  Branch-‐and-‐bound	  search	  
-‐  BAMCP	  
	  
-‐  BOSS	  
-‐  BEB	  
-‐  VBRB	  
-‐  BOLT	  

	  
-‐  GPTD	  
-‐  GPSARSA	  

-‐  Bayesian	  Quadrature	  
-‐  Two	  Bayesian	  models	  for	  	  
es9ma9ng	  the	  policy	  gradient	  
	  
-‐  GPTD	  +	  Bayesian	  policy	  gradient	  

Bandits	  	  
(Sec	  3)	  

Model-‐based	  
BRL	  (Sec	  4)	  

Model-‐free	  
BRL	  (Sec	  5)	  

	  
	  
	  
	  
Bayes	  UCB	  
Thompson	  sampling	  
	  
	  
	  
Offline	  value	  approximaGon	  
	  
	  
Online	  near-‐myopic	  value	  approximaGon	  
	  
	  
Online	  tree	  search	  approximaGon	  
	  
	  
	  
	  
	  
	  
ExploraGon	  bonus	  approximaGon	  

	  
	  
	  
	  
Value	  funcGon	  algos	  
	  
	  
Policy	  gradient	  algos	  
	  
	  
	  
Actor-‐CriGc	  algos	  	  
	  

Bayesian	  
RL	  

Risk	  Aware	  	  
BRL	  (Sec	  6)	  

Bias	  variance	  approximaGon	  
PercenGle	  criterion	  
Min-‐max	  criterion	  
PercenGle	  measures	  criteria	  

Figure 1.1: Overview of the Bayesian RL approaches covered in this survey.
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where at each step t = 0, 1, 2, . . . , an advertisement at ∈ A is shown
to the customer, and following that the customer makes a decision to
either (i) add a product to his shopping cart; (ii) not buy the product,
but continue to shop; (iii) stop shopping and check out. Following the
customers decision, his state changes to xt+1 (reflecting the change in
the shopping cart, willingness to continue shopping, etc.). We assume
that this change is captured by a probability kernel P (xt+1|xt, at).

When the customer decides to check out, the episode ends, and a
profit is obtained according to the items he had added to his cart. The
goal is to find a product suggestion policy, x→ a ∈ A, that maximizes
the expected total profit.

When the probabilities of customer responses P are known in ad-
vance, calculating an optimal policy for the online shop domain is basi-
cally a planning problem, which may be solved using traditional meth-
ods for resource allocation [Powell, 2011]. A more challenging, but real-
istic, scenario is when P is not completely known beforehand, but has
to be learned while interacting with customers. The BRL framework
employs Bayesian methods for learning P , and for learning an optimal
product suggestion policy.

There are several advantages for choosing a Bayesian approach for
the online shop domain. First, it is likely that some prior knowledge
about P is available. For example, once a customer adds a product of
a particular brand to his cart, it is likely that he prefers additional
products of the same brand over those of a different one. Taking into
account such knowledge is natural in the Bayesian method, by virtue
of the prior distribution over P . As we shall see, the Bayesian ap-
proach also naturally extends to more general forms of structure in the
problem.

A second advantage concerns what is known as the exploitation–
exploration dilemma: should the decision-maker display only the most
profitable product suggestions according to his current knowledge
about P , or rather take exploratory actions that may turn out to
be less profitable, but provide useful information for future deci-
sions? The Bayesian method offers a principled approach to deal-
ing with this difficult problem by explicitly quantifying the value

Full text available at: http://dx.doi.org/10.1561/2200000049



8 Introduction

of exploration, made possible by maintaining a distribution over
P .

The various parameter configurations in the online shop domain
lead to the different learning problems surveyed in this paper. In par-
ticular:

• For a single-step interaction, i.e., when the episode terminates
after a single product suggestion, the problem is captured by the
multi-armed bandit model of Chapter 3.

• For small-scale problems, i.e., a small number of products and
customer types, P may be learnt explicitly. This is the model-
based approach of Chapter 4.

• For large problems, a near-optimal policy may be obtained with-
out representing P explicitly. This is the model-free approach of
Chapter 5.

• When the customer state is not fully observed by the decision-
maker, we require models that incorporate partial observability;
see §2.3 and §4.9.

Throughout the paper, we revisit the online shop domain, and spec-
ify explicit configurations that are relevant to the surveyed methods.

Full text available at: http://dx.doi.org/10.1561/2200000049
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