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Abstract

Part 2 of this monograph builds on the introduction to tensor net-
works and their operations presented in Part 1. It focuses on tensor
network models for super-compressed higher-order representation of
data/parameters and related cost functions, while providing an outline
of their applications in machine learning and data analytics.

A particular emphasis is on the tensor train (TT) and Hierarchical
Tucker (HT) decompositions, and their physically meaningful interpre-
tations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of
the underlying low-rank tensor approximations and sophisticated con-
tractions of core tensors, tensor networks have the ability to perform
distributed computations on otherwise prohibitively large volumes of
data/parameters, thereby alleviating or even eliminating the curse of
dimensionality.

The usefulness of this concept is illustrated over a number of applied
areas, including generalized regression and classification (support ten-
sor machines, canonical correlation analysis, higher order partial least
squares), generalized eigenvalue decomposition, Riemannian optimiza-
tion, and in the optimization of deep neural networks.

Part 1 and Part 2 of this work can be used either as stand-alone
separate texts, or indeed as a conjoint comprehensive review of the
exciting field of low-rank tensor networks and tensor decompositions.

A. Cichocki et al. Tensor Networks for Dimensionality Reduction and Large-Scale
Optimization Part 2 Potential Applications and Perspectives. Foundations and
TrendsR© in Machine Learning, vol. 9, no. 6, pp. 431–673, 2016.
DOI: 10.1561/2200000067.
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1
Tensorization and Structured Tensors

The concept of tensorization refers to the generation of higher-order
structured tensors from the lower-order data formats (e.g., vectors,
matrices or even low-order tensors), or the representation of very large
scale system parameters in low-rank tensor formats. This is an essential
step prior to multiway data analysis, unless the data itself is already
collected in a multiway format; examples include color image sequences
where the R, G and B frames are stacked into a 3rd-order tensor, or
multichannel EEG signals combined into a tensor with modes, e.g.,
channel � time � epoch. For any given original data format, the ten-
sorization procedure may affect the choice and performance of a tensor
decomposition in the next stage.

Entries of the so constructed tensor can be obtained through: i) a
particular rearrangement, e.g., reshaping of the original data to a ten-
sor, ii) alignment of data blocks or epochs, e.g., slices of a third-order
tensor are epochs of multi-channel EEG signals, or iii) data augmenta-
tion through, e.g., Toeplitz and Hankel matrices/tensors. In addition,
tensorization of fibers of a lower-order tensor will yield a tensor of
higher order. A tensor can also be generated using transform-domain
methods, for example, by a time-frequency transformation via the short

2
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1.0. Tensorization 3

time Fourier transform or wavelet transform. The latter procedure is
most common for multichannel data, such as EEG, where, e.g., S chan-
nels of EEG are recorded over T time samples, to produce S matrices
of F � T dimensional time-frequency spectrograms stacked together
into an F � T � S dimensional third-order tensor. A tensor can also
represent the data at multi-scale and orientation levels by using, e.g.,
the Gabor, countourlet, or pyramid steerable transformations. When
exploiting statistical independence of latent variables, tensors can be
generated by means of higher-order statistics (cumulants) or by partial
derivatives of the Generalised Characteristic Functions (GCF) of the
observations. Such tensors are usually partially or fully symmetric, and
their entries represent mutual interaction between latent variables. This
kind of tensorization is commonly used in ICA, BSS and blind identifi-
cation of a mixing matrix. In a similar way, a symmetric tensor can be
generated through measures of distances between observed entities, or
their information exchange. For example, a third-order tensor, created
to analyse common structures spread over EEG channels, can com-
prise distance matrices of pair-wise correlation or other metrics, such as
causality over trials. A symmetric third-order tensor can involve three-
way similarities. For such a tensorization, symmetric tensor decompo-
sitions with nonnegativity constraints are particularly well-suited.

Tensorization can also be performed through a suitable represen-
tation of the estimated parameters in some low-rank tensor network
formats. This method is often used when the number of estimated
parameters is huge, e.g., in modelling system response in a nonlinear
system, in learning weights in a deep learning network. In this way,
computation on the parameters, e.g., multiplication, convolution, in-
ner product, Fourier transform, can be performed through core tensors
of smaller scale.

One of the main motivations to develop various types of tensoriza-
tion is to take advantage of data super-compression inherent in tensor
network formats, especially in quantized tensor train (QTT) formats.
In general, the type of tensorization depends on a specific task in hand
and the structure presented in data. The next sections introduce some
common tensorization methods employed in blind source separation,

Full text available at: http://dx.doi.org/10.1561/2200000067



4 Tensorization and Structured Tensors

harmonic retrieval, system identification, multivariate polynomial re-
gression, and nonlinear feature extraction.

1.1 Reshaping or Folding

The simplest way of tensorization is through the reshaping or folding
operations, also known as segmentation (Debals and De Lathauwer,
2015; Boussé et al., 2015). This type of tensorization preserves the
number of original data entries and their sequential ordering, as it
only rearranges a vector to a matrix or tensor. Hence, folding does not
require additional memory space.
Folding. A tensor Y of size I1 � I2 � � � � � IN is considered a folding
of a vector y of length I1I2 � � � IN , if

Ypi1, i2, . . . , iN q � ypiq , (1.1)

for all 1 ¤ in ¤ In, where i � 1 � °N
n�1pin � 1q±n�1

k�1 Ik is a linear
index of (i1, i2, . . . , i2).

In other words, the vector y is vectorization of the tensor Y, while
Y is a tensorization of y.

As an example, the arrangement of elements in a matrix of size
I � L{I, which is folded from a vector y of length L is given by

Y �

�����
yp1q ypI � 1q � � � ypL� I � 1q
yp2q ypI � 2q � � � ypL� I � 2q
...

...
. . .

...

ypIq yp2Iq � � � ypLq

����� . (1.2)

Higher-order folding/reshaping refers to the application of the folding
procedure several times, whereby a vector y P RI1I2���IN is converted
into an Nth-order tensor of size I1 � I2 � � � � � IN .
Application to BSS. It is important to notice that a higher-order
folding (quantization) of a vector of length qN pq � 2, 3, . . .q, sampled
from an exponential function yk � azk�1, yields an Nth-order tensor of
rank 1. Moreover, wide classes of functions formed by products and/or
sums of trigonometric, polynomial and rational functions can be quan-
tized in this way to yield (approximate) low-rank tensor train (TT)
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1.1. Reshaping or Folding 5

network formats (Khoromskij, 2011a,b; Oseledets, 2012). Exploitation
of such low-rank representations allows us to separate the signals from
a single or a few mixtures, as outlined below.

Consider a single mixture, yptq, which is composed of J component
signals, xjptq, j � 1, . . . , J , and corrupted by additive Gaussian noise,
nptq, to give

yptq � a1x1ptq � a2x2ptq � � � � � aJxJptq � nptq. (1.3)
The aim is to extract the unknown sources (components) xjptq from
the observed signal yptq. Assume that higher-order foldings, Xj , of the
component signals, xjptq, have low-rank representations in, e.g., the CP
or Tucker format, given by

Xj � JGj ; U
p1q
j ,Up2q

j , . . . ,UpNq
j K ,

or in the TT format
Xj � xxGp1q

j ,Gp2q
j , . . . ,GpNq

j yy,
or in any other tensor network format. Because of the multi-linearity of
this tensorization, the following relation between the tensorization of
the mixture, Y, and the tensorization of the hidden components, Xj ,
holds

Y � a1X1 � a2X2 � � � � � aJXJ �N , (1.4)
where N is the tensorization of the noise nptq.

Now, by a decomposition of Y into J blocks of tensor networks,
each corresponding to a tensor network (TN) representation of a hidden
component signal, we can find approximations of Xj and the separate
component signals up to a scaling ambiguity. The separation method
can be used in conjunction with the Toeplitz and Hankel foldings. Ex-
ample 1.9 illustrates the separation of damped sinusoid signals.

1.2 Tensorization through a Toeplitz/Hankel Tensor

1.2.1 Toeplitz Folding

The Toeplitz matrix is a structured matrix with constant entries in
each diagonal. Toeplitz matrices appear in many signal processing ap-
plications, e.g., through covariance matrices in prediction, estimation,

Full text available at: http://dx.doi.org/10.1561/2200000067



6 Tensorization and Structured Tensors

detection, classification, regression, harmonic analysis, speech enhance-
ment, interference cancellation, image restoration, adaptive filtering,
blind deconvolution and blind equalization (Bini, 1995; Gray, 2006).

Before introducing a generalization of a Toeplitz matrix to a
Toeplitz tensor, we shall first consider the discrete convolution between
two vectors x and y of respective lengths I and L ¡ I, given by

z � x � y . (1.5)

Now, we can write the entries zI:L � rzpIq, zpI � 1q, . . . , zpLqsT in a
linear algebraic form as

zI:L �

��������
ypIq ypI � 1q ypI � 2q � � � yp1q

ypI � 1q ypIq ypI � 1q � � � yp2q
ypI � 2q ypI � 1q ypIq � � � yp3q

...
...

...
. . .

...

ypLq ypL� 1q ypL� 2q � � � ypJq

��������

��������
xp1q
xp2q
xp3q
...

xpIq

��������
� YTx � Y�̄1x,

where J � L � I � 1. With this representation, the convolution can
be computed through a linear matrix operator, Y, which is called the
Toeplitz matrix of the generating vector y.
Toeplitz matrix. A Toeplitz matrix of size I�J , which is constructed
from a vector y of length L � I � J � 1, is defined as

Y � TI,Jpyq �

�����
ypIq ypI � 1q � � � ypLq

ypI � 1q ypIq � � � ypL� 1q
...

...
. . .

...

yp1q yp2q � � � ypL� I � 1q

����� . (1.6)

The first column and first row of the Toeplitz matrix represent its entire
generating vector.

Indeed, all pL � I � 1q entries of y in the above convolution (1.5)
can be expressed either by: (i) using a Toeplitz matrix formed from a
zero-padded generating vector r0T

I�1,yT,0T
I�1sT, with ryT,0T

I�1s being
the first row of this Toeplitz matrix, to give

z � TI,L�I�1pr0T
I�1,yT,0T

I�1sTqT x , (1.7)
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1.2. Toeplitz and Hankel Tensors 7

or (ii) through a Toeplitz matrix of the generating vector
r0T
L�1,xT,0T

L�1sT, to yield

z � TL,L�I�1pr0T
L�1,xT,0T

L�1sTqT y . (1.8)

The so expanded Toeplitz matrix is a circulant matrix of ryT,0T
I�1sT.

Consider now a convolution of three vectors, x1, x2 and y of re-
spective lengths I1, I2 and pL ¥ I1 � I2q, given by

z � x1 � x2 � y .

For its implementation, we first construct a Toeplitz matrix, Y, of size
I1 � pL� I1 � 1q from the generating vector y. Then, we use the rows
Ypk, :q to generate Toeplitz matrices, Yk of size I2 � I3. Finally, all
I1 Toeplitz matrices, Y1, . . . , YI1 , are stacked as horizontal slices of
a third-order tensor Y, i.e., Ypk, :, :q � Yk, k � 1, . . . , I1. It can be
verified that entries rzpI1 � I2 � 1q, . . . , zpLqsT can be computed as��� zpI1 � I2 � 1q

...

zpLq

��� � rx1 � x2 � ysI1�I2�1:L � Y �̄1 x1 �̄2 x2.

The tensor Y is referred to as the Toeplitz tensor of the generating
vector y.
Toeplitz tensor. An Nth-order Toeplitz tensor of size I1 � I2 � � � � �
IN , which is represented by Y � TI1,...,IN

pyq, is constructed from a
generating vector y of length L � I1 � I2 � � � � � IN �N � 1, such that
its entries are defined as

Ypi1, . . . , iN�1, iN q � yp̄i1 � � � � � īN�1 � iN q , (1.9)

where īn � In � in. An example of the Toeplitz tensor is illustrated in
Figure 1.1.

Example 1.1. Given a 3 � 3 � 3 dimensional Toeplitz tensor of a se-
quence 1, 2, . . . , 7, the horizontal slices are Toeplitz matrices of sizes

Full text available at: http://dx.doi.org/10.1561/2200000067



8 Tensorization and Structured Tensors

y1 y2 y3

I1 I I3

L=I1+ I2 + I3 -2
2

I1

I2

I3

y1

y2

y3
y

(a)

y1 y2 y3

I1 I I3

L=I1+ I2 + I3 -2
2

I1

I2

I3

y1

y2

y3
y

(b)

Figure 1.1: Illustration of a 3rd-order Toeplitz tensor of size I1 � I2 � I3, gener-
ated from a vector y of length L � I1 � I2 � I3 � 2. (a) The highlighted fibers of
the Toeplitz tensor form the generating vector y. (b) The entries in every shaded
diagonal intersection are identical and represent one element of y.

3� 3 given by

T3,3,3p1, . . . , 7q �
�� T3,3p3, . . . , 7q
T3,3p2, . . . , 6q
T3,3p1, . . . , 5q

�� �

���������������

�� 5 6 7
4 5 6
3 4 5

��
�� 4 5 6

3 4 5
2 3 4

��
�� 3 4 5

2 3 4
1 2 3

��

���������������
.

Recursive generation. An Nth-order Toeplitz tensor of a generating
vector y is of size I1�I2�� � ��IN , can be constructed from an pN�1qth-
order Toeplitz tensor of size I1� I2�� � �� pIN�1� IN � 1q of the same
generating vector, by a conversion of mode-pN � 1q fibers to Toeplitz
matrices of size IN�1 � IN .

Following the definition of the Toeplitz tensor, the convolution of
pN�1q vectors, xn of respective lengths In, and a vector y of length L,
can be represented as a tensor-vector product of an Nth-order Toeplitz
tensor and vectors xn, that is

rx1 � x2 � � � � � xN�1 � ysJ :L � Y �̄1 x1 �̄2 x2 � � � �̄N�1 xN�1 ,
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1.2. Toeplitz and Hankel Tensors 9

where Y � TI1,...,IN�1,L�Jpyq is a Toeplitz tensor of size I1 � � � � �
IN�1 � pL� Jq generated from y, and J � °N�1

n�1 In �N � 1, or

x1 � x2 � � � � � xN�1 � y � rY �̄1 x1 �̄2 x2 � � � �̄N�1 xN�1 ,

where rY � TI1,...,IN�1,L�Jpr0T
J ,yT,0T

J sTq is a Toeplitz tensor, of the
zero-padded vector of y, is of size I1 � � � � � IN�1 � pL� Jq.

1.2.2 Hankel Folding

The Hankel matrix and Hankel tensor have similar structures to the
Toeplitz matrix and tensor and can also be used as linear operators in
the convolution.
Hankel matrix. An I � J Hankel matrix of a vector y, of length
L � I � J � 1, is defined as

Y � HI,Jpyq �

�����
yp1q yp2q � � � ypJq
yp2q yp3q � � � ypJ � 1q
...

...
. . .

...

ypIq ypI � 1q � � � ypLq

����� . (1.10)

Hankel tensor. (Papy et al., 2005) An Nth-order Hankel tensor of
size I1 � I2 � � � � � IN , which is represented by Y � HI1,...,IN

pyq, is
constructed from a generating vector y of length L � °

n In �N � 1,
such that its entries are defined as

Ypi1, i2, . . . , iN q � ypi1 � i2 � � � � � iN �N � 1q . (1.11)

Remark 1.1. (Properties of a Hankel tensor)

• The generating vector y can be reconstructed by a concatenation
of fibers of the Hankel tensor YpI1, . . . , In�1, :, 1, . . . , 1q, where
n � 1, . . . , N � 1, and

y �

���������

Yp1 : I1 � 1, 1, . . . , 1q
...

YpI1, . . . , In�1, 1 : In � 1, 1, . . . , 1q
...

YpI1, . . . , IN�1, 1 : IN q

���������
. (1.12)
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10 Tensorization and Structured Tensors

• Slices of a Hankel tensor Y, i.e., any subset of the tensor pro-
duced by fixing pN � 2q indices of its entries and varying the two
remaining indices, are also Hankel matrices.

• An Nth-order Hankel tensor, HI1,...,IN�1,IN
pyq, can be

constructed from an pN � 1qth-order Hankel tensor
HI1,...,IN�2,IN�1�IN�1pyq of size I1� � � �� IN�2�pIN�1� IN � 1q
by converting its mode-pN � 1q fibers to Hankel matrices of size
IN�1 � IN .

• Similarly to the Toeplitz tensor, the convolution of pN � 1q vec-
tors, xn of lengths In, and a vector y of length L, can be repre-
sented as

rx1 � x2 � � � � � xN�1 � ysJ :L � Y �̄1 x̃1 �̄2 x̃2 � � � �̄N�1 x̃N�1,

or

x1 � x2 � � � � � xN�1 � y � rY �̄1 x̃1 �̄2 x̃2 � � � �̄N�1 x̃N�1,

where x̃n � rxnpInq, . . . , xnp2q, xnp1qs, J � °
n In �N � 1, Y �

HI1,...,IN�1,L�Jpyq is the Nth-order Hankel tensor of y, whereasrY � HI1,...,IN�1,L�Jpr0T
J ,yT,0T

J sTq is the Hankel tensor of a zero-
padded version of y.

• A Hankel tensor with identical dimensions In � I, for all n, is a
symmetric tensor.

Example 1.2. A 3 � 3 � 3 – dimensional Hankel tensor of a sequence
1, 2, . . . , 7 is a symmetric tensor, and is given by

H3,3,3p1 : 7q �
���� 1 2 3

2 3 4
3 4 5

�� ,
�� 2 3 4

3 4 5
4 5 6

�� ,
�� 3 4 5

4 5 6
5 6 7

���� .

1.2.3 Quantized Tensorization

It is important to notice that the tensorizations into the Toeplitz and
Hankel tensors typically enlarge the number of data samples (in the
sense that the number of entries of the corresponding tensor is larger
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1.2. Toeplitz and Hankel Tensors 11

than the number of original samples). For example, when the dimen-
sions In � 2 for all n, the so generated tensor to be a quantized tensor
of order pL� 1q, while the number of entries of a such tensor increases
from the original size L to 2L�1. Therefore, quantized tensorizations
are suited to analyse signals of short-length, especially in multivariate
autoregressive modelling.

1.2.4 Convolution Tensor

Consider again the convolution x�y of two vectors of respective lengths
I and L. We can then rewrite the expression for the entries-pI, I �
1, . . . , Lq as

rx � ysI:L � C �̄1 x �̄3 y ,

where C is a third-order tensor of size I � J � L, J � L � I � 1, for
which the pl � Iq-th diagonal elements of l-th slices are ones, and the
remaining entries are zeros, for l � 1, 2, . . . , L. For example, the slices
Cp:, :, lq, for l ¤ I, are given by

Cp:, :, lq �

��������

��������

0 0

1 . . .

. . .

0 1 0
l

.

The tensor C is called the convolution tensor . Illustration of a convo-
lution tensor of size I � I � p2I � 1q is given in Figure 1.2.

Note that a product of this tensor with the vector y yields the
Toeplitz matrix of the generating vector y, which is of size I � J , in
the form

C �̄3 y � TI,Jpyq ,

while the tensor-vector product C�̄1x yields a Toeplitz matrix of
the generating vector r0T

L�I ,xT,0T
J�1sT, or a circulant matrix of
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12 Tensorization and Structured Tensors

l
l

I

p
I

I

2I-1

2I-p

Figure 1.2: Visualization of a convolution tensor of size I � I � p2I � 1q. Unit
entries are located on the shaded parallelogram.

r0T
L�I ,xTsT

C �̄1 x � TL,Jpr0T
L�I ,xT,0T

J�1sTq .

In general, for a convolution of pN � 1q vectors, x1, . . . , xN�1, of
respective lengths I1, . . . , IN�1 and a vector y of length L

z � x1 � x2 � � � � � xN�1 � y , (1.13)

the entries of z can be expressed through a multilinear product of a
convolution tensor, C, of pN�1qth-order and size I1�I2�� � ��IN�L,
IN � L�°N�1

n�1 In �N � 1, and the N input vectors

zL�IN�1:L � C �̄1 x1 �̄2 x2 � � � �̄N�1 xN�1 �̄N�1 y . (1.14)

Most entries of C are zeros, except for those located at pi1, i2, . . . , iN�1q,
such that

N�1̧

n�1
īn � iN � iN�1 � 0 , (1.15)

where īn � In � in, in � 1, 2, . . . , In.
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1.2. Toeplitz and Hankel Tensors 13

The tensor product C�̄N�1 y yields the Toeplitz tensor of the gen-
erating vector y, shown below

C �̄N�1 y � TI1,...,IN
pyq. (1.16)

1.2.5 QTT Representation of the Convolution Tensor

An important property of the convolution tensor is that it has a QTT
representation with rank no larger than the number of inputs vectors,
N . To illustrate this property, for simplicity, we consider an Nth-order
Toeplitz tensor of size I � I � � � �� I generated from a vector of length
pN I �N � 1q, where I � 2D. The convolution tensor of this Toeplitz
tensor is of pN � 1qth-order and of size I � I � � � � � I �pN I �N � 1q.
Zero-padded convolution tensor. By appending pN � 1q zero ten-
sors of size I � I � � � � � I before the convolution tensor, we obtain an
pN � 1qth-order convolution tensor, C, of size I � I � � � � � I � IN .
QTT representation. The zero-padded convolution tensor can be
represented in the following QTT format

C � rCp1q |b| rCp2q |b| � � � |b| rCpDq |b| rCpD�1q
, (1.17)

where “ |b| ” represents the strong Kronecker product between block
tensors1 rCpnq � rrCpnq

r,s s defined from the pN � 3qth-order core tensors
Cpnq as rCpnq

r,s � Cpnqpr, :, . . . , :, sq.
The last core tensor CpD�1q represents an exchange (backward iden-

tity) matrix of size N�N which can represented as an pN�3qth-order
tensor of size N � 1 � � � � � 1 �N � 1. The first D core tensors Cp1q,
Cp2q, . . . , CpDq are expressed based on the so-called elementary core
tensor S of size N � 2� 2� � � � � 2loooooooomoooooooon

pN � 1q dimensions

�N , as

Cp1q � Sp1, :, . . . , :q, Cp2q � � � � � CpDq � S . (1.18)

The rigorous definition of the elementary core tensor is provided in
Appendix 5.

1A “block tensor” represents a multilevel matrix, the entries of which are matrices
or tensors.
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14 Tensorization and Structured Tensors

Table 1.1: Rank of QTT representations of convolution tensors of pN � 1qth-order
for N � 2, . . . , 17.

N QTT rank N QTT rank
2 2, 2, 2, . . . , 2 10 6, 8, 9, . . . , 9
3 2, 3, 3, . . . , 3 11 6, 9, 10, . . . , 10
4 3, 4, 4, . . . , 4 12 7, 10, 11, . . . , 11
5 3, 4, 5, . . . , 5 13 7, 10, 12, . . . , 12
6 4, 5, 6, . . . , 6 14 8, 11, 13, . . . , 13
7 4, 6, 7, . . . , 7 15 8, 12, 14, . . . , 14
8 5, 7, 8, . . . , 8 16 9, 13, 15, . . . , 15
9 5, 7, 8, . . . , 8 17 9, 13, 15, . . . , 15

Table 1.1 provides ranks of the QTT representation for various order
of convolution tensors. The elementary core tensor S can be further re-
expressed in a (tensor train) TT-format with pN � 1q sparse TT cores,
as

S � xxGp1q,Gp2q, . . . ,GpN�1qyy ,
where Gpkq is of size pN � k � 1q � 2� pN � kq, for k � 1, . . . , N , and
the last core tensor GpN�1q is of size 2N � 2�N .

Example 1.3. Convolution tensor of 3rd-order.
For the vectors x of length 2D and y of length p2D�1 � 1q, the

expanded convolution tensor has size of 2D�2D�2D�1. The elementary
core tensor S is then of size 2 � 2 � 2 � 2 � 2 and its sub-tensors,
Spi, :, :, :, :q, are given in a 2 � 2 block form of the last two indices
through four matrices, S1, S2, S3 and S4, of size 2� 2, that is

Sp1, :, :, :, :q �
�

S1 S3
S2 S4

�
, Sp2, :, :, :, :q �

�
S2 S4
S3 S1

�
,

where

S1 �
�

1 0
0 1

�
, S2 �

�
0 1
0 0

�
, S3 �

�
0 0
0 0

�
, S4 �

�
0 0
1 0

�
.

The convolution tensor can then be represented in a QTT format of
rank-2 (Kazeev et al., 2013) with core tensors Cp2q � � � � � CpDq � S,
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Figure 1.3: Representation of the convolution tensor in QTT format. (Top) Illus-
tration of a convolution tensor of size I × I × 2I in a QTT format, where I = 2D,
with the first core tensor of size 1 × 2 × 2 × 2 × 2, the last core tensor represents
a backward identity matrix, and the remaining (D − 1) core tensors are identical
and of size 2 × 2 × 2 × 2 × 2 × 2; (Centre) a vector y of length 2D+1 in a QTT
format; (Bottom) Generation of the Toeplitz matrix, T (y), of the vector y from
the convolution tensor, and its representation in the QTT format, Id = Jd = 2 for
d = 1, . . . , D.

tensors1 C̃(n) = [C̃(n)
r,s ] defined from the (N + 3)th-order core tensors

C(n) as C̃(n)
r,s = C(n)(r, :, . . . , :, s).

The last core tensor C(D+1) represents an exchange (backward iden-
tity) matrix of size N × N but as an (N + 3)th-order tensor of size
N × 1 × · · · × 1 × N × 1. The first D core tensors C(1), C(2), . . . , C(D)

are expressed based on the so-called elementary core tensor S of size
N × 2 × 2 × · · · × 2︸ ︷︷ ︸

(N + 1) dimensions

×N

C(1) = S(1, :, . . . , :), C(2) = · · · = C(D) = S . (1.16)

Definition of the elementary core tensor is provided in Appendix 1.12.3.
In Table 1.1, we provide ranks of the QTT representation of some

convolution tensors. The elementary core tensor S can even be further
1A “block tensor” represents a multilevel matrix, entries of which are matrices

or tensors.

Figure 1.3: Representation of the convolution tensor in QTT format. (Top) Dis-
tributed representation of a convolution tensor C of size I�J�2I in a QTT format,
where I � J � 2D. The first core tensor Cp1q is of size 1�2�2�2�2, the last core
tensor CpD�1q represents a backward identity matrix, and the remaining 5th-order
core tensors of size 2 � 2 � 2 � 2 � 2 are identical. A vector y is of length 2D�1 in
a QTT format. (Bottom) Generation of the Toeplitz matrix, T pyq, of the vector y
from the convolution tensor and its representation in the QTT format, Id � Jd � 2
for d � 1, . . . , D.

Cp1q � Sp1, :, :, :, :q, and the last core tensor CpD�1q �
�

0 1
1 0

�
which

is of size 2�1�1�2�1. This QTT representation is useful to generate a
Toeplitz matrix when its generating vector is given in the QTT format.
An illustration of the convolution tensor C is provided in Figure 1.3.

Example 1.4. Convolution tensor of fourth-order.
For the convolution tensor of fourth order, i.e., Toeplitz order N �

3, the elementary core tensor S is of size 3 � 2 � 2 � 2 � 2 � 3, and is
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16 Tensorization and Structured Tensors

given in a 2� 3 block form of the last two indices as

Sp1, :, . . . , :q �
�

S1 S3 S5
S2 S4 S6

�
, Sp2, :, . . . , :q �

�
S2 S4 S6
S5 S1 S3

�
,

Sp3, :, . . . , :q �
�

S5 S1 S3
S6 S2 S4

�
.

where Sn are of size 2� 2� 2, S5, S6 are zero tensors, and

S1 �
��

1 0
0 0

� �
0 1
1 0

��
, S2 �

��
0 0
0 0

� �
1 0
0 0

��
,

S3 �
��

0 0
0 1

� �
0 0
0 0

��
, S4 �

��
0 1
1 0

� �
0 0
0 1

��
.

Finally, the zero-padded convolution tensor of size 2D � 2D � 2D � 3 �
2D has a QTT representation in (1.17) with Cp1q � Sp1, :, :, :, :, r1, 2sq,
Cp2q � Spr1, 2s, :, :, :, :, :q, Cp3q � � � � � CpDq � S, and the last core

tensor CD�1 �
�� 0 0 1

0 1 0
1 0 0

�� which is of size 3� 1� 1� 3� 1.

1.2.6 Low-rank Representation of Hankel and Toeplitz Ma-
trices/Tensors

The Hankel and Toeplitz foldings are multilinear tensorizations, and
can be applied to the BSS problem, as in (1.4). When the Hankel and
Toeplitz tensors of the hidden sources are of low-rank in some tensor
network representation, the tensor of the mixture is expressed as a sum
of low rank tensor terms.

For example, the Hankel and Toeplitz matrices/tensors of an
exponential function, vk � azk�1, are rank-1 matrices/tensors, and
consequently Hankel matrices/tensors of sums and/or products of
exponentials, sinusoids, and polynomials will also be of low-rank,
which is equal to the degree of the function being considered.

Hadamard Product. More importantly, when Hankel/Toeplitz ten-
sors of two vectors u and v have low-rank CP/TT representations, the
Hankel/Toeplitz tensor of their element-wise product, w � uf v, can
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1.2. Toeplitz and Hankel Tensors 17

also be represented in the same CP/TT tensor format

Hpuq fHpvq � Hpuf vq
T puq f T pvq � T puf vq .

The CP/TT rank ofHpufvq or T pufvq is not larger than the product
of the CP/TT ranks of the tensors of u and v.

Example 1.5. The third-order Hankel tensor of uptq � sinpωtq is a
rank-3 tensor, and the third-order Hankel tensor of vptq � t is of rank-
2; hence the Hankel tensor of the wptq � t sinpωtq has at most rank-6.

Symmetric CP and Vandermonde decompositions. It is impor-
tant to notice that a Hankel tensor Y of size I � I � � � �� I can always
be represented by a symmetric CP decomposition

Y � I�1 A�2 A � � � �N A .

Moreover, the tensor Y also admits a symmetric CP decomposition
with Vandermonde structured factor matrix (Qi, 2015)

Y � diagN pλq �1 VT �2 VT � � � �N VT , (1.19)

where λ comprises R non-zero coefficients, and V is a Vandermonde
matrix generated from R distinct values v � rv1, v2, . . . , vRs

V �

�����
1 v1 v2

1 . . . vI�1
1

1 v2 v2
2 . . . vI�1

2
...

...
...

. . .
...

1 vR v2
R . . . vI�1

R

����� . (1.20)

By writing the decomposition in (1.19) for the entries YpI1, . . . , In�1, :
, 1, . . . , 1q (see (1.12)), the Vandermonde decomposition of the Hankel
tensor Y becomes a Vandermonde factorization of y (Chen, 2016),
given by

y �

��������
1 1 . . . 1
v1 v2 . . . vR
v2

1 v2
2 . . . v2

R
...

...
. . .

...

vL�1
1 vL�1

2 . . . vL�1
R

��������λ .
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18 Tensorization and Structured Tensors

Observe that various Vandermonde decompositions of the Hankel
tensors of the same vector y, but of different tensor orders N , have the
same generating Vandermonde vector v. Moreover, the Vandemonde
rank, i.e, the minimum of R in the decomposition (1.19), therefore
cannot exceed the length L of the generating vector y.

QTT representation of Toeplitz/Hankel tensor. As mentioned
previously, the zero-padded convolution tensor of pN � 1qth-order can
be represented in a QTT format of rank of at most N . Hence, if a vector
y of length 2DN has a QTT representation of rank-pR1, . . . , RDq, given
by

y � rYp1q |b| rYp2q |b| � � � |b| rYpD�1q , (1.21)

where rYpdq is an Rd�1�Rd block matrix of the core tensor Ypdq of size
Rd�1 � 2�Rd, for d � 1, . . . , D, or of YpD�1q of size RD �N � 1, then
following the relation between the convolution tensor and the Toeplitz
tensor of the generating vector y, we have

T pyq � C �̄N�1 y . (1.22)

This Nth-order Toeplitz tensor can also be represented by a QTT ten-
sor with rank of at most NpR1, . . . , RDq, as

T pyq � rTp1q |b| rTp2q |b| � � � |b| rTpDq
, (1.23)

where rTpdq is a block tensor of the core tensor Tpdq. The core Tp1q

is of size 1 � 2 � � � � � 2 � N R1, and cores Tp2q, . . . , TpD�1q are of
size NRd�1 � 2 � � � � � 2 �NRd, while the last core tensor TpDq is of
size NRD�1 � 2� � � � � 2� 1. These core tensors are core contractions
between the two core tensors Cpdq and Ypdq. Figure 1.3 illustrates the
generation of a Toeplitz matrix as a tensor-vector product of a third-
order convolution tensor C and a generating vector, x, of length 2D�1,
both in QTT-formats. The core tensors of C are given in Example 1.3.

Remarks:

• Because of zero-padding within the convolution tensor, the
Toeplitz tensor of y, generated in (1.22) and (1.23), takes
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1.3. Tensorization by Means of Löwner Matrix 19

only entries ypNq,ypN � 1q, . . . ,yp2DNq, i.e., it corresponds
to the Toeplitz tensor of the generating vector ypNq,ypN �
1q, . . . ,yp2DNq.

• The Hankel tensor also admits a QTT representation in the sim-
ilar form to a Toeplitz tensor (cf. (1.23)).

• Low-rank TN representation of the Toeplitz and Hankel tensors
has been exploited, e.g., in blind source separation and harmonic
retrieval. By verifying a low-rank TN representation of the signal
in hand, we can confirm the existence of a low-rank TN represen-
tation of Toeplitz/Hankel tensors of the signal.

• QTT rank of the Toeplitz tensor in (1.23) is at most N times the
QTT rank of the generating vector y. The rank may not be mini-
mal. For example, the sinusoid signal is of rank-2 in QTT format,
and its Toeplitz tensor also has a rank-2 QTT representation.

• Fast convolution of vectors in QTT formats. A straightforward
consequences is that when vectors xn are given in their QTT for-
mats, their convolution x1�x2�� � ��xN can be computed through
core contractions between the core tensors of the convolution ten-
sor and those of the vectors.

1.3 Tensorization by Means of Löwner Matrix (Löwner Fold-
ing)

A Löwner matrix of a vector v P RI�J is formed from a function fptq
sampled at pI � Jq distinct points tx1, . . . , xI , y1, . . . , yJu, to give

v � rfpx1q, . . . , fpxIq, fpy1q, . . . , fpyJqsT P RI�J ,

so that the entries of v are partitioned into two disjoint sets, tfpxiquIi�1
and tfpyjquJj�1. The vector v is then converted into the Löwner matrix,
L P RI�J , defined by

L �
�
fpxiq � fpyjq

xi � yj

�
ij

P RI�J .
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Löwner matrices appear as a powerful tool in fitting a model to
data in the form of a rational (Pade form) approximation, that is
fpxq � Apxq{Bpxq. When considered as transfer functions, such type
of approximations are much more powerful than the polynomial ap-
proximations, as in this way it is also possible to model discontinuities
and spiky data. The optimal order of such a rational approximation
is given by the rank of the Löwner matrix. In the context of tensors,
this allows us to construct a model of the original dataset which is
amenable to higher-order tensor representation, has minimal compu-
tational complexity, and for which the accuracy is governed by the
rank of the Löwner matrix. An example of Löwner folding of a vector
r1{3, 1{4, 1{5, 1{6, 1{8, 1{9, 1{10s is given below�����

1{3�1{8
3�8

1{3�1{9
3�9

1{3�1{10
3�10

1{4�1{8
4�8

1{4�1{9
4�9

1{4�1{10
4�10

1{5�1{8
5�8

1{5�1{9
5�9

1{5�1{10
5�10

1{6�1{8
6�8

1{6�1{9
6�9

1{6�1{10
6�10

����� � �

�����
1{3
1{4
1{5
1{6

������1{8 1{9 1{10
�
.

More applications of this tensorization can be found in (Debals et al.,
2016a).

1.4 Tensorization based on Cumulant and Derivatives of
the Generalised Characteristic Functions

The use of higher-order statistics (cumulants) or partial derivatives of
the Generalised Characteristic Functions (GCF) as a means of ten-
sorization is useful in the identification of a mixing matrix in a blind
source separation.

Consider linear mixtures of R stationary sources, S, received by an
array of I sensors in the presence of additive noise, N (see Figure 1.4 for
a general principle). The task is to estimate a mixing matrix H P RI�R

from only the knowledge of the noisy observations

X � HS�N , (1.24)

under some mild assumptions, i.e., the sources are statistically inde-
pendent and non-Gaussian, their number is known, and the matrix H

Full text available at: http://dx.doi.org/10.1561/2200000067



1.4. Generalised Characteristic Functions 21

H
R I I

In(t)
s(t) x(t)

Σ
H

D
K

R
I

I

I
H

R

R

R
R

H
H

∂ NΦ(v)
∂vN

v1

∂ NΦ(v)
∂vN

v2

NΦ(v)
∂vN

vK
...

Y1

Y2

YK

Λ

H
H

H
H

1

Λ

H
H

H
H

2

∂

...

Λ

H
H

H
H

K

Derivative 
 tensors Concatenation

I

Figure 1.4: Tensorization based on derivatives of the characteristic functions
and tensor-based approach to blind identification. The task is to estimate the
mixing matrix, H, from only the knowledge of the noisy output observations
X � rxp1q, . . . ,xptq, . . . ,xpT qs P RI�T , with I   T . A high dimensional tensor
Y is generated from the observations X by means of higher-order statistics (cumu-
lants) or partial derivatives of the second generalised characteristic functions of the
observations. A CP decomposition of Y allows us to retrieve the mixing matrix H.

has no pair-wise collinear columns (see also (Yeredor, 2000; Comon and
Rajih, 2006))

A well-known approach to this problem is based on the decompo-
sition of a high dimensional structured tensor, Y, generated from the
observations, X, by means of partial derivatives of the second GCFs of
the observations at multiple processing points.
Derivatives of the GCFs. More specifically, we next show how to
generate the tensor Y from the observation, X. We shall denote the
first and second GCFs of the observations evaluated at a vector u of
length I, respectively by

φxpuq � E
�
exppuTxq

�
, Φxpuq � log φxpuq . (1.25)

Similarly, φspvq and Φspvq designate the first and second GCFs of the
sources, where v is of length R. Because the sources are statistically
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22 Tensorization and Structured Tensors

independent, the following holds

Φspvq � Φs1pv1q � Φs2pv2q � � � � � ΦsRpvRq , (1.26)

which implies that Nth-order derivatives of Φspvq with respect to v
result in Nth-order diagonal tensors of size R � R � � � � � R, where
N � 2, 3, . . ., that is

Ψspvq �
BNΦspvq
BvN � diagN

"
dNΦs1

dvN1
,
dNΦs2

dvN2
, . . . ,

dNΦsR

dvNR

*
.(1.27)

In addition, for the noiseless case xptq � H sptq, and since Φxpuq �
ΦspHTuq, the Nth-order derivative of Φxpuq with respect to u yields
a symmetric tensor of Nth-order which admits a CP decomposition of
rank-R with N identical factor matrices H, to give

Ψxpuq � ΨspHTuq �1 H�2 H � � � �N H . (1.28)

In order to improve the identification accuracy, the mixing matrix H
should be estimated as a joint factor matrix in decompositions of var-
ious derivative tensors, evaluated at distinct processing points u1, u2,
. . . , uK . This is equivalent to a decomposition of an pN � 1qth-order
tensor Y of size I� I�� � �� I�K concatenated from the K derivative
tensors as

Yp:, . . . , :, kq � Ψxpukq, k � 1, 2, . . . ,K. (1.29)

The CP decomposition of the tensor Y can be written in form of

Y � I�1 H�2 H � � � �N H�N�1 D , (1.30)

where the last factor matrix D is of size K�R, and each row comprises
the diagonal of the symmetric tensor ΨspHTukq.

In the presence of statistically independent, additive and stationary
Gaussian noise, we can eliminate the derivatives of the noise terms in
the derivative tensor Ψxpuq by subtracting any other derivative tensor
Ψxpũq, or by an average of derivative tensors.
Estimation of Derivatives of GCF. In practice, the GCF of the
observation and its derivatives are unknown, but can be estimated
from the sample first GCF (Yeredor, 2000). Detailed expression and
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1.4. Generalised Characteristic Functions 23

the approximation of the derivative tensor Ψxpuq for some low orders
N � 2, 3, . . . , 7, are given in Appendix 5.
Cumulants. When the derivative is taken at the origin, u �
r0, . . . , 0sT, the tensor KpNqx � ΨpNq

x p0q is known as the Nth-order
cumulant of x, and a joint diagonalization or the CP decomposition of
higher-order cumulants is a well-studied method for the estimation of
the mixing matrix H.

For the sources with symmetric probabilistic distributions, their
odd-order cumulants, N � 3, 5, . . ., are zero, and the cumulants of
the mixtures are only due to noise. Hence, a decomposition of such
tensors is not able to retrieve the mixing matrix. However, the odd-
order cumulant tensors can be used to subtract the noise term in the
derivative tensors evaluated at other processing points.

Example 1.6. Blind identification (BI) in a system of 2 mixtures
and R binary signals.

To illustrate the efficiency of higher-order derivatives of the second
GCF in blind identification we considered a system of two mixtures,
I � 2, linearly composed by R signals of length T � 100 � 2R, the
entries of which can take the values 1 or �1, i.e., sr,t � 1 or �1.
The mixing matrix H of size 2 � R was randomly generated, where
R � 4, 6, 8. The signal-to-noise ratio was SNR = 20 dB. The main
purpose of BI is to estimate the mixing matrix H.

We constructed 50 tensors Yi pi � 1, . . . , 50q of size R�� � ��R�3,
which comprise three derivative tensors evaluated at the two leading
left singular vectors of X, and a unit-length processing point, generated
such that its collinearity degree with the first singular vector uniformly
distributed over a range of r�0.99, 0.99s. The average derivative tensor
was used to eliminate the noise term in Yi.

CP decomposition of derivative tensors. The tensors Yi were de-
composed by CP decompositions of rank-R to retrieve the mixing
matrix H. The mean of Squared Angular Errors SAEphr, ĥrq �
�20 log10 arccosp hT

r ĥr

|hr|2|ĥr|2 q over all columns hr was computed as a per-
formance index for one estimation of the mixing matrix.

The averages of the mean and best MSAEs over 100 independent
runs for the number of the unknown sources R � 4, 6, 8 are plotted in
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Figure 1.5: Mean SAE (in dB) in the estimation of the mixing matrix H from only
two mixtures, achieved by CP decomposition of three 2�2�� � ��2 derivative tensors
of the second GCFs. Small bars in red represent the mean of MSAEs, obtained by
decomposition of single cumulant tensors.

Figure 1.5. The results indicate that with a suitably chosen processing
point, the decomposition of the derivative tensors yielded good esti-
mation of the mixing matrix. Of more importance is that higher-order
derivative tensors, e.g., 7th and 8th orders, yielded better performance
than lower-order tensors, while the estimation accuracy deteriorated
with the number of sources.

CP decomposition of cumulant tensors. Because of symmetric pdfs,
the odd order cumulants of the sources are zero. Only decompositions
of cumulants of order 6 or 8 were able to retrieve the mixing matrix
H. For all the test cases, better performances could be obtained by a
decomposition of three derivative tensors.

Tensor train decomposition of derivative tensors. The estimation of
the mixing matrix H can be performed in a two-stage decomposition

• A tensor train decomposition of high-order derivative tensors,
e.g., tensor order exceeds 5.
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• A CP decomposition of the tensor in TT-format, to retrieve the
mixing matrix.

Experimental results confirmed that the performances with prior TT-
decomposition were more stable and yielded an approximately 2 dB
higher mean SAE than those using only CP decomposition for deriva-
tive tensors of orders 7 and 8 and a relatively high number of unknown
sources.

1.4.1 Tensor Structures in Constant Modulus Signal Separation

Another method to generate tensors of relatively high order in BSS
is through modelling modulus of the estimated signals as roots of a
polynomial.

Consider a linear mixing system X � HS with R sources of length
K, and I mixtures, where the modulus of the sources S is drawn from
a set of given moduli. For simplicity, we assume I � R. For example,
the binary phase-shift keying (BPSK) signal in telecommunication con-
sists of a sequence of 1 and �1, hence, it has a constant modulus of
unity. The quadrature phase shift keying (QPSK) signal takes one of
the values �1 � 1i, i.e., it has a constant modulus

?
2. The 16-QAM

signal has three squared moduli of 2, 10 and 18. For this BSS problem
for single constant modulus signals, Lathauwer (2004) linked the prob-
lem to CP decomposition of a fourth-order tensor. For multi-constant
modulus signals, Debals et al. (2016b) established a link to a coupled
CP decomposition.

A common method to extract the original sources S is to use a
demixing matrix W of size I � R or a vector w of length I such that
y � wTX is an estimate of one of the source signals. The constant
modulus constraints require that each entry, |yk|, must be one of given
moduli, c1, c2, . . . , cM . This means that for all entries of y the following
holds

fpykq �
M¹
m�1

p|yk|2 � cmq � 0 . (1.31)

In other words, |yk|2 are roots of an Mth-degree polynomial, given by
pM � αmp

M�1 � � � � � α2p� α1 ,
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with coefficients αM�1 � 1, and α1, α2, . . . , αM , given by

αm � p�1qm�1
¸

i1,i2,...,im

ci1ci2 � � � cim . (1.32)

By expressing |yk|2 � pwbw�qTpxk b x�kq, and
|yk|2m � pwbm b pwbmq�qTpxbm

k b pxbm
k q�q ,

where the symbol “�” represents the complex conjugate, xbm � x b
xb � � �bx denotes the Kronecker product of m vectors x, and bearing
in mind that the rank-1 tensors w�m � w � w � � � � � w are symmet-
ric, and in general have only pR�m�1q!

m!pR�1q! distinct coefficients, the rank-1

tensors w�m � pw�mq� have at least
�
pR�m�1q!
m!pR�1q!

	2
distinct entries. We

next introduce the operator K which keeps only distinct entries of the
symmetric tensor w�m � pw�mq� or of the vector wbm b pwbmq�. The
constant modulus constraint of yk can then be rewritten as

fpykq � α1 �
M�1¸
m�2

αmpwbm b pwbmq�qTpxbm
k b pxbm

k q�q

� α1 �
M�1¸
m�2

αmpKpwbm b pwbmq�qqT diagpdmqKpxbm
k b pxbm

k q�q

� α1 �
�
. . . , pKpwbm b pwbmq�qqT, . . .

�
r. . . ,Kpxbm

k b pxbm
k q�qT diagpαmdmq, . . .sT ,

where dmpiq represents the number of occurrences of an entry of
Kpxbm

k b pxbm
k q�q in xbm

k b pxbm
k q�.

The vector of the constant modulus constraints of y is now given
by

f � r. . . , fpykq, . . .sT � α11�Qv , (1.33)

where

v �

����
...

Kpwbm b pwbmq�q
...

���� , Q �

����
...

diagpαmdmqKpXdm d pXdmq�q
...

����
T

.
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The constraint vector is zero for the exact case, and should be small for
the noisy case. For the exact case, from (1.33) and fpyk�1q�fpykq � 0,
this leads to

LQv � 0 ,

where L is the first-order Laplacian implying that the vector v is in
the null space of the matrix Q̃ � LQ. The above condition holds for
other demixing vectors w, i.e., Q̃V � 0, where V � rv1, . . . ,vRs, and
each vr is constructed from a corresponding demixing vector wr.

With the assumption I � R, and that the sources have complex
values, and the mixing matrix does not have collinear columns, it can
be shown that the kernel of the matrix Q̃ has the dimension of R
(Debals et al., 2016b). Therefore, the basis vectors, zr, r � 1, . . . , R, of
the kernel of Q̃ can be represented as linear combination of V, that is

zr � Vλr .

Next we partition zr into M parts, zr � rzrms, each of the length�
pR�m�1q!
m!pR�1q!

	2
, which can be expressed as

zrm �
Ŗ

s�1
λrsKpwbm

s b pwbm
s q�q � K

�
Ŗ

s�1
λrswbm

s b pwbm
s q�

�
,

thus implying that W and W� are factor matrices of a symmetric
tensor Zrm of p2mqth-order, constructed from the vector zrm, i.e.,
KpvecpZrmqq � zrm, in the form

Zrm � Jdiag2mpλrq; W, . . . ,Wlooooomooooon
m terms

,W�, . . . ,W�loooooomoooooon
m terms

K . (1.34)

By concatenating all R tensors Z1m, . . . , ZRm into one p2m�1qth-order
tensor Zm, the above R CP decompositions become

Zm � JI; W, . . . ,Wlooooomooooon
m terms

,W�, . . . ,W�loooooomoooooon
m terms

,ΛK . (1.35)

All together, the M CP decompositions of Z1, . . . , ZM form a coupled
CP tensor decomposition to find the two matrices W and Λ.
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Figure 1.6: Scatter plots of the estimated sources (blue dots). Red dots indicate
the ideal signal constellation, the values of which are located on one of dashed circles.

Example 1.7 (Separation of QAM signals.). We performed the separa-
tion of two rectangular 32- or 64-QAM signals of length 1000 from two
mixture signals corrupted by additive Gaussian noise with SNR = 15
dB. Columns of the real-valued mixing matrix had unit-length, and a
pair-wise collinearity of 0.4. The 32-QAM signal had M � 5 constant
moduli of 2, 10, 18, 26 and 34, whereas the 64-QAM signal had M � 9
squared constant moduli of 2, 10, 18, 26, 34, 50, 58, 74 and 98. There-
fore, for the first case (32-QAM), the demixing matrix was estimated
from 5 tensors of size 2 � 2 � � � � � 2 and of respective orders 3, 5, 7,
9 and 11, while for the later case (64-QAM), we decomposed 9 quan-
tized tensors of orders 3, 5, . . . , 19. The estimated QAM signals for the
two cases were perfectly reconstructed with zero bit error rates. Scatter
plots of the recovered signals are shown in Figure 1.6.

1.5 Tensorization by Learning Local Structures

Different from the previous tensorizations, this tensorization approach
generates tensors from local blocks (patches) which are similar or
closely related. For the example of an image, given that the intensities
of pixels in a small window are highly correlated, hidden structures
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Tensor of similar patches

Figure 1.7: A “local-structure” tensorization method generates 5th-order tensors
of size h�w�3�p2d�1q� p2d�1q from similar image patches, or patches in close
spatial proximity.

which represent relations between small patches of pixels can be learnt
in local areas. These structures can then be used to reconstruct the im-
age as a whole in, e.g., an application of image denoising (Phan et al.,
2016).

For a color RGB image Y of size I � J � 3, each block of pixels of
size h� w � 3 is denoted as

Yr,c � Ypr : r � h� 1, c : c� w � 1, :q.
A small tensor, Zr,c, of size h�w�3�p2d�1q�p2d�1q, comprising p2d�
1q2 blocks centered around Yr,c, with d denoting the neighbourhood
width, can be constructed in the form

Zr,cp:, :, :, d� 1� i, d� 1� jq � Yr�i,c�j ,

where i, j � �d, . . . , 0, . . . , d, as illustrated in Figure 1.7. Every pr, cq-th
block Zr,c is then approximated through a constrained tensor decom-
position

}Zr,c � Ẑr,c}2F ¤ ε2 , (1.36)

where the noise level ε2 can be determined by inspecting the coefficients
of the image in the high-frequency bands. A pixel is then reconstructed
as the average of all its approximations which cover that pixel.
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(a) Noisy image (b) TT, PSNR = 31.64 dB (c) CP, PSNR = 28.90 dB

Figure 1.8: Tensor based image reconstruction in Example 1.8. The Pepper image
with added noise at 10 dB SNR (left), and the images reconstructed using the TT
(middle) and CP (right) decompositions.

Example 1.8. Image denoising. The principle of tensorization from
learning the local structures is next demonstrated in an image denoising
application for the benchmark “peppers” color image of size 256 �
256 � 3, which was corrupted by white Gaussian noise at SNR = 10
dB. Latent structures were learnt for patches of sizes 8 � 8 � 3 (i.e.,
h � w � 8) in the search area of width d � 3. To the noisy image,
we applied the DCT spatial filtering before their block reconstruction.
The results are shown in Figure 1.8, and illustrate the advantage of the
tensor network approach over a CP decomposition approach.

1.6 Tensorization based on Divergences, Similarities or In-
formation Exchange

For a set of I data points xi, i � 1, 2, . . . , I, this type of tensoriza-
tion generates an Nth-order nonnegative symmetric tensor of size
I � I � � � � � I, the entries of which represent N -way similarities or
dissimilarities between xi1 , xi2 , . . . , xiN , where in � 1, . . . , I, so that

Ypi1, i2, . . . , iN q � dpxi1 ,xi2 , . . . ,xiN q . (1.37)

Such metric function can express pair-wise distances between the two
observations xi and xj . In a general case, dpxi1 ,xi2 , . . . ,xiN q can com-
pute the volume of a convex hull formed by N data points.
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The so generated tensor can be expanded to pN�1qth-order tensor,
where the last mode expresses the change of data points over e.g., time
or trials. Tensorizations based on divergences and similarities are useful
for the analysis of interaction between observed entities, and for their
clustering or classification.

1.7 Tensor Structures in Multivariate Polynomial Regression

The Multivariate Polynomial Regression (MPR) is an extension of the
linear and multilinear regressions which allows us to model nonlinear
interaction between independent variables (Chen and Billings, 1989;
Billings, 2013; Vaccari, 2003). For illustration, consider a simple exam-
ple of fitting a curve to data with two independent variables x1 and x2,
in the form

y � w0 � w1x1 � w2x2 � w12x1x2 . (1.38)

The term w12 then quantifies the strength of interaction between the
two independent variables in the data, x1 and x2. Observe that the
model is still linear with respect to the variables x1 and x2, while in-
volving the cross-term w12x1x2. The above model can also have more
terms, e.g., x2

1, x1x2
2, to describe more complex functional behaviours.

For example, the full quadratic polynomial regression for two indepen-
dent variables, x1 and x2, can have up to 9 terms, given by

y � w0 � w1x1 � w2x2 � w12x1x2

� w11x
2
1 � w22x

2
2 � w112x

2
1x2 � w122x1x

2
2 � w1122x

2
1x

2
2 . (1.39)

Tensor representation of the system weights. The simple model
for two independent variables in (1.38) can be rewritten in a bilinear
form as

y � � 1 x1
� � w0 w2

w1 w12

� �
1
x2

�
,

whereas the full model in (1.39) has an equivalent bilinear expression

y � �
1 x1 x2

1
� �� w0 w2 w22

w1 w12 w122
w11 w112 w1122

���� 1
x2
x2

2

�� ,
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or a tensor-vector product representation

y � W �̄1

�
1
x1

�
�̄2

�
1
x1

�
�̄3

�
1
x2

�
�̄4

�
1
x2

�
, (1.40)

where the 4th-order weight tensor W is of size 2 � 2 � 2 � 2, and is
given by

Wp:, :, 1, 1q �
�

w0
1
2w1

1
2w1 w11

�
, Wp:, :, 2, 2q �

�
w22

1
2w122

1
2w122 w1122

�
,

Wp:, :, 1, 2q � Wp:, :, 2, 1q � 1
2

�
w2

1
2w12

1
2w12 w112

�
.

It is now obvious that for a generalised system with N indepen-
dent variables, x1, . . . , xN , the MPR can be written as a tensor-vector
product as (Chen and Billings, 1989)

y �
Ņ

i1�0

Ņ

i2�0
� � �

Ņ

iN�0
wi1,i2,...,iN x

i1
1 x

i2
2 � � � xiNN

� W �̄1 VN px1q �̄2 VN px2q � � � �̄N VN pxN q , (1.41)

where W is an Nth-order tensor of size pN�1q�pN�1q�� � ��pN�1q,
and VN pxq is the length-pN � 1q Vandermonde vector of x, given by

VN pxq �
�

1 x x2 . . . xN
�T

. (1.42)

Similarly to the representation in (1.40), the MPR model in (1.41) can
be equivalently expressed as a product of a tensor of N2th-order and
size 2� 2� � � � � 2 with N vectors of length-2, to give

y � �W �̄1:N

�
1
x1

�
�̄N�1:2N

�
1
x2

�
� � � �̄NpN�1q�1:N2

�
1
xN

�
.(1.43)

An illustration of the MPR is given in Figure 1.9, where the input units
are scalars.

The MPR has found numerous applications, owing to its ability
to model any smooth, continuous nonlinear input-output system , see
e.g. (Vaccari, 2003). However, since the number of parameters in the
model in (1.41) grows exponentially with the number of variables, N ,
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Figure 1.9: Graphical illustration of Multivariate Polynomial Regression (MPR).
(a) The MPR for multiple input units x1, . . . , xN , where the nonlinear function
hpx1, . . . , xN q is expressed as a multilinear tensor-vector product of an Nth-order
tensor, W, of size pN�1q�pN�1q�� � ��pN�1q, and Vandermonde vectors VN pxnq
of length pN � 1q. (b) An equivalent MPR model but with quantized N2th-order
tensor �W of size 2 � 2 � � � � � 2.

the MPR demands a huge amount of data in order to yield a good
model, and therefore, it is computationally intensive in a raw tensor
format, and thus not suitable for very high-dimensional data. To this
end, low-rank tensor network representation emerges as a viable ap-
proach to accomplishing MPR. For example, the weight tensor W can
be constrained to be in low rank TT-format (Chen et al., 2016). An
alternative approach would be to consider a truncated model which
takes only two entries along each mode of W in (1.41). In other words,
this truncated model becomes linear with respect to each variable xn
(Novikov et al., 2016), leading to

y � Wt �̄1

�
1
x1

�
�̄2

�
1
x2

�
� � � �̄N

�
1
xN

�
, (1.44)

where Wt is a tensor of size 2�2�� � ��2 in the QTT-format. Both (1.43)
and (1.44) represent the weight tensors in the QTT-format, however,
the tensor �W in (1.43) has N2 core tensors of the full MPR, whereas
Wt in (1.44) has N core tensors for the truncated model.
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1.8 Tensor Structures in Vector-variate Regression

The MPR in (1.41) is formulated for scalar data. When the observations
are vectors or tensors, the model can be extended straightforwardly. For
illustration, consider a simple case of two independent vector inputs x1
and x2. Then, the nonlinear function which maps the input to the
output y � hpx1,x2q can be approximated in a linear form as

y � hpx1,x2q � w0 �wT
1 x1 �wT

2 x2 � xT
1 W12x2 (1.45)

� r1, xT
1 s
�
w0 wT

2
w1 W12

� �
1
x2

�
,

or in a quadratic with 9 terms, including one bias, two vectors, three
matrices, two third-order tensors and one fourth-order tensor, given by

hpx1,x2q � w0 �wT
1 x1 �wT

2 x2 � xT
1 W12x2 � xT

1 W11x1 � xT
2 W22x2

�W112 �̄1 x1 �̄2 x1 �̄3 x2 �W122 �̄1 x1 �̄2 x2 �̄3 x2

�W1122 �̄1 x1 �̄2 x1 �̄3 x2 �̄4 x2

� r1, xT
1 , px1 b x1qT s W

�� 1
x2

x2 b x2

�� ,
where the matrix W is given

W �
�� w0 wT

2 vecpW22qT
w1 W12 rW122sp1q

vecpW11q rW112sp1,2q rW1122sp1,2q

�� . (1.46)

and rW112sp1,2q represents the mode-(1,2) unfolding of the tensor W112.
Similarly to (1.40), the above model has an equivalent expression of
through the tensor-vector product of a fourth-order tensor W, in the
form

y � W �̄1

�
1
x1

�
�̄2

�
1
x1

�
�̄3

�
1
x2

�
�̄4

�
1
x2

�
. (1.47)

Full text available at: http://dx.doi.org/10.1561/2200000067



1.8. Tensor Structures in Vector-variate Regression 35

In general, the regression for a system with N input vectors, xn of
lengths In, can be written as

hpx1, . . . ,xN q � w0 �
N2¸
d�1

Ņ

i1,i2,...,id�1
Wi1,i2,...,id�̄ pxi1 � xi2 � � � � � xidq ,

(1.48)

where �̄ represents the inner product between two tensors, and the
tensors Wi1,...,id are of d-th order, and of size Ii1 � Ii2 � � � � � Iid ,
d � 1, . . . , N2. The representation of the generalised model as a tensor-
vector product of an Nth-order tensor of size J1�J2�� � ��JN , where
Jn � IN�1

n �1
In�1 , comprising all the weights, is given by

hpx1, . . . ,xN q � W �̄1 vN px1q �̄2 vN px2q � � � �̄N vN pxN q, (1.49)
where

vN pxq �
�

1 xT pxb xqT . . . pxb � � � b xqT �T
, (1.50)

or, in a more compact form, with a very high-order tensor �W of N2th-
order and of size pI1 � 1q � � � � � pI1 � 1q � pI2 � 1q � � � � � pIN � 1q �
� � � � pIN � 1q, as

hpx1, . . . ,xN q � �W �̄1:N

�
1
x1

�
� � � �̄NpN�1q�1:N2

�
1

xN

�
.(1.51)

The illustration of this generalized model is given in Figure 1.10.
Tensor-variate model. When the observations are matrices, Xn, or
higher-order tensors, Xn, the models in (1.48), (1.49) and (1.51) are
still applicable and operate by replacing the original vectors, xn, by
the vectorization of the higher-order inputs. This is because the inner
product between two tensors can be expressed as a product of their
two vectorizations.
Separable representation of the weights. Similar to the MPR,
the challenge in the generalised tensor-variate regression is the curse of
dimensionality of the weight tensor W in (1.49), or of the tensor �W in
(1.51).

A common method to deal with the problem is to restrict the model
to some low order, i.e., to the first order. The weight tensor is now only
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Figure 1.10: Graphical illustration of the vector-variate regression. (a) The vector-
variate regression for multiple input units x1, . . . , xN , where the nonlinear function
hpx1, . . . ,xN q is expressed as a tensor-vector product of an Nth-order core tensor,
W, of size J1 � J2 � � � � � JN , and Vandermonde-like vectors vN pxnq of length Jn,
where Jn �

IN�1
n �1
In�1 . (b) An equivalent regression model but with an N2th-order

tensor of size pI1 � 1q � � � � � pI1 � 1q � pI2 � 1q � � � � � pIN � 1q � � � � � pIN � 1q.
When the input units are scalars, the tensor �W is of size 2 � 2 � � � � � 2.

of size pI1 � 1q � pI2 � 1q � � � � � pIN � 1q. The large weight tensor
can then be represented in the canonical form (Nguyen et al., 2015; Qi
et al., 2016), the TT/MPS tensor format (Stoudenmire and Schwab,
2016), or the hierarchical Tucker tensor format (Cohen and Shashua,
2016).

1.9 Tensor Structure in Volterra Models of Nonlinear Sys-
tems

1.9.1 Discrete Volterra Model

System identification is a paradigm which aims to provide a mathe-
matical description of a system from the observed system inputs and
outputs (Billings, 2013). In practice, tensors are inherently present in
Volterra operators which model the system response of a nonlinear sys-
tem which maps an input signal xptq to an output signal yptq in the
form

yptq � V pxptqq � h0 �H1pxptqq �H2pxptqq � � � � �Hnpxptqq � � � �
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Figure 1.11: A Volterra model of a nonlinear system with memory of length M .
Each block computes the tensor product between an nth-order Volterra kernel, Hpnq,
and the vector x of length M , which comprises M samples of the input signal. The
system identification task amounts to estimating the Volterra kernels, Hpnq, directly
or in suitable tensor network formats.

where h0 is a constant and Hnpxptqq is the nth-order Volterra operator,
defined as a generalised convolution of the integral Volterra kernels
hpnqpτ1, . . . , τnq and the input signal, that is

Hnpxptqq �
»
hpnqpτ1, . . . , τnqxpt� τ1q � � �xpt� τnqdτ1 � � � dτn .(1.52)

The system, which is assumed to be time-invariant and continuous, is
treated as a black box, and needs to be represented by appropriate
Volterra operators.

In practice, for a finite duration sample input data, x, the discrete
system can be modelled using truncated Volterra kernels of size M �
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M � � � � �M , given by

Hnpxq �
I̧

i1�1
� � �

I̧

in�1
h
pnq
i1,...,inxi1 . . . xi2

� Hpnq �̄1x �̄2x � � � �̄nx. (1.53)

For simplicity, the Volterra kernels Hpnq � rhpnqi1,...,ins are assumed to
have the same sizeM in each mode, and, therefore, to yield a symmetric
tensor. Otherwise, they can be symmetrized.
Curse of dimensionality. The output which corresponds to the input
x is written as a sum of N tensor products (see in Figure 1.11), given
by

y � h0 �
Ņ

n�1
Hpnq �̄1 x �̄2 x � � � �̄n x. (1.54)

Despite the symmetry of the Volterra kernels, Hpnq, the number of ac-
tual coefficients of the nth-order kernel to be estimated is still huge,
especially for higher-order kernels, and is given by pM�n�1q!

n!pM�1q! . As a con-
sequence, the estimation requires a large number of measures (data
samples), so that the method for a raw tensor format is only feasible
for systems with a relatively small memory and low-dimensional input
signals.

1.9.2 Separable Representation of Volterra Kernel

In order to deal with the curse of dimensionality in Volterra kernels,
we consider the kernel Hpnq to be separable, i.e., it can be expressed
in some low rank tensor format, e.g., as a CP tensor or in any other
suitable tensor network format (for the concept of general separability
of variables, see Part 1).
Volterra-CP model. The first and simplest separable Volterra model,
proposed in (Favier et al., 2012), represents the kernels by symmetric
tensors of rank Rn in the CP format, that is

Hpnq � I�1 An �2 An � � � �n An . (1.55)

For this tensor representation, the identification problem simplifies into
the estimation of N factor matrices, An, of size M �Rn and an offset,
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h0, so that the number of parameters reduces to M
°
nRn � 1 (note

that R1 � 1). Moreover, the implementation of the Volterra model
becomes

yk � h0 �
Ņ

n�1
pxT
k Anqn 1Rn , (1.56)

where xk � rxk�M�1, . . . , xk�1, xksT comprisesM samples of the input
signal, and pqn represents the element-wise power operator. The entire
output vector y can be computed in a simpler way through the convo-
lution of the input vector x and the factor matrices An, as (Batselier
et al., 2016a)

y � h0 �
Ņ

n�1
px �Anqn 1Rn . (1.57)

Volterra-TT model. Alternatively, the Volterra kernels, Hpnq, can be
represented in the TT-format, as

Hpnq � xxGp1q
n ,Gp2q

n , . . . ,Gpnq
n yy . (1.58)

By exploiting the fast contraction over all modes between a TT-tensor
and xk, we have

Hpnq�̄xk � pGp1q
n �̄2xkqpGp2q

n �̄2xkq � � � pGpnq
n �̄2xkq .

The output signal, can be then computed through the convolution of
the core tensors and the input vector, as

yk � h0 �
Ņ

n�1
Zn,1p1, k, :qZn,2p:, k, :q � � � Zn,n�1p:, k, :qZn,np:, kq ,

where Zn,m � Gpmq
n �2 x is a mode-2 partial convolution of the input

signal x and the core tensor Gpmq
n , for m � 1, . . . , n. A similar method,

but with only one TT-tensor, is considered in (Batselier et al., 2016b).

1.9.3 Volterra-based Tensorization for Nonlinear Feature Extrac-
tion

Consider nonlinear feature extraction in a supervised learning system,
such that the extracted features maximize the Fisher score (Kumar
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et al., 2009). In other words, for a data sample xk, which can be a
recorded signal in one trial or a vectorization of an image, a feature
extracted from xk by a nonlinear process is denoted by yk � fpxkq.
Such constrained (discriminant) feature extraction can be treated as a
maximization of the Fisher score

max
°
cpȳc � ȳq2°
kpyk � ȳck

q2 , (1.59)

where ȳck
is the mean feature of the samples in class-k, and ȳ the mean

feature of all the samples.
Next, we model the nonlinear system fpxq by a truncated Volterra

series representation

yk �
Ņ

n�1
Hpnq�̄pxk � xk � � � � � xkq � hT zk , (1.60)

where h and xk are vectors comprising all coefficients of the Volterra
kernels and

h � rvec
�
Hp1q

	T
, vec

�
Hp2q

	T
, . . . , vec

�
HpNq

	T
sT ,

zk � rxT
k , pxb 2

k qT, . . . , pxbN
k qTsT .

The shorthand xbn � xbxb� � �bx represents the Kronecker product
of n vectors x. The offset coefficient, h0, is omitted in the above Volterra
model because it will be eliminated in the objective function (1.59). The
vector h can be shortened by keeping only distinct coefficients, due to
symmetry of the Volterra kernels. The augmented sample zk needs a
similar adjustment but multiplied with the number of occurrences.

Observe that the nonlinear feature extraction, fpxkq, becomes a
linear mapping, as in (1.60) after xk is tensorized into zk. Hence, the
nonlinear discriminant in (1.59) can be rewritten in the form of a stan-
dard linear discriminant analysis

max hTSbh
hTSwh , (1.61)

where Sb �
°
cpz̄c � z̄qpz̄c � z̄qT and Sw � °

kpzk � z̄ck
qpzk � z̄ck

qT
are respectively between- and within-scattering matrices of zk. The
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problem then boils down to finding generalised principal eigenvectors
of Sb and Sw.
Efficient implementation. The problem with the above analysis is
that the length of eigenvectors, h, in (1.61) grows exponentially with
the data size, especially for higher-order Volterra kernels. To this end,
Kumar et al. (2009) suggested to split the data into small patches.
Alternatively, we can impose low rank-tensor structures, e.g., the CP
or TT format, onto the Volterra kernels, Hpnq, or the entire vector h.

1.10 Low-rank Tensor Representations of Sinusoid Signals
and their Applications to BSS and Harmonic Retrieval

Harmonic signals are fundamental in many practical applications. This
section addresses low-rank structures of sinusoid signals under several
tensorization methods. These properties can then be exploited in the
blind separation of sinusoid signals or their modulated variants, e.g.,
the exponentially decaying signals, the examples of which are

xptq � sinpω t� φq , xptq � t sinpω t� φq , (1.62)
xptq � expp�γtq sinpω t� φq , xptq � t expp�γtq , (1.63)

for t � 1, 2, . . . , L, ω � 0.

1.10.1 Folding - Reshaping of Sinusoid

Harmonic matrix. The harmonic matrix Uω,I is a matrix of size I�2
defined over the two variables, the angular frequency ω and the folding
size I, as

Uω,I �

���������

1 0
...

...

cospkωq sinpkωq
...

...

cosppI � 1qωq sinppI � 1qωq

���������
. (1.64)

Two-way folding. A matrix of size I�J , folded from a sinusoid signal
xptq of length L � IJ , is of rank-2, and can be decomposed as

Y � Uω,I S UT
ωI,J , (1.65)
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where S is invariant to the folding size I, depends only on the phase φ,
and takes the form

S �
�

sinpφq cospφq
cospφq � sinpφq

�
. (1.66)

Three-way folding. A third-order tensor of size I � J � K, where
I, J,K ¡ 2, reshaped from a sinusoid signal of length L, can take the
form of a multilinear rank-(2,2,2) or rank-3 tensor

Y � JH; Uω,I ,UωI,J ,UωIJ,KK , (1.67)

where H � G�3 S is a small-scale tensor of size 2� 2� 2, and

Gp:, :, 1q �
�

1 0
0 �1

�
, Gp:, :, 2q �

�
0 1
1 0

�
. (1.68)

The above expression can be derived by folding the signal yptq two
times. We can prove by contradiction that the so-created core tensor G
does not have rank-2, but has the following rank-3 tensor representation

G � 1
2

�
1
1

�
�
�
1
1

�
�
�
1
1

�
� 1

2

��1
1

�
�
��1

1

�
�
��1

1

�
� 2

�
0
1

�
�
�
0
1

�
�
��1

0

�
.

Hence, Y is also a rank-3 tensor. Note that Y does not have a unique
rank-3 decomposition.

Remark 1.2. The Tucker-3 decomposition in (1.67) has a fixed core
tensor G, while the factor matrices are identical for signals of the same
frequency.

Higher-order folding - TT-representation. An Nth-order tensor
of size I1�I2�� � ��IN , where In ¥ 2, which is reshaped from a sinusoid
signal, can be represented by a multilinear rank-(2,2,. . . , 2) tensor

Y � JH; Uω,I1 ,UωJ1,I2 , . . . ,UωJN�1,IN
K , (1.69)

where H � xxG,G, . . . ,Gloooooomoooooon
pN�2qterms

,Syy is an Nth-order tensor of size 2 � 2 �

� � � � 2, and Jn �
±n
k�1 Ik.
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Remark 1.3 (TT-representation). Since the tensor H has TT-rank of
(2,2,. . . ,2), the folding tensor Y is also a tensor in TT-format of rank-
(2,2,. . . ,2), that is

Y � xxA1,A2, . . . ,ANyy , (1.70)

where A1 � Uω,I1 , AN � SUT
ωJN�1,IN

and An � G �2 UωJn�1,In for
n � 2, . . . , N � 1.

Remark 1.4 (QTT-Tucker representation). When the folding sizes In �
2, for n � 1, . . . , N , the representation of the folding tensor Y in (1.69)
is also known as the QTT-Tucker format, given by

Y � JH; A1, . . . ,AN�1,AN K, (1.71)

where An �
�

1 0
cosp2n�1ωq sinp2n�1ωq

�
.

Example 1.9. Separation of damped sinusoid signals.
This example demonstrates the use of multiway folding in a sin-

gle channel separation of damped sinusoids. We considered a vector
composed of P damped sinusoids,

yptq �
P̧

p�1
ap xpptq � nptq , (1.72)

where

xpptq � expp�5t
Lp

q sinp2πfp
fs

t� pp� 1qπ
P

q ,

with frequencies fp = 10, 12 and 14 Hz, and the sampling frequency
fs � 10fP . Additive Gaussian noise, nptq, was generated at a spe-
cific signal-noise-ratio (SNR). The weights, ap, were set such that
the component sources were equally contributing to the mixture, i.e.,
a1}x1} � � � � � aP }xP }, and the signal length was L � 2d P 2.

In order to separate the three signals xpptq from the mixture yptq, we
tensorized the mixture to a dth-order tensor of size 2R�2�� � ��2�2R.
Under this tensorization, the exponentially decaying signals exppγtq
yielded rank-1 tensors, while according to (1.69) the sinusoids have
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Figure 1.12: Comparison of the mean SAEs for various noise levels SNR, signal
lengths, and tensor orders.

TT-representations of rank-p2, 2, . . . , 2q. Hence, the tensors of xptq can
also be represented by tensors in the TT-format of rank-p2, 2, . . . , 2q.
We were, therefore, able to approximate Y as a sum of P TT-tensors
Xr of rank-p2, 2, . . . , 2q, that is, through the minimization (Phan et al.,
2016)

min }Y�X1 �X2 � � � � �XP }2F . (1.73)

For this purpose, a tensor Xp in a TT-format was fitted sequentially to
the residual Yp � Y �°s�p Xs, calculated by the difference between
the data tensor Y and its approximation by the other TT-tensors Xs

where s � p, that is,

arg min
Xp

}Yp �Xp}2F , (1.74)

for p � 1, . . . , P . Figure 1.12 illustrates the mean SAEs (MSAE) of the
estimated signals for various noise levels SNR = 0, 10, . . . , 50 dB, and
different signal lengths K � 9� 2d, where d � 12, 14, 16, 18.

On average, an improvement of 2 dB SAE is achieved if the signal is
two times longer. If the signal has less than L � 9� 26 � 576 samples,
the estimation quality will deteriorate by about 12 dB compared to the
case when signal length of L � 9 � 212. For such cases, we suggest to
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augment the signals using other tensorizations before performing the
source extraction, e.g., by construction of multiway Toeplitz or Hankel
tensors. Example 1.10 further illustrates the separation of short length
signals.

1.10.2 Toeplitz Matrix and Toeplitz Tensors of Sinusoidal Signals

Toeplitz matrix of sinusoid. The Toeplitz matrix, Y, of a sinusoid
signal, yptq � sinpω t� φq, is of rank-2 and can be decomposed as

Y �

�����
yp1q yp2q
yp2q yp3q
...

...

ypIq ypI � 1q

�����QT

�
ypIq � � � ypLq

ypI � 1q � � � ypL� 1q
�
, (1.75)

where QT is invariant to the selection of folding length I, and has the
form

QT � 1
sin2pωq

� �yp3q yp2q
yp2q �yp1q

�
. (1.76)

The above expression follows from the fact that�
ypiq ypi� 1q� ��yp3q yp2q

yp2q �yp1q
� �

ypjq
ypj � 1qs

�
� sin2pωq ypj � i� 1q .

Toeplitz tensor of sinusoid. An Nth-order Toeplitz tensor, ten-
sorized from a sinusoidal signal, has a TT-Tucker representation

Y � JG; U1, . . . ,UN�1,UN K (1.77)

where the factor matrices Un are given by

U1 �

��� yp1q yp2q
...

...

ypJ1q ypJ1 � 1q

��� , UN �

���ypJN�1 � 1q ypJN�1 � 2q
...

...

ypLq ypL� 1q

��� ,

Un �

��� ypJn�1q ypJn�1 � 1q
...

...

ypJn � 1q ypJnq

��� , n � 2, . . . , N � 1 , (1.78)
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in which Jn � I1 � I2 � � � � � In. The core tensor G is an Nth-order
tensor of size 2� 2� � � � � 2, in a TT-format, given by

G � xxGp1q,Gp2q, . . . ,GpN�1qyy, (1.79)

where Gp1q � Tp1q is a matrix of size 1� 2� 2, while the core tensors
Gpnq, for n � 2, . . . , N �1, are of size 2�2�2 and have two horizontal
slices, given by

Gpnqp1, :, :q � TpJn�1 � n� 2q , Gpnqp2, :, :q � TpJn�1 � n� 1q ,

with

TpIq � 1
sin2pωq

��ypI � 2q ypI � 1q
ypI � 1q �ypIq

�
. (1.80)

Following the two-stage Toeplitz tensorization, and upon applying
(1.75), we can deduce the decomposition in (1.77) from that for the
pN � 1qth-order Toeplitz tensor.

Remark 1.5. For second-order tensorization, the core tensor G in
(1.79) comprises only Gp1q, which is identical to the matrix QT in
(1.76).

Quantized Toeplitz tensor. An pL � 1qth-order Toeplitz tensor of
a sinusoidal signal of length L and size 2 � 2 � � � � � 2 has a TT-
representation with pL� 3q identical core tensors G, in the form

Y � xxG,G, . . . ,G,

�
ypL� 1q ypLq
ypL� 2q ypL� 1q

�
yy ,

where

Gp1, :, :q �
�
1 0
0 1

�
, Gp2, :, :q �

�
0 1
�1 2 cospωq

�
.

Example 1.10. Separation of short-length damped sinusoid sig-
nals.

This example illustrates the use of Toeplitz-based tensorization in
the separation of damped sinusoid signals from a short-length obser-
vation. We considered a single signal composed by P � 3 damped
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Figure 1.13: Mean SAEs (MSAE) of the estimated signals in Example 1.10, for
various noise levels SNR.

sinusoids of length L � 66, given by

yptq �
P̧

p�1
ap xpptq � nptq , (1.81)

where

xptq � expp�pt30 q sinp2πfp
fs

t� pπ

7 q (1.82)

with frequencies fp = 10, 11 and 12 Hz, the sampling frequency fs =
300 Hz, and the mixing factors ap � p. Additive Gaussian noise nptq
was generated at a specific signal-noise-ratio.

In order to separate the three signals, xpptq, from the mixture yptq,
we first tensorized the observed signal to a 7th-order Toeplitz tensor of
size 16� 8� 8� 8� 8� 8� 16, then folded this tensor to a 23th-order
tensor of size 2�2�� � ��2. With this tensorization, according to (1.77)
and (1.69), each damped sinusoid xpptq had a TT-representation of
rank-p2, 2, . . . , 2q. The result produced by minimizing the cost function
(1.73), annotated by TT-SEPA, is shown in Figure 1.13 as a solid line
with star marker. The so obtained performance was much better than
in Example 1.9, even for the signal length of only 66 samples.
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We note that the parameters of the damped signals can be es-
timated using linear self-prediction (auto-regression) methods, e.g.,
singular value decomposition of the Hankel-type matrix as in the
Kumaresan-Tufts (KT) method (Kumaresan and Tufts, 1982). As
shown in Figure 1.13, the obtained results based on the TT-
decomposition were slightly better than those using the KT method.
For this particular problem, the estimation performance can even be
higher when applying self-prediction algorithms, which exploit the low-
rank structure of damped signals, e.g., TT-KT, and TT-linear predic-
tion methods based on SVD. For a detailed derivation of these algo-
rithms, see (Phan et al., 2017).

1.10.3 Hankel Matrix and Hankel Tensor of Sinusoidal Signal

Hankel tensor of sinusoid. The Hankel tensor of a sinusoid signal
yptq is a TT-Tucker tensor,

Y � JG; U1,U2, . . . ,UN K , (1.83)

for which the factor matrices are defined in (1.78). The core tensor G
is an Nth-order tensor of size 2� 2� � � � � 2, in the TT-format, given
by

G � xxGp1q,Gp2q, . . . ,GpN�1qyy , (1.84)

where Gp1q � HpJ1q is a matrix of size 1�2�2, while the core tensors
Gpnq, for n � 2, . . . , N �1, are of size 2�2�2 and have two horizontal
slices, given by

Gpnqp1, :, :q � HpJn � n� 1q , Gpnqp2, :, :q � HpJn � n� 2q ,

with

HpIq � 1
sin2pωq

�
ypIq �ypI � 1q

�ypI � 1q ypIq
�
. (1.85)

Remark 1.6. The two TT-Tucker representations of the Toeplitz and
Hankel tensors of the same sinusoid have similar factor matrices Un,
but their core tensors are different.
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�
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�
, An � Uω,2n�1

2. Toeplitz tensor

G G G AG G �
��

1 0
0 1

�
,

�
0 1
�1 2 cospωq

��
A �

�
ypL� 1q ypLq
ypL� 2q ypL� 1q

�
3. Hankel tensor

G G G AG G �
��

2 cospωq �1
1 0

�
,

�
1 0
0 1

��
A �

�
ypL� 2q ypL� 1q
ypL� 1q ypLq

�
Figure 1.14: Representations of a sinusoid signal in different quantized tensor
formats of size 2 � 2 � � � � � 2.

Quantized Hankel tensor. An pL� 1qth-order Hankel tensor of size
2� 2� � � � � 2 of a sinusoid signal of length L has a TT-representation
with pN � 2q identical core tensors G, in the form

Y � xxG,G, . . . ,G,

�
ypL� 2q ypL� 1q
ypL� 1q ypLq

�
yy ,

where

Gp1, :, :q �
�
2 cospωq �1

1 0

�
, Gp2, :, :q �

�
1 0
0 1

�
.

Finally, representations of the sinusoid signal in various tensor for-
mat of size are summarised in Figure 1.14.

1.11 Summary

This chapter has introduced several common tensorization methods, to-
gether with their properties and illustrative applications in blind source
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separation, blind identification, denoising, and harmonic retrieval. The
main criterion for choosing a suitable tensorization is that the ten-
sor generated from lower-order original data must reveal the underly-
ing low-rank tensor structure in some tensor format. For example, the
folded tensors of mixtures of damped sinusoid signals have low-rank
QTT representation, while the derivative tensors in blind identification
admit the CP decomposition. The Toeplitz and Hankel tensor foldings
augment the number of signal entries, through the replication of signal
segments (redundancy), and in this way become suited to modeling of
signals of short length. A property crucial to the solution via the tensor
networks shown in this chapter, is that the tensors can be generated in
the TT/QTT format, if the generating vector admits a low-rank QTT
representation.

In modern data analytics problems, such as regression and deep
learning, the number of model parameters can be huge, which renders
the model intractable. Tensorization can then serve as a remedy, by rep-
resenting the parameters in some low-rank tensor format. For further
discussion on tensor representation of parameters in tensor regression,
we refer to Chapter 2. A wide class of optimization problems including
of solving linear systems, eigenvalue decomposition, singular value de-
composition, Canonical Correlation Analysis (CCA) are addressed in
Chapter 3. The tensor structures for Boltzmann machines and convo-
lutional deep neural networks (CNN) are provided in Chapter 4.
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