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Abstract

Molecular communication (MC) is a promising bio-inspired paradigm
for the interconnection of autonomous nanotechnology-enabled devices,
or nanomachines, into nanonetworks. MC realizes the exchange of
information through the transmission, propagation, and reception of
molecules, and it is proposed as a feasible solution for nanonetworks.
This idea is motivated by the observation of nature, where MC is suc-
cessfully adopted by cells for intracellular and intercellular communi-
cation. MC-based nanonetworks have the potential to be the enabling
technology for a wide range of applications, mostly in the biomedi-
cal, but also in the industrial and surveillance fields. The focus of this
article is on the most fundamental type of MC, i.e., diffusion-based
MC, where the propagation of information-bearing molecules between
a transmitter and a receiver is realized through free diffusion in a fluid.
The objectives of the research presented in this article are to analyze
an MC link from the point of view of communication engineering and
information theory, and to provide solutions to the modeling and de-
sign of MC-based nanonetworks. First, a deterministic model is real-
ized to study each component, as well as the overall diffusion-based-
MC link, in terms of gain and delay. Second, the noise sources affect-
ing a diffusion-based-MC link are identified and statistically modeled.
Third, upper/lower bounds to the capacity are derived to evaluate the
information-theoretic performance of diffusion-based MC. Fourth, an
analysis of the interference produced by multiple diffusion-based MC
links in a nanonetwork is provided. This research provides fundamental
results that establish a basis for the modeling, design, and realization
of future MC-based nanonetworks, as novel technologies and tools are
being developed.
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1

Introduction

Molecular communication (MC) [2] is a bio-inspired paradigm where
the exchange of information is realized through the transmission, prop-
agation, and reception of molecules. This paradigm was first studied in
biology, since it is successfully adopted in nature by cells for intracellu-
lar and intercellular communication [73]. MC is considered a promising
option for communications in nanonetworks [5], which are defined as
the interconnections of intelligent autonomous nanometer-scale devices,
or nanomachines. Thanks to the feasibility of MC in biological environ-
ments, MC-based nanonetworks have the potential to be the enabling
technology for a wide range of applications [5], mostly in the biomedi-
cal, but also in the industrial and surveillance fields. The objectives of
the research presented in this article are to analyze the MC paradigm
from the point of view of communication engineering and information
theory, and to provide solutions to the modeling and design of MC-
based nanonetworks.

2
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1.1. Biological Nanomachines and Nanonetworks 3

1.1 Biological Nanomachines and Nanonetworks

Among the more promising research fields of today, nanotechnology is
enabling the manipulation of matter at an atomic and molecular scale,
from one to a hundred nanometers. One of the goals of nanotechnol-
ogy is to engineer functional systems based on the unique phenomena
and properties of matter at the nanoscale [32]. Currently, a great re-
search effort is spent in the attempt to realize nanoscale machines, also
called molecular machines or nanomachines, defined by E. Drexel as
“mechanical devices that perform useful functions using components
of nanometer-scale and defined molecular structure” [33]. More specif-
ically, nanomachines [5, 3, 4] are expected to have the ability to sense,
compute, actuate, manage their energy, and interconnect into networks,
termed nanonetworks, to overcome their individual limitations and ben-
efit from collaborative efforts.

Two main types of nanomachines can be identified within the afore-
mentioned definition, namely, synthetic and biological. On the one
hand, the synthetic nanomachines are realized either by downscaling
from the current micro-scale technologies, such as microelectronics or
micro-electro mechanics, or through the use of chemically synthesized
nanomaterials [3]. On the other hand, the biological nanomachines
are realized either by reusing biological components (e.g., DNA-based
memories [52], flagellum-based actuators [18]), or by programming the
behavior of biological cells from nature, such as through the genetic
engineering of bacteria [41], as illustrated in 1.1.

While the engineering of fully synthetic nanomachines is still in
its infancy, the research on the genetic engineering of biological cells
is currently in rapid progress, thanks to the advancements made by
biotechnology [16]. Several key techniques developed under the um-
brella of synthetic biology have made possible today the realization
of simple biological nanomachines [87]. As illustrated in Figure 1.1,
through the insertion of engineered genetic code in the form of a circu-
lar DNA strand (i.e., plasmid) in a bacterium, it will be soon possible to
program complete functions, including sensing, actuation, and commu-
nication, and have access to the main functionalities of the cell, such as
the storage and the processing of information through DNA code, the

Full text available at: http://dx.doi.org/10.1561/1300000033



4 Introduction

Figure 1.1: The expected functions of a biological nanomachine realized through
the genetic engineering of a bacterium.

sensing and actuation through the use of the pili (hairlike appendages),
the management of the cell energy through the cell membrane, and the
transmission and reception of information through the production and
the reception of signaling molecules.

The exchange of information between nanomachines, and their in-
terconnection into nanonetworks, is key to overcome their individual
limitations in size, energy and computational capabilities, and benefit
from collaborative efforts. In nanonetworks, the applicability of clas-
sical communication technologies is limited by several constraints. In
particular, the very restricted size of the nanomachines and the pecu-
liarities of the environments in which they are envisioned to operate
(e.g., biological scenarios) demand for novel solutions from the per-
spective of both the choice of the communication medium and the
study of suitable communication techniques. While a possible solution
to the problem of communication between synthetic nanomachines is
suggested by recent studies [3] on nano-structures and on the prop-
erties of carbon nano-electronics, the imminent availability of biologi-
cal nanomachines encourages to study and adopt the communication
techniques naturally adopted by biological cells. In this direction, the
Molecular Communication (MC) paradigm, inspired by the nat-
ural cell communication in biology, where message-carrying molecules
are synthesized, emitted, collected, and converted to cellular responses
through biochemical processes, is expected to be especially attractive

Full text available at: http://dx.doi.org/10.1561/1300000033



1.2. Potential Applications of Nanonetworks Enabled by MC 5

because of its inherent feasibility in a biocompatible environment [2, 5].

1.2 Potential Applications of Nanonetworks Enabled by

Molecular Communication

Given the tight integration of MC within the biological environment
and its feasibility at the cellular scale (nm - μm), MC is studied not only
as a candidate for nanonetwork communication, but also as a possible
tool for the future nanonetworks to interact with the living organisms
and their biological processes. As a consequence, the number of poten-
tial applications of MC-enabled nanonetworks is very large. Amongst
others, the following three main areas deserve a special attention.

Biomedical applications, such as disease control and infectious
agent detection [93], smart drug delivery systems [43], and intelli-
gent intrabody systems for monitoring glucose, sodium, and choles-
terol [34, 60]. These applications are expected to greatly benefit from
the use of nanomachines deployed over the body (e.g., through tattoo-
like patches) or inside the body (e.g., through pills or intramuscular
injection). Since MC is naturally adopted by cells, nanonetworks en-
abled by this paradigm are envisioned to better integrate with the
intra-body biological processes and to show higher biocompatibility
when compared to other possible solutions.

Industrial applications, such as the monitoring and control of
microbial formations. As an example, applications based on bacterial
biofilms [27], which are used to clean residual waters coming from dif-
ferent manufacturing processes or to treat organic waste [56], could be
greatly enhanced by MC-enabled nanonetworks, since microbial organ-
isms naturally produce and respond to molecular stimuli.

Surveillance applications will make use of biological and chem-
ical nanosensors that have an unprecedented sensing accuracy [85, 95].
Nanonetworks composed by several MC-enabled nanosensors could
serve for surveillance against biological and chemical attacks [95] by
detecting toxic or infectious agents diffusing in the environment.
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6 Introduction

1.3 Research Objectives and Solutions

The focus of this article is on diffusion-based MC, where the propa-
gation of information-bearing molecules between a transmitter and a
receiver is realized through free diffusion in a fluid. This choice is moti-
vated by a preliminary analysis, detailed in Chapter 2, which identifies
the diffusion-based as the most fundamental type of MC among differ-
ent options suggested in the literature. As a consequence of the differ-
ences between the diffusion-based MC paradigm and classical electro-
magnetic communication paradigms, the classical communication engi-
neering models and techniques are not directly applicable for the study
and the design of diffusion-based MC-enabled nanonetworks. These dif-
ferences include, but are not limited to, the following:

• The process of diffusion-based molecule propagation is based on
radically different phenomena with respect to the electromagnetic
wave propagation in classical communication systems. While elec-
tromagnetic waves operate the propagation of energy at the speed
of light, the molecule diffusion process is caused by the random
walk of the molecule Brownian motion in a fluid [76, 29]. As
a consequence, while an electromagnetic wave propagates in a
defined direction, and with negligible delay for most of the ter-
restrial communication systems, molecules subject to Brownian
motion propagate with a random direction and with a high delay
for almost all the transmission ranges of interest.

• The biologically-inspired physical processes that can be adopted
to transmit and receive information in a diffusion-based MC-
enabled nanonetworks are based on different mechanisms with
respect to the modulation and reception of electromagnetic radi-
ations in classical communication systems. While in classical sys-
tems antennas transmit and receive electromagnetic radiations
through moving charges in metallic conductors, in biological cell
bio-signaling [73] information is transmitted through the chemical
synthesis of signaling molecules, and received through chemical
reactions between incoming signaling molecules and chemical re-
ceptors.

Full text available at: http://dx.doi.org/10.1561/1300000033



1.4. Article Outline 7

As a consequence, there is a need of to build a complete understanding
of the diffusion-based MC paradigm from the ground up. The research
objectives addressed in this article, and the proposed solutions, have
been identified to specifically target this need, and they are summa-
rized as follows. The first research objective is to develop of a determin-
istic model of diffusion-based MC link, which provides a mathematical
characterization of the main physical processes involved in the trans-
mission, propagation, and reception of molecules for the exchange of
information between a transmitter and a receiver. The second research
objective is to identify and stochastically model the noise sources that
affect a diffusion-based MC link. The third research objective is to pro-
vide an estimate of the achievable performance of a diffusion-based MC
link in terms of information capacity. The fourth research objective is
to analyze the interference produced by multiple diffusion-based MC
links when present at the same time in a nanonetwork.

1.4 Article Outline

The rest of this article is organized as follows. A preliminary analysis
of different MC options from the literature is contained in Chapter 2,
which also includes a survey of the results from previous works perti-
nent to the study of diffusion-based MC. The results obtained through
the design and end-to-end modeling of a basic diffusion-based-MC link
are presented in Chapter 3, where the contributions of each compo-
nent of the system are analyzed in terms of gain and delay. In Chap-
ter 4, the most relevant noise sources affecting a diffusion-based MC
link are studied through the mathematical expression of their under-
lying physical processes, and modeled through the use of statistical
parameters. Analytical expressions of upper and lower bounds to the
information capacity of a diffusion-based MC link are derived in Chap-
ter 5, first by using tools from thermodynamics, and then through
a pure information-theoretic approach. In Chapter 6, an analysis of
the interference produced by multiple diffusion-based MC links in a
nanonetwork is detailed. Finally, a conclusion with the possible future
avenues for this research field is provided in Chapter 7.
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