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Abstract

In this monograph we provide a tutorial on a family of sequential learn-
ing and decision problems known as the multi-armed bandit problems.
We introduce a wide range of application scenarios for this learning
framework, as well as its many different variants. The more detailed
discussion is focused on the stochastic bandit problems, with rewards
driven by either an IID or a Markov process, and when the environment
consists of a single or multiple simultaneous users. We also present lit-
erature on the learning of MDPs, which captures coupling among the
evolution of different options that a classical MAB problem does not.

C. Tekin and M. Liu. Online Learning Methods for Networking. Foundations and
TrendsR© in Networking, vol. 8, no. 4, pp. 281–409, 2013.
DOI: 10.1561/1300000050.
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1
Introduction

This monograph provides a tutorial on a family of sequential learning
and decision problems of the following nature. Consider a system op-
erating in discrete time, consisting of a single user (also referred to as
a player or a learner) and N choices (also referred to as options). At
each discrete time step, the user is to select (also referred to as play
or activate) one of the choices and in return it obtains an award asso-
ciated with that choice whose amount is unknown a priori. The user’s
objective is to maximize its total reward over a finite or infinite horizon.
Since the rewards are unknown, the user’s success depends on its play
strategy (i.e., the sequence of moves it makes). The user is assumed to
have perfect recall, and generally speaking the decision at a given time
instance is a function of all its past decisions and past observations of
the rewards.

In this context, a particular decision serves one or both of two
purposes: exploration and exploitation. The former refers to making se-
lections for the purpose of finding out the quality of an option, e.g.,
by choosing an option that has been rarely chosen; the latter refers to
making selections for the purpose of obtaining large rewards, e.g., by
choosing an option that has been observed in the past to generate large

2
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rewards. A good decision process often involves carefully balancing ex-
ploration with exploitation, e.g., forgoing immediate rewards in order
to find out the quality of an unknown option so as to obtain larger
rewards in the future. This balancing act between exploration and ex-
ploitation is characteristic of this type of “learning-on-the-go” problem,
where we have to instantaneously apply what we have learned so far
even as we continue to learn.

Before getting into the technical details, it is always instructive
to take a look at the range of practical problem scenarios to which
the above abstraction applies. Below we introduce a number of in-
teresting applications where this type of online learning formulations
has been extensively used. Generally speaking, this type of work finds
use in any scenario involving sequential decision with some type of
resource constraint (otherwise one could simply sample all options at
each time). Our primary focus is on networking applications, but to
provide a broader view we also sample some applications from various
other fields.

1.1 Applications

Opportunistic spectrum access In this application a user represents a
radio transceiver that is capable of rapidly switching between operating
frequencies and detecting/sensing the transmission quality of a channel.
The user has access to a set of channels of time-varying and unknown
conditions, as a result of random fading and/or other users’ activities,
and therefore must determine in a sequence of moves how to select
which channel to switch to for use so as to maximize its long term
reward (in the form of total transmission rate, etc.). This scenario often
arises in a cognitive radio or software defined radio context [30], where
the user is secondary to a primary user who holds the license for the
channels; the primary user’s activities contribute to the time-varying
channel condition the secondary user sees and it is critical for the latter
to make judicious channel switching decisions so as to take advantage
of instantaneous channel availability. Specifically, at each time step,
the user senses or probes a subset of the channels to find out their
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4 Introduction

condition, and is allowed to use the channels in a way consistent with
their conditions. For instance, good channel conditions result in higher
data rates or lower power for the user and so on. In some cases, channel
conditions are simply characterized as being available and unavailable,
and the user is allowed to use all channels sensed to be available.

Dynamic demand response in the emerging smart grid Electric
loads participating in demand response programs provide a variety
of benefits to electric power systems including increased power sys-
tem reliability and power market efficiency [17]. In particular, when a
demand aggregator deploy (activate) loads, an available load can po-
tentially reduce its energy consumption in response to the curtailment
signals. This is especially useful during peak loads in helping to shape
the load on the grid. However, the demand aggregator is faced with a
large number of loads, and their responses to curtailment signals can
be highly uncertain [39] because load behavior is complex and influ-
enced by a variety of stochastic factors including weather and human
behavior. Generally, detailed load models are unavailable and we do
not have full access to realtime information about load models, states,
or disturbances due to limited communications. Subsequently, a load’s
ability to curtail is often only known after it has been told to curtail
(i.e., deployed) and observed. For instance, the aggregator does not
know a priori which load is available to be deployed (e.g., a refrigerator
must be in working mode so it can be shut off), or how much savings
might result from a particular load (e.g., this may be local temperature
dependent). This results in the exploration and exploitation tradeoff il-
lustrated earlier, i.e., pursuing potential gain from poorly characterized
loads so as to improve our characterization which hopefully leads to fu-
ture gains versus harvesting immediate benefits from well-characterized
loads. A very interesting additional challenge here is that the aggrega-
tor generally does not get to observe the reward (response in this case)
from individual loads, but only the aggregate.

Social networks and recommendation systems In this application an
individual wishes to learn from others’ recommendations to decide what
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1.1. Applications 5

choices to make (e.g., restaurants, movies, parks, etc.) in a sequential
fashion so as to maximize its own satisfaction over a period of time.
This individual can obviously sample these choices all on its own which
leads to a similar online learning problem as illustrated in the previous
applications. An interesting question here is whether it could learn
faster by taking others’ recommendations into account; the associated
challenge is that in many instances recommendations are reflections
of subjective opinion or tastes, and thus one not only needs to learn
the quality of the many choices on its own, but it must also learn how
to judiciously weigh different recommendations so as to speed up her
overall learning process.

Playing slot machine This is perhaps the original motivating (or il-
lustrating) application of this type of learning problems. In this context
a gambler plays a sequence of slot machines to maximize its gain over
time. Each machine when played generates a reward/payoff that is un-
known a priori, and the machines can potentially have different average
payoff, which is also unknown to the gambler. The question then arises
as to in what sequence should the slot machines be played as a func-
tion of the payoffs that the gambler has obtained in the past, so as to
maximize its total payoff.

Clinical trial One of the earliest motivating applications of this learn-
ing framework is clinical trials [31]. The goal of a clinical trial is to find
out the most effective drug (or dosage of a drug) from a set of given
drugs. For this purpose, patients are sequentially treated by giving to
each patient a drug from the set of available drugs and observing the
outcome before deciding on which drug to give to the next patient.
The sequential learning framework outlined earlier seeks to identify
the most effective drug with a high confidence, and at the same time to
also ensure that the number of patients who receive suboptimal drugs
among the patients that participated in clinical trials is minimized.

Ad placement The revenues of most of the web search engines de-
pend on advertisements. Usually the web search engines implement a
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6 Introduction

pay-per-click rule such that they obtain a fixed amount of payment
whenever a user clicks on an advertisement. Therefore, it is of vital im-
portance to learn which advertisements to display based on the search
query of the user to maximize the number of clicks. Under this learning
framework, this task can be accomplished by identifying the ads with
the highest click-through rate (CTR), without losing too much revenue
by exploring suboptimal ads in an effort to find out the best ad to show
for a specific search query.

1.2 The Multi-Armed Bandit Problem Formalization

The sequential learning and decision problems arising from the array of
applications discussed above are often also referred to as the family of
bandit problems, where the set of options are collectively referred to as
a multi-armed bandit (MAB), each option an arm. It should be noted
that there is also an optimization version of the bandit problem first
analyzed by Gittins [22], where the rewards are given by Markov chains
whose statistics are perfectly known a priori. Therefore the problem is
one of optimization rather than learning the unknowns to optimize: the
goal is to determine offline an optimal policy of playing the arms so as
to maximize the discounted reward over an infinite horizon. This was
also referred to as the deterministic bandit problem by [31].

1.2.1 Learning algorithms and performance measures

The performance of a particular learning algorithm is typically mea-
sured by the notion of regret. This is defined as the difference between
the expected reward that can be gained by an “infeasible” or ideal
policy, i.e., a policy that requires either a priori knowledge of some or
all statistics of the arms or hindsight information, and the expected
reward of the user’s algorithm.

The most commonly used infeasible policy is the best single-action
policy, that is the best among all policies that continue to play the
same arm. An ideal policy could play, for instance, the arm that has
the highest expected reward (which requires statistical information but
not hindsight). This type of regret is sometimes also referred to as the
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1.2. The Multi-Armed Bandit Problem Formalization 7

weak regret. A stronger performance measure is accordingly and aptly
referred to as the strong regret, where the infeasible policy is the best
dynamic policy one may construct with a priori full information on the
statistics of the underlying reward processes.

The regret of a learning algorithm is often expressed using asymp-
totic notation. In the literature there exists two types of regret bounds:
a bound on the regret that is only proven asymptotically as the time
horizon T goes to infinity and a bound on regret that holds uniformly
over time. For instance, a bound of the form lim supT→∞R(T )/ log T ≤
C, for some C > 0 is an asymptotic bound, while a bound of the form
R(T ) ≤ C log T for all T > 0 for some C > 0 is a uniform bound.
For the purpose of brevity, we use the standard Big-O notation O(·)
for both types of bounds. For instance, both of the regret bounds il-
lustrated above can be represented as R(T ) = O(log T ). However, we
clearly make the distinction between a bound that holds uniformly and
a bound that holds asymptotically when necessary. We also use Õ(·),
which hides the constants in the bound similar to the standard Big-O
notation, but also hides additional terms of logarithmic growth. For
instance R(T ) = Õ(

√
T ) means that R(T ) = O(

√
T log T ).

1.2.2 Classification of multi-armed bandit problems

There are many variants of this basic version of the MAB problem,
which we detail below.

Non-stochastic vs. stochastic When the rewards are driven by un-
known and possibly arbitrary processes, the problem is referred to as
non-stochastic. This is typically used to capture an adversarial setting,
i.e., with the rewards being generated by an adversary playing against
the user. In this case no probabilistic assumptions are made on the
reward processes. By contrast, in the stochastic learning problem, the
rewards are assumed to be driven by well-defined, though unknown,
stochastic processes. Furthermore, they are often assumed to be of a
certain structure with unknown components/parameters, e.g., finite-
state Markov processes with unknown transition probability matrices,
or IID processes with unknown distribution but finite support.

Full text available at: http://dx.doi.org/10.1561/1300000050



8 Introduction

Rested vs. restless In the case of Markov reward processes (of which
IID is a special case), we further make the distinction between a process
whose state only evolves upon activation and one that continues to
evolve regardless of the user’s actions. The former is referred to as a
rested bandit, the latter a restless bandit. The user is often assumed
to only observe the state (or reward) of the arm it chooses to play.
This leads to the following crucial difference. In the rested case, since a
process’ state remains frozen until it is played again, the user in effect
has complete information on the states of all the arms. In the restless
case, the user is facing a problem of incomplete information as it does
not know the states of those arms except for the one it currently uses.

This distinction is inconsequential when the reward processes are
IID, because knowing the current state does not alter the user’s predic-
tion of the next state when the rewards are given by an IID process; it
however introduces substantial technical differences when the processes
are Markov as we shall soon see.

Controlled vs. uncontrolled In the case of restless bandits, an arm
is called uncontrolled if its state evolution upon activation follows the
same probabilistic law as when it is not played. By contrast, a controlled
arm follows different laws depending on the user’s action. For instance,
a controlled Markov reward process may be governed by two transition
probability matrices, one for when the arm is not played and the other
when the arm is played. This distinction is less important if one is
only interested in weak regret because the reference, best single-action
policy continuously plays a single arm, effectively invoking only one
of the transition probability matrices. This distinction however makes
a crucial difference when considering strong regret where a dynamic
policy must take into consideration both matrices.

Other structural variations The user may not be restricted in select-
ing only one arm at a time. The problem is referred to as with multiple
plays if the user can select up to M options at a time.

There is also an important decentralized version of the bandit prob-
lem, whereby multiple uncoordinated players each makes its own deci-
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1.3. Organization 9

sion on which arm to play in each step. An interesting twist here is that
if two or more players select the same arm simultaneously, a collision
results and the reward they get is discounted, e.g., none of the players
selecting that arm gets a reward, or the reward goes to only one of the
players selecting that arm, or they each gets a share of the reward.

1.3 Organization

The remainder of this monograph is organized as follows. We start by
discussing the simplest case, i.e., the single user IID MAB problem in
Chapter 2. We review several learning algorithms that achieve the opti-
mal tradeoff between exploration and exploitation. Single user Markov
MAB problems, algorithms and regret analysis are discussed in Chap-
ter 3. In Chapter 4 we review a different strand of tools that have
been developed and used for online learning in Markov Decision Pro-
cesses (MDP); we shall see that these tools bear striking resemblance to
those developed for MAB problems. Chapter 5 is devoted to the study
of multi-user MAB problems involving decentralized decision makers.
Chapter 6 summarizes key intuitions and principles underlying the de-
sign and analysis of the algorithms, and concludes the monograph.
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