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Abstract

This manuscript portrays optimization as a process. In many practical
applications the environment is so complex that it is infeasible to lay
out a comprehensive theoretical model and use classical algorithmic
theory and mathematical optimization. It is necessary as well as ben-
eficial to take a robust approach, by applying an optimization method
that learns as one goes along, learning from experience as more aspects
of the problem are observed. This view of optimization as a process
has become prominent in varied fields and has led to some spectacular
success in modeling and systems that are now part of our daily lives.
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1
Introduction

This manuscript concerns the view of optimization as a process. In
many practical applications the environment is so complex that it is
infeasible to lay out a comprehensive theoretical model and use classical
algorithmic theory and mathematical optimization. It is necessary as
well as beneficial to take a robust approach, by applying an optimiza-
tion method that learns as one goes along, learning from experience as
more aspects of the problem are observed. This view of optimization as
a process has become prominent in various fields and led to spectacular
successes in modeling and systems that are now part of our daily lives.

The growing literature of machine learning, statistics, decision sci-
ence and mathematical optimization blur the classical distinctions be-
tween deterministic modeling, stochastic modeling and optimization
methodology. We continue this trend in this book, studying a promi-
nent optimization framework whose precise location in the mathemat-
ical sciences is unclear: the framework of online convex optimization,
which was first defined in the machine learning literature (see bibliogra-
phy at the end of this chapter). The metric of success is borrowed from
game theory, and the framework is closely tied to statistical learning
theory and convex optimization.

2
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1.1. The online convex optimization model 3

We embrace these fruitful connections and, on purpose, do not try
to fit any particular jargon. Rather, this book will start with actual
problems that can be modeled and solved via online convex optimiza-
tion. We will proceed to present rigorous definitions, background, and
algorithms. Throughout, we provide connections to the literature in
other fields. It is our hope that you, the reader, will contribute to our
understanding of these connections from your domain of expertise, and
expand the growing literature on this fascinating subject.

1.1 The online convex optimization model

In online convex optimization, an online player iteratively makes deci-
sions. At the time of each decision, the outcomes associated with the
choices are unknown to the player.

After committing to a decision, the decision maker suffers a loss:
every possible decision incurs a (possibly different) loss. These losses
are unknown to the decision maker beforehand. The losses can be ad-
versarially chosen, and even depend on the action taken by the decision
maker.

Already at this point, several restrictions are necessary for this
framework to make any sense at all:

• The losses determined by an adversary should not be allowed to
be unbounded. Otherwise the adversary could keep decreasing
the scale of the loss at each step, and never allow the algorithm
to recover from the loss of the first step. Thus we assume the
losses lie in some bounded region.

• The decision set must be somehow bounded and/or structured,
though not necessarily finite.

To see why this is necessary, consider decision making with an
infinite set of possible decisions. An adversary can assign high
loss to all the strategies chosen by the player indefinitely, while
setting apart some strategies with zero loss. This precludes any
meaningful performance metric.

The full text is available at: http://dx.doi.org/10.1561/2400000013



4 Introduction

Surprisingly, interesting statements and algorithms can be derived
with not much more than these two restrictions. The Online Convex
Optimization (OCO) framework models the decision set as a convex set
in Euclidean space denoted K ⊆ Rn. The costs are modeled as bounded
convex functions over K.

The OCO framework can be seen as a structured repeated game.
The protocol of this learning framework is as follows:

At iteration t, the online player chooses xt ∈ K . After the player
has committed to this choice, a convex cost function ft ∈ F : K 7→ R
is revealed. Here F is the bounded family of cost functions available to
the adversary. The cost incurred by the online player is ft(xt), the value
of the cost function for the choice xt. Let T denote the total number
of game iterations.

What would make an algorithm a good OCO algorithm? As the
framework is game-theoretic and adversarial in nature, the appropriate
performance metric also comes from game theory: define the regret of
the decision maker to be the difference between the total cost she has
incurred and that of the best fixed decision in hindsight. In OCO we
are usually interested in an upper bound on the worst case regret of an
algorithm.

Let A be an algorithm for OCO, which maps a certain game history
to a decision in the decision set. We formally define the regret of A after
T iterations as:

regretT (A) = sup
{f1,...,fT }⊆F

{
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)
}

(1.1)

Intuitively, an algorithm performs well if its regret is sublinear as
a function of T , i.e. regretT (A) = o(T ), since this implies that on the
average the algorithm performs as well as the best fixed strategy in
hindsight.

The running time of an algorithm for OCO is defined to be the
worst-case expected time to produce xt, for an iteration t ∈ [T ]1 in a T -
iteration repeated game. Typically, the running time will depend on n
(the dimensionality of the decision set K), T (the total number of game

1Here and henceforth we denote by [n] the set of integers {1, ..., n}.
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1.2. Examples of problems that can be modeled via OCO 5

iterations), and the parameters of the cost functions and underlying
convex set.

1.2 Examples of problems that can be modeled via OCO

Perhaps the main reason that OCO has become a leading online learn-
ing framework in recent years is its powerful modeling capability: prob-
lems from diverse domains such as online routing, ad selection for search
engines and spam filtering can all be modeled as special cases. In this
section, we briefly survey a few special cases and how they fit into the
OCO framework.

Prediction from expert advice

Perhaps the most well known problem in prediction theory is the so-
called “experts problem”. The decision maker has to choose among the
advice of n given experts. After making her choice, a loss between
zero and one is incurred. This scenario is repeated iteratively, and at
each iteration the costs of the various experts are arbitrary (possibly
even adversarial, trying to mislead the decision maker). The goal of the
decision maker is to do as well as the best expert in hindsight.

The online convex optimization problem captures this problem as
a special case: the set of decisions is the set of all distributions over
n elements (experts), i.e., the n-dimensional simplex K = ∆n = {x ∈
Rn ,

∑
i xi = 1 , xi ≥ 0}. Let the cost of the i’th expert at iteration

t be gt(i), and let gt be the cost vector of all n experts. Then the
cost function is the expected cost of choosing an expert according to
distribution x, and is given by the linear function ft(x) = g>t x.

Thus, prediction from expert advice is a special case of OCO in
which the decision set is the simplex and the cost functions are linear
and bounded, in the `∞ norm, to be at most one. The bound on the
cost functions is derived from the bound on the elements of the cost
vector gt.

The fundamental importance of the experts problem in machine
learning warrants special attention, and we shall return to it and ana-
lyze it in detail at the end of this chapter.

The full text is available at: http://dx.doi.org/10.1561/2400000013



6 Introduction

Online spam filtering

Consider an online spam-filtering system. Repeatedly, emails arrive into
the system and are classified as spam/valid. Obviously such a system
has to cope with adversarially generated data and dynamically change
with the varying input—a hallmark of the OCO model.

The linear variant of this model is captured by representing the
emails as vectors according to the “bag-of-words” representation. Each
email is represented as a vector x ∈ Rd, where d is the number of words
in the dictionary. The entries of this vector are all zero, except for those
coordinates that correspond to words appearing in the email, which are
assigned the value one.

To predict whether an email is spam, we learn a filter, for example
a vector x ∈ Rd. Usually a bound on the Euclidean norm of this vector
is decided upon a priori, and is a parameter of great importance in
practice.

Classification of an email a ∈ Rd by a filter x ∈ Rd is given by the
sign of the inner product between these two vectors, i.e., ŷ = sign〈x,a〉
(with, for example, +1 meaning valid and −1 meaning spam).

In the OCO model of online spam filtering, the decision set is taken
to be the set of all such norm-bounded linear filters, i.e., the Euclidean
ball of a certain radius. The cost functions are determined according to
a stream of incoming emails arriving into the system, and their labels
(which may be known by the system, partially known, or not known
at all). Let (a, y) be an email/label pair. Then the corresponding cost
function over filters is given by f(x) = `(ŷ, y). Here ŷ is the classifi-
cation given by the filter x, y is the true label, and ` is a convex loss
function, for example, the square loss `(ŷ, y) = (ŷ − y)2.

Online shortest paths

In the online shortest path problem, the decision maker is given a
directed graph G = (V,E) and a source-sink pair u, v ∈ V . At each
iteration t ∈ [T ], the decision maker chooses a path pt ∈ Pu,v, where
Pu,v ⊆ E|V | is the set of all u-v-paths in the graph. The adversary
independently chooses weights (lengths) on the edges of the graph,
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1.2. Examples of problems that can be modeled via OCO 7

given by a function from the edges to the real numbers wt : E 7→ R,
which can be represented as a vector wt ∈ Rm, where m = |E|. The
decision maker suffers and observes a loss, which is the weighted length
of the chosen path

∑
e∈pt wt(e).

The discrete description of this problem as an experts problem,
where we have an expert for each path, presents an efficiency challenge.
There are potentially exponentially many paths in terms of the graph
representation size.

Alternatively, the online shortest path problem can be cast in the
online convex optimization framework as follows. Recall the standard
description of the set of all distributions over paths (flows) in a graph as
a convex set in Rm, with O(m+ |V |) constraints (Figure 1.1). Denote
this flow polytope by K. The expected cost of a given flow x ∈ K
(distribution over paths) is then a linear function, given by ft(x) =
w>t x, where, as defined above, wt(e) is the length of the edge e ∈ E.
This inherently succinct formulation leads to computationally efficient
algorithms.

∑
e=(u,w),w∈V

xe = 1 =
∑

e=(w,v),w∈V
xe flow value is one

∀w ∈ V \ {u, v}
∑

e=(v,x)∈E
xe =

∑
e=(x,v)∈E

xe flow conservation

∀e ∈ E 0 ≤ xe ≤ 1 capacity constraints

Figure 1.1: Linear equalities and inequalities that define the flow polytope, which
is the convex hull of all u-v paths.

Portfolio selection

In this section we consider a portfolio selection model that does not
make any statistical assumptions about the stock market (as opposed
to the standard geometric Brownian motion model for stock prices),
and is called the “universal portfolio selection” model.

The full text is available at: http://dx.doi.org/10.1561/2400000013



8 Introduction

At each iteration t ∈ [T ], the decision maker chooses a distribution
of her wealth over n assets xt ∈ ∆n. The adversary independently
chooses market returns for the assets, i.e., a vector rt ∈ Rn with strictly
positive entries such that each coordinate rt(i) is the price ratio for the
i’th asset between the iterations t and t + 1. The ratio between the
wealth of the investor at iterations t + 1 and t is r>t xt, and hence
the gain in this setting is defined to be the logarithm of this change
ratio in wealth log(r>t xt). Notice that since xt is the distribution of the
investor’s wealth, even if xt+1 = xt, the investor may still need to trade
to adjust for price changes.

The goal of regret minimization, which in this case corresponds to
minimizing the difference maxx?∈∆n

∑T
t=1 log(r>t x?)−

∑T
t=1 log(r>t xt),

has an intuitive interpretation. The first term is the logarithm of the
wealth accumulated by the best possible in-hindsight distribution x?.
Since this distribution is fixed, it corresponds to a strategy of rebal-
ancing the position after every trading period, and hence, is called a
constant rebalanced portfolio. The second term is the logarithm of the
wealth accumulated by the online decision maker. Hence regret mini-
mization corresponds to maximizing the ratio of the investor’s wealth
to the wealth of the best benchmark from a pool of investing strategies.

A universal portfolio selection algorithm is defined to be one that,
in this setting, attains regret converging to zero. Such an algorithm,
albeit requiring exponential time, was first described by Cover (see
bibliographic notes at the end of this chapter). The online convex op-
timization framework has given rise to much more efficient algorithms
based on Newton’s method. We shall return to study these in detail in
Chapter 4.

Matrix completion and recommendation systems

The prevalence of large-scale media delivery systems such as the Netflix
online video library, Spotify music service and many others, give rise
to very large scale recommendation systems. One of the most popular
and successful models for automated recommendation is the matrix
completion model.

The full text is available at: http://dx.doi.org/10.1561/2400000013



1.3. A gentle start: learning from expert advice 9

In this mathematical model, recommendations are thought of as
composing a matrix. The customers are represented by the rows, the
different media are the columns, and at the entry corresponding to a
particular user/media pair we have a value scoring the preference of
the user for that particular media.

For example, for the case of binary recommendations for music,
we have a matrix X ∈ {0, 1}n×m where n is the number of persons
considered, m is the number of songs in our library, and 0/1 signifies
dislike/like respectively:

Xij =


0, person i dislikes song j

1, person i likes song j
.

In the online setting, for each iteration the decision maker outputs
a preference matrix Xt ∈ K, where K ⊆ {0, 1}n×m is a subset of all
possible zero/one matrices. An adversary then chooses a user/song pair
(it, jt) along with a “real” preference for this pair yt ∈ {0, 1}. Thus, the
loss experienced by the decision maker can be described by the convex
loss function,

ft(X) = (Xit,jt − yt)2.

The natural comparator in this scenario is a low-rank matrix, which
corresponds to the intuitive assumption that preference is determined
by few unknown factors. Regret with respect to this comparator means
performing, on the average, as few preference-prediction errors as the
best low-rank matrix.

We return to this problem and explore efficient algorithms for it in
Chapter 7.

1.3 A gentle start: learning from expert advice

Consider the following fundamental iterative decision making problem:
At each time step t = 1, 2, . . . , T , the decision maker faces a choice

between two actions A or B (i.e., buy or sell a certain stock). The
decision maker has assistance in the form of N “experts” that offer
their advice. After a choice between the two actions has been made,

The full text is available at: http://dx.doi.org/10.1561/2400000013



10 Introduction

the decision maker receives feedback in the form of a loss associated
with each decision. For simplicity one of the actions receives a loss of
zero (i.e., the “correct” decision) and the other a loss of one.

We make the following elementary observations:

1. A decision maker that chooses an action uniformly at random
each iteration, trivially attains a loss of T

2 and is “correct” 50%
of the time.

2. In terms of the number of mistakes, no algorithm can do better
in the worst case! In a later exercise, we will devise a random-
ized setting in which the expected number of mistakes of any
algorithm is at least T

2 .

We are thus motivated to consider a relative performance metric:
can the decision maker make as few mistakes as the best expert in
hindsight? The next theorem shows that the answer in the worst case
is negative for a deterministic decision maker.

Theorem 1.1. Let L ≤ T
2 denote the number of mistakes made by

the best expert in hindsight. Then there does not exist a deterministic
algorithm that can guarantee less than 2L mistakes.

Proof. Assume that there are only two experts and one always chooses
option A while the other always chooses option B. Consider the setting
in which an adversary always chooses the opposite of our prediction (she
can do so, since our algorithm is deterministic). Then, the total number
of mistakes the algorithm makes is T . However, the best expert makes
no more than T

2 mistakes (at every iteration exactly one of the two
experts is mistaken). Therefore, there is no algorithm that can always
guarantee less than 2L mistakes.

This observation motivates the design of random decision making
algorithms, and indeed, the OCO framework gracefully models deci-
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1.3. A gentle start: learning from expert advice 11

sions on a continuous probability space. Henceforth we prove Lemmas
1.3 and 1.4 that show the following:

Theorem 1.2. Let ε ∈ (0, 1
2). Suppose the best expert makes L mis-

takes. Then:

1. There is an efficient deterministic algorithm that can guarantee
less than 2(1 + ε)L+ 2 logN

ε mistakes;

2. There is an efficient randomized algorithm for which the expected
number of mistakes is at most (1 + ε)L+ logN

ε .

1.3.1 The weighted majority algorithm
Simple observations: The weighted majority (WM) algorithm is in-
tuitive to describe: each expert i is assigned a weight Wt(i) at every
iteration t. Initially, we set W1(i) = 1 for all experts i ∈ [N ]. For all
t ∈ [T ] let St(A), St(B) ⊆ [N ] be the set of experts that choose A (and
respectively B) at time t. Define,

Wt(A) =
∑

i∈St(A)
Wt(i) Wt(B) =

∑
i∈St(B)

Wt(i)

and predict according to

at =

A if Wt(A) ≥Wt(B)
B otherwise.

Next, update the weights Wt(i) as follows:

Wt+1(i) =

Wt(i) if expert i was correct
Wt(i)(1− ε) if expert i was wrong

,

where ε is a parameter of the algorithm that will affect its performance.
This concludes the description of the WM algorithm. We proceed to
bound the number of mistakes it makes.

The full text is available at: http://dx.doi.org/10.1561/2400000013



12 Introduction

Lemma 1.3. Denote by Mt the number of mistakes the algorithm
makes until time t, and by Mt(i) the number of mistakes made by
expert i until time t. Then, for any expert i ∈ [N ] we have

MT ≤ 2(1 + ε)MT (i) + 2 logN
ε

.

We can optimize ε to minimize the above bound. The expression on the
right hand side is of the form f(x) = ax+b/x, that reaches its minimum
at x =

√
b/a. Therefore the bound is minimized at ε? =

√
logN/MT (i).

Using this optimal value of ε, we get that for the best expert i?

MT ≤ 2MT (i?) +O

(√
MT (i?) logN

)
.

Of course, this value of ε? cannot be used in advance since we do not
know which expert is the best one ahead of time (and therefore we
do not know the value of MT (i?)). However, we shall see later on that
the same asymptotic bound can be obtained even without this prior
knowledge.

Let us now prove Lemma 1.3.

Proof. Let Φt =
∑N
i=1Wt(i) for all t ∈ [T ], and note that Φ1 = N .

Notice that Φt+1 ≤ Φt. However, on iterations in which the WM
algorithm erred, we have

Φt+1 ≤ Φt(1−
ε

2),

the reason being that experts with at least half of total weight were
wrong (else WM would not have erred), and therefore

Φt+1 ≤
1
2Φt(1− ε) + 1

2Φt = Φt(1−
ε

2).

From both observations,

Φt ≤ Φ1(1− ε

2)Mt = N(1− ε

2)Mt .

On the other hand, by definition we have for any expert i that

WT (i) = (1− ε)MT (i).

The full text is available at: http://dx.doi.org/10.1561/2400000013
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Since the value of WT (i) is always less than the sum of all weights ΦT ,
we conclude that

(1− ε)MT (i) = WT (i) ≤ ΦT ≤ N(1− ε

2)MT .

Taking the logarithm of both sides we get

MT (i) log(1− ε) ≤ logN +MT log (1− ε

2).

Next, we use the approximations

−x− x2 ≤ log (1− x) ≤ −x 0 < x <
1
2 ,

which follow from the Taylor series of the logarithm function, to obtain
that

−MT (i)(ε+ ε2) ≤ logN −MT
ε

2 ,

and the lemma follows.

1.3.2 Randomized weighted majority

In the randomized version of the WM algorithm, denoted RWM, we
choose expert i w.p. pt(i) = Wt(i)/

∑N
j=1Wt(j) at time t.

Lemma 1.4. Let Mt denote the number of mistakes made by RWM
until iteration t. Then, for any expert i ∈ [N ] we have

E[MT ] ≤ (1 + ε)MT (i) + logN
ε

.

The proof of this lemma is very similar to the previous one, where the
factor of two is saved by the use of randomness:

Proof. As before, let Φt =
∑N
i=1Wt(i) for all t ∈ [T ], and note that

Φ1 = N . Let m̃t = Mt −Mt−1 be the indicator variable that equals
one if the RWM algorithm makes a mistake on iteration t. Let mt(i)
equal one if the i’th expert makes a mistake on iteration t and zero

The full text is available at: http://dx.doi.org/10.1561/2400000013
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otherwise. Inspecting the sum of the weights:

Φt+1 =
∑
i

Wt(i)(1− εmt(i))

= Φt(1− ε
∑
i

pt(i)mt(i)) pt(i) = Wt(i)∑
j
Wt(j)

= Φt(1− εE[m̃t])

≤ Φte
−εE[m̃t]. 1 + x ≤ ex

On the other hand, by definition we have for any expert i that

WT (i) = (1− ε)MT (i)

Since the value of WT (i) is always less than the sum of all weights ΦT ,
we conclude that

(1− ε)MT (i) = WT (i) ≤ ΦT ≤ Ne−εE[MT ].

Taking the logarithm of both sides we get

MT (i) log(1− ε) ≤ logN − εE[MT ]

Next, we use the approximation

−x− x2 ≤ log (1− x) ≤ −x , 0 < x <
1
2

to obtain
−MT (i)(ε+ ε2) ≤ logN − εE[MT ],

and the lemma follows.

1.3.3 Hedge

The RWM algorithm is in fact more general: instead of considering
a discrete number of mistakes, we can consider measuring the perfor-
mance of an expert by a non-negative real number `t(i), which we refer
to as the loss of the expert i at iteration t. The randomized weighted
majority algorithm guarantees that a decision maker following its ad-
vice will incur an average expected loss approaching that of the best
expert in hindsight.

The full text is available at: http://dx.doi.org/10.1561/2400000013
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Algorithm 1 Hedge
1: Initialize: ∀i ∈ [N ], W1(i) = 1
2: for t = 1 to T do
3: Pick it ∼R Wt, i.e., it = i with probability xt(i) = Wt(i)∑

j
Wt(j)

4: Incur loss `t(it).
5: Update weights Wt+1(i) = Wt(i)e−ε`t(i)
6: end for

Historically, this was observed by a different and closely related
algorithm called Hedge, whose total loss bound will be of interest to us
later on in the book.

Henceforth, denote in vector notation the expected loss of the al-
gorithm by

E[`t(it)] =
N∑
i=1

xt(i)`t(i) = x>t `t

Theorem 1.5. Let `2t denote the N -dimensional vector of square losses,
i.e., `2t (i) = `t(i)2, let ε > 0, and assume all losses to be non-negative.
The Hedge algorithm satisfies for any expert i? ∈ [N ]:

T∑
t=1

x>t `t ≤
T∑
t=1

`t(i?) + ε
T∑
t=1

x>t `2t + logN
ε

Proof. As before, let Φt =
∑N
i=1Wt(i) for all t ∈ [T ], and note that

Φ1 = N .
Inspecting the sum of weights:

Φt+1 =
∑
iWt(i)e−ε`t(i)

= Φt
∑
i xt(i)e−ε`t(i) xt(i) = Wt(i)∑

j
Wt(j)

≤ Φt
∑
i xt(i)(1− ε`t(i) + ε2`t(i)2)) for x ≥ 0,

e−x ≤ 1− x+ x2

= Φt(1− εx>t `t + ε2x>t `2t )
≤ Φte

−εx>t `t+ε2x>t `2t . 1 + x ≤ ex

On the other hand, by definition, for expert i? we have that

WT (i?) = e−ε
∑T

t=1 `t(i
?)

The full text is available at: http://dx.doi.org/10.1561/2400000013
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Since the value of WT (i?) is always less than the sum of all weights Φt,
we conclude that

WT (i?) ≤ ΦT ≤ Ne−ε
∑

t
x>t `t+ε2

∑
t

x>t `2t .

Taking the logarithm of both sides we get

−ε
T∑
t=1

`t(i?) ≤ logN − ε
T∑
t=1

x>t `t + ε2
T∑
t=1

x>t `2t

and the theorem follows by simplifying.

The full text is available at: http://dx.doi.org/10.1561/2400000013
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1.4 Exercises

1. (Attributed to Claude Shannon)
Construct market returns over two stocks for which the wealth ac-
cumulated over any single stock decreases exponentially, whereas
the best constant rebalanced portfolio increases wealth exponen-
tially. More precisely, construct two sequences of numbers in the
range (0,∞), that represent returns, such that:

(a) Investing in any of the individual stocks results in expo-
nential decrease in wealth. This means that the product of
the prefix of numbers in each of these sequences decreases
exponentially.

(b) Investing evenly on the two assets and rebalancing after ev-
ery iteration increases wealth exponentially.

2. (a) Consider the experts problem in which the payoffs are be-
tween zero and a positive real number G > 0. Give an algo-
rithm that attains expected payoff lower bounded by:

T∑
t=1

E[`t(it)] ≥ max
i?∈[N ]

T∑
t=1

`t(i?)− c
√
T logN

for the best constant c you can (the constant c should be
independent of the number of game iterations T , and the
number of experts n. Assume that T is known in advance).

(b) Suppose the upper bound G is not known in advance. Give
an algorithm whose performance is asymptotically as good
as your algorithm in part (a), up to an additive and/or mul-
tiplicative constant which is independent of T, n,G. Prove
your claim.

3. Consider the experts problem in which the payoffs can be negative
and are real numbers in the range [−1, 1]. Give an algorithm with
regret guarantee of O(

√
T logn) and prove your claim.

The full text is available at: http://dx.doi.org/10.1561/2400000013
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1.5 Bibliographic remarks

The OCO model was first defined by Zinkevich (110) and has since
become widely influential in the learning community and significantly
extended since (see thesis and surveys (52; 53; 97)).

The problem of prediction from expert advice and the Weighted
Majority algorithm were devised in (71; 73). This seminal work was
one of the first uses of the multiplicative updates method—a ubiquitous
meta-algorithm in computation and learning, see the survey (11) for
more details. The Hedge algorithm was introduced in (44).

The Universal Portfolios model was put forth in (32), and is one
of the first examples of a worst-case online learning model. Cover gave
an optimal-regret algorithm for universal portfolio selection that runs
in exponential time. A polynomial time algorithm was given in (62),
which was further sped up in (7; 54). Numerous extensions to the model
also appeared in the literature, including addition of transaction costs
(20) and relation to the Geometric Brownian Motion model for stock
prices (56).

In their influential paper, Awerbuch and Kleinberg (14) put forth
the application of OCO to online routing. A great deal of work has been
devoted since then to improve the initial bounds, and generalize it into
a complete framework for decision making with limited feedback. This
framework is an extension of OCO, called Bandit Convex Optimization
(BCO). We defer further bibliographic remarks to chapter 6 which is
devoted to the BCO framework.

The full text is available at: http://dx.doi.org/10.1561/2400000013
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