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ABSTRACT

Index tracking is a very popular passive investment strategy.
Since an index cannot be traded directly, index tracking
refers to the process of creating a portfolio that approxi-
mates its performance. A straightforward way to do that is
to purchase all the assets that compose an index in appro-
priate quantities. However, to simplify the execution, avoid
small and illiquid positions, and large transaction costs, it is
desired that the tracking portfolio consists of a small number
of assets, i.e., we wish to create a sparse portfolio.

Although index tracking is driven from the financial industry,
it is in fact a pure signal processing problem: a regression of
the financial historical data subject to some portfolio con-
straints with some caveats and particularities. Furthermore,

∗Dr. Yiyong Feng is currently with Three Stones Capital Limited. Dr. Feng was
involved in this work when he was with the Department of Electronic and Computer
Engineering at the Hong Kong University of Science and Technology.

Konstantinos Benidis, Yiyong Feng and Daniel P. Palomar (2018), “Optimization
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2

the sparse index tracking problem is similar to many sparsity
formulations in the signal processing area in the sense that
it is a regression problem with some sparsity requirements.
In its original form, sparse index tracking can be formulated
as a combinatorial optimization problem. A commonly used
approach is to use mixed-integer programming (MIP) to
solve small sized problems. Nevertheless, MIP solvers are not
applicable for high-dimensional problems since the running
time can be prohibiting for practical use.

The goal of this monograph is to provide an in-depth overview
of the index tracking problem and analyze all the caveats and
practical issues an investor might have, such as the frequent
rebalancing of weights, the changes in the index composition,
the transaction costs, etc. Furthermore, a unified framework
for a large variety of sparse index tracking formulations is
provided. The derived algorithms are very attractive for
practical use since they provide efficient tracking portfolios
orders of magnitude faster than MIP solvers.

Full text available at: http://dx.doi.org/10.1561/2400000021



1
Introduction

1.1 What Is a Financial Index?

An index is a number that represents the aggregate value of a group
of items. In particular, a financial index is composed of a collection of
assets, such as stocks or bonds, which captures the value of a specific
market or a segment of it. A stock or a bond market index is effectively
equivalent to a hypothetical portfolio of assets in the sense that we
cannot invest directly on it, i.e., an index is not a financial instrument
that we can trade. In Section 1.3 we will analyze the various ways we
can gain practical access to an index.

The value of a financial index depends on all the underlying assets
that compose it. However, the significance of each asset, or in other
words its relative weight in the index, is different. There are two basic
types of financial indices:

1. Capitalization-weighted (cap-weighted): the assets are weighted
based on the ratio of their capitalization1 to the overall capital-
ization of the assets that compose the index. The index value is

1Capitalization refers to the number of outstanding shares multiplied by share
price.

3
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4 Introduction

Table 1.1: Example of composition of index.

Stock Shares Price Cap. Price-weighted Cap-weighted
1 100 $20 $2,000 0.25 0.4
2 50 $60 $3,000 0.75 0.6
Total: $80 $5,000 1.0 1.0

proportional to the weighted average of the capitalization of the
underlying assets.

2. Price-weighted: the assets are weighted based on the ratio of their
price to the sum of all of the prices of the assets that compose the
index. The index value is proportional to the weighted average of
the prices of the underlying assets.

To clarify the above, consider a simple example where an index is
composed by only two stocks, as shown in Table 1.1. Observe that the
weights of the two stocks can be very different depending on the type
of index. The value of a price-weighted index would be proportional to
20× 0.25 + 60× 0.75 = 50 and of a cap-weighted index to 2,000×0.4 +
3,000×0.6 = 2,600.

In practice, when an index is introduced it is common to set its
value to a round number such as 100 or 1,000. Therefore, the actual
value of the index has to be divided by a number which is known as
the index divisor. Going back to our example, if this was the first day
of the index a possible divisor for the price-weighted and cap-weighted
version could be $0.5 and $2.6, giving an initial value of 100 and 1,000
points, respectively.

Although the cap-weighted and the price-weighted indices are the
most common types, the are several other variations of weighted indices.
For example, an index can be equal-weighted (or unweighted), where
all the assets have exactly the same importance, or volume-weighted,
where the weight is based on the traded volume of the assets during
some period. Another example is the Tokyo Stock Price Index (TOPIX),
which transitioned from a weighting system based on the outstanding
shares of each company to a weighting system based on the shares
available for trading (free float).

Full text available at: http://dx.doi.org/10.1561/2400000021



1.2. Why Track an Index? 5

Table 1.2: List of well known indices and their type.

Index Type
Standard & Poor’s 500 (S&P 500) cap-weighted

Dow Jones Industrial Average (DJIA) price-weighted
NASDAQ Composite cap-weighted
Hang Seng Index (HSI) cap-weighted

Financial Times Stock Exchange 100 (FTSE 100) cap-weighted
Russell 2000 cap-weighted

In order for an index to be consistent over time it should be adjusted
to capture corporate actions that affect market capitalization, such as
additional share issuance, dividends and restructuring events such as
mergers or spin-offs. Additionally, to remain indicative of the market
that the index represents, the underlying assets that compose the index
change frequently. To prevent all these corporate actions and changes in
the index composition from affecting its value, the divisor of an index
is adjusted appropriately so its value remains constant.

A list of well known indices is presented in Table 1.2. Since most of
the major indices are cap-weighted (with the most important exception
being the Dow Jones Industrial Average (DJIA) index), in all the
numerical experiments we will mainly focus on the cap-weighted type,
however, the algorithms in principle work for any type of index.

1.2 Why Track an Index?

Fund managers follow two basic investment strategies: active and passive.
In active management strategies, the fund managers assume that the
markets are not perfectly efficient and through their expertise and
superior prediction methods they hope to add value by choosing high
performing assets. On the contrary, the passive management strategies
are based on the assumption that the market cannot be beaten in the
long run. The passive managers have less flexibility and their role is to
conform to a closely defined set of criteria.

Analysis of historical data has shown that the majority of the actively
managed funds do not outperform the market in the long run [9, 62].

Full text available at: http://dx.doi.org/10.1561/2400000021



6 Introduction

Furthermore, the stock markets have historically risen and therefore
reasonable returns can be obtained without the active management’s
risk. These reasons have prompted the investor’s interest into more
passive management strategies. Index tracking, also known as index
replication, is one of the most popular passive portfolio management
strategies. It refers to the problem of reproducing the performance of a
market index.

Apart from the direct gains that an investor could have by tracking
an index, the index based exchange traded funds (ETFs), which are
effectively index tracking portfolios (see Section 1.3.2), have been used
widely for hedging purposes [2, 40, 3]. That is, an investor tries to
minimize the risk of an investment with an index that is correlated to
that investment by taking an appropriate long or short position on the
index.

The Standard & Poor’s 500 (S&P 500) is one of the world’s best
known (cap-weighted) indices and one of the most commonly used
benchmarks for the stock market. To this end, we will use S&P 500 for
illustration purposes throughout this monograph. Figure 1.1 illustrates
the performance of S&P 500 over the last three decades. In Figure 1.1(b)
we observe that the average annual return of the index is approximately
11%. This is a great average return considering the fact that it includes
the 2000-2002 dot-com bubble and the severe crisis of 2008 where the
market lost 37% of its value. Of course, an investor that was tracking
this index would not have on average an 11% profit per year. This is
due to various reasons such as trading costs, inflation, etc. Nevertheless,
a reasonable return could be achieved by following this passive strategy.

1.3 Index Tracking

As we have already mentioned, it is not possible to trade an index
directly. In order to gain access to an index we need to use other
financial instruments such as options, futures, and exchange traded
funds (ETFs), or create a portfolio of assets that tracks closely a given
index.

Full text available at: http://dx.doi.org/10.1561/2400000021
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Figure 1.1: Performance of the index S&P 500 for the period 1988 - 2016.
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8 Introduction

1.3.1 Options and Futures

An option is a financial derivative since its value is linked to the price of
something else. The holder of an option contract has the right, but not
the obligation, to buy or sell an underlying asset at a set price on (e.g.,
European option) or before (e.g., American option) the expiration date
of the option. Of particular interest are the index options, which give the
right to buy or sell the value of an underlying index. However, note that
index options are always cash settled, i.e., no actual stocks are bought
or sold. Index options can be used to gain profit from general index
movements or for hedging risks in a portfolio. There have been many
works on the pricing of index option contracts and on their volatility
estimation, for example see [32, 27, 26, 24].

An index future contract is a financial derivative that gives the
holder the obligation to purchase an index at a particular price on
a specified date in the future. If on that specified date the price of
the index has surpassed the price that is agreed in the contract, then
the holder makes a profit, and the seller suffers a loss. Futures differ
from options in that a futures contract is considered an obligation,
while an option is considered a right that may or may not be exercised.
Index futures are a very popular way of investing in an index and many
works have focus on analyzing their pricing and their relationship to
the underlying index [28, 69, 46, 7, 76].

Both index options and index futures are derivative products that
do not track the value of an index explicitly but rather their value is
associated to the index value.

1.3.2 ETFs

Another popular way to engage in index tracking is to purchase an
exchange traded fund (ETF). An ETF is like a stock but its value
tracks closely a given index, e.g., see SPDR2. It is constructed either by
using derivative products, leading to synthetic ETFs, or the underlying
components of the index, leading to physical ETFs. Many physical ETFs

2SPDR funds are a family of ETFs. The name is an acronym for the first member
of the family, the Standard & Poor’s Depositary Receipts, which was later renamed
to SPDR S&P 500 (ticker SPY).

Full text available at: http://dx.doi.org/10.1561/2400000021
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1.3. Index Tracking 9

use all the underlying assets of the index they are tracking, e.g., the
Standard and Poor’s Depositary Receipts (ticker SPY) based on the S&P
500 and the Nasdaq 100 Trust Shares (ticker QQQ) based on the Nasdaq
100. However, there are also many ETFs using a sparse construction,
where representative sampling, with 80-95% of the underlying securities
being used, or aggressive sampling, with only a tiny percentage being
used [37, 64].

An ETF, unlike options and futures, tracks the value of an index
explicitly.

1.3.3 Tracking Portfolios

Finally, we can again track the value of an index explicitly by con-
structing a portfolio of assets or derivatives whose value follows the
value of the given index. The construction of such a tracking portfolio
is important for several reasons. First, it is the building block of an
ETF, i.e., in order to issue an ETF we need first to construct the
corresponding portfolio that this ETF will represent. In addition, not all
indices or market sectors have an ETF associated with them. Therefore,
a tracking portfolio can be used to explicitly track an index where an
ETF does not exist. Finally, having the tools to create such portfolios
gives us the flexibility to include any partial information that we may
possess or even create portfolios that try to beat the value of an index,
instead of using some predetermined financial instruments that we have
no freedom on adjusting.

Now, let us introduce some notation that we will use extensively
throughout the monograph. Assume that an index is composed of N
assets. We denote by rb = [rb1, . . . , rbT ]> ∈ RT and X = [r1, . . . , rT ]> ∈
RT×N the (arithmetic) net returns of the index and the N assets in the
past T days, respectively, with rt ∈ RN denoting the net returns of the
N assets at the t-th day. Further, bt ∈ RN++ denotes the normalized
benchmark index weights at the t-th day, such that b>t 1 = 1 and
r>t bt = rbt . The prices of the assets at the t-th day are denoted by
pt = [pt1, . . . , ptN ]> and the number of shares of each asset as nt =
[nt1, . . . , ntN ]>. The designed portfolio is denoted by wt ∈ RN+ , with
w>t 1 = 1.

Full text available at: http://dx.doi.org/10.1561/2400000021



10 Introduction

Full Replication

The most straightforward manner to create a tracking portfolio wt ∈ RN

is by buying appropriate quantities of all the assets that compose
the index, i.e., by choosing wt = bt. This technique is known as full
replication and it requires that the true index construction weights
bt are available. Following this approach, a perfect tracking can be
achieved.

The full replication technique has several drawbacks. First, the
execution of such a portfolio may be involved since it may consist of
thousands of stocks. Second, a portfolio consisting of all the assets may
incorporate too many small and illiquid stocks. This translates into
higher risk to investors since an illiquid stock is hard to sell if we are
looking to exit and moreover it increases the costs due to slippage.
Furthermore, allocating capital to all the assets increases significantly
the commission fees since every asset is associated with a separate
transaction. These drawbacks become more severe as we increase the
rebalancing frequency of our tracking portfolio. Finally, the benchmark
portfolio weight vector bt and all its changes (the benchmark weight
vector is consistently rebalanced by the indices providers) can be very
expensive to obtain. For example, in 2006 the index sponsors S&P, Dow
Jones, MSCI, and FTSE earned total revenues of $1.66 billion from the
ETF providers and therefore the ETF providers were even thinking of
cutting these costs by setting up their own market indices3.

Sparse Index Tracking

A natural way to deal with the problems caused by the full replication
is to use a small number of assets to (approximately) replicate an index.
This leads to the construction of a sparse4 index tracking portfolio [45,
10]. A sparse portfolio simplifies the execution of the portfolio and tends
to avoid illiquid stocks that usually correspond to the assets with small
weights in an index, since in a sparse setting most of these assets are

3See “ETF providers float idea of setting up their own market indices” published
in Financial Times on 2017-05-24.

4If we use only a small number of assets, only a small number of weights will be
nonzero, i.e., the portfolio will be sparse.
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1.3. Index Tracking 11

105 106 107 108 109

AUM (USD)

0.1%

1%

10%

100%

C
os
t/
P
ro
fi
t

Sparse - 1 month
Sparse - 3 months
Sparse - 6 months
Sparse - 1 year
Full - 1 month
Full - 3 months
Full - 6 months
Full - 1 year

Figure 1.2: Commission fees as a percentage of profit for sparse (40 assets) and
full portfolios for different AUM and rebalancing frequencies.

discarded. Furthermore, since only a small number of assets is used, the
transaction costs are reduced significantly due to the reduction of the
fixed (minimum) costs in the commission fees.

Now, in order to verify the advantages of sparse portfolios, let us
get a more quantitative idea on the commission fees reduction that we
can achieve. Consider two tracking portfolios of the index S&P 500 for
a 5-year period (2011-2015): the first is sparse5, composed of only 40
assets, while the second uses all the (approximately) 500 assets of the
index. Figure 1.2 illustrates the commission fees of the two portfolios
as a percentage of the profit, for a range of rebalancing frequencies and
assets under management (AUM)6. For simplicity we do not have any
leverage (i.e., leverage = 1).

5This portfolio was constructed using the algorithms presented in Chapter 4.
6AUM, also known as net asset value (NAV), measures the total market value of

all the financial assets that a financial institution manages.
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12 Introduction

The first thing to observe is that there is a threshold AUM (around
$10 million) where the commission fees become equal for the two port-
folios. For smaller AUM the sparse portfolio has significantly less fees
while for larger AUM the full portfolio has slightly smaller fees. Al-
though it is not straightforward why we get such a behavior, it has a
simple explanation. Note that the commission fees of each transaction
(given by (2.4)) depend on the number of shares ∆n we buy or sell,
with a fixed minimum fee. For small AUM, the number of shares ∆n is
not that large and therefore the fixed fee is dominating. For a sparse
portfolio we need to pay this fixed fee only for a few assets whereas for
a full portfolio this cost becomes significant. As the AUM grows, the
fixed cost becomes less important since it is dominated by the large
amount of shares we trade. Therefore, the difference of the commission
fees between the two portfolios becomes more narrow. Finally, for large
AUM the full portfolio has less commission fees. This is because the
rebalancing of a sparse portfolio can result in a different composition of
assets. This means we need to sell all the holding shares of one asset
and buy many shares of another whereas for full portfolios we do not
need to make such severe changes. Of course, the change in the asset
composition in sparse portfolios is true for lower AUM as well. However,
this effect is mitigated in lower AUM as the fixed costs are dominant.

In general, the change in the composition of the holding portfolio
during rebalancing can be controlled by including a turnover penalty
as we will see in Section 3.5. To illustrate the benefit of the turnover
penalty, we consider the same setting as in Figure 1.2 and we focus
only on the 3-month rebalancing frequency. Apart from the sparse and
full portfolios, we design one more sparse portfolio that has a turnover
penalty, i.e., we penalize the changes in the portfolio after rebalancing.
In Figure 1.3 we observe how this penalization reduces further the
transaction costs and makes the sparse portfolio with turnover penalty
more cost effective that the full replication portfolio even for large AUM.

As we will see in Section 4.6, the turnover penalization can be
controlled by a tuning parameter. However, we should keep in mind that
there is a tradeoff between the reduction of costs and the tracking error,
i.e., by enforcing only small changes in a portfolio during rebalancing
can lead to a larger tracking error.
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Figure 1.3: Commission fees as a percentage of profit for sparse (40 assets), sparse
with turnover penalty, and full portfolios for different AUM and a rebalancing
frequency of 3 months.

1.4 Goal

Due to the importance of sparse tracking portfolios, our main focus
will be on deriving such portfolios with the goal of tracking an index
as efficiently as possible. It is worth mentioning that in general index
tracking portfolios are not efficient in the sense that they do not lie on
the efficient frontier as defined by Markowitz [53]. This is expected since
the goal of a sparse tracking portfolio algorithm is to find an optimal
tradeoff between tracking error and sparsity and not between return
and risk.

Further, the analysis and the algorithms derived in the monograph
assume decisions for a single-period, i.e., the portfolio derivations do not
incorporate information about future trades. For multi-period trading
please refer to [16] and references therein.

Full text available at: http://dx.doi.org/10.1561/2400000021



14 Introduction

Finally, although index tracking is not a real-time application, the
construction time should be reasonable given the fact that extensive
backtesting should be made before deploying an index tracking strategy,
which requires the construction of many portfolios for a given algorithm.

1.5 Outline

The abbreviations and the notation used throughout the monograph
are provided on pages 89 and 90, respectively.

In Chapter 2 we present two basic challenges we face when we
engage in index tracking, namely the need for a frequent rebalancing of
a tracking portfolio due to the constant changes in an index, and the
transaction costs that are associated with a portfolio. As we will see,
these two challenges form a natural tradeoff.

In Chapter 3 we introduce the sparse index tracking problem in its
general form and we discuss the various tracking error functions and
possible constraints that one could impose. We further analyze existing
methods that produce sparse tracking portfolios and their drawbacks.

In Chapter 4 we derive algorithms for the sparse index tracking
problem. We consider various tracking error functions and constraints.
All of the possible problem variations boil down to the same effective
problem that we need to solve iteratively until the algorithms converge.

In Chapter 5 we provide numerical experiments that show the
performance of the derived algorithms. For illustration purposes we use
the indices S&P 500 and Russell 2000.

Finally, Chapter 6 concludes the monograph.

1.6 Software

Many of the derived algorithms can be found in the R [59] software
package sparseIndexTracking [12], which is available in CRAN.
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