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ABSTRACT

The algorithms community has been modeling the underly-
ing key features and constraints of massively parallel frame-
works and using these models to discover new algorithmic
techniques tailored to them. This monograph focuses on the
Massively Parallel Model of Computation (MPC) framework,
also known as the MapReduce model in the literature. It
describes algorithmic tools that have been developed to lever-
age the unique features of the MPC framework. These tools
were chosen for their broad applicability, as they can serve as
building blocks to design new algorithms. The monograph is
not exhaustive and includes topics such as partitioning and
coresets, sample and prune, dynamic programming, round
compression, and lower bounds.
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1
Introduction

The modern era is witnessing a revolution in the ability to scale compu-
tations to massively large data sets. A key breakthrough in scalability
was the introduction of fast and easy-to-use distributed programming
models such as MapReduce (Dean and Ghemawat, 2008), Hadoop
(hadoop.apache.org), and Spark (spark.apache.org). We refer to these
programming models as massively parallel frameworks.

Massively parallel frameworks were originally designed for relatively
simple types of computations such as counting the frequency of words
in a data set. Since then, they have been shown to be useful for a far
richer class of applications. The goal of a recent line of work is to study
these frameworks algorithmically to unlock their true underlying power
and expand their applicability. The hope is, through an algorithmic
investigation, to achieve successes similar to those on topics such as
cache-oblivious algorithms (Frigo et al., 2012) and data streaming
algorithms (McGregor, 2014).

Practically, massively distributed frameworks enable programmers
to easily deploy algorithms on tens to thousands of machines. Algo-
rithmically, the frameworks have restrictions on their computational
expressive power to help ensure programs can be efficiently parallelized.

2
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3

The challenges are then to (i) develop simple tools that reveal fun-
damentals of massive computation and aid algorithm design and (ii)
understand which computations can benefit from the framework.

The algorithms community has been addressing this problem by
modeling the underlying key features and constraints of massively par-
allel frameworks and using these models to discover new algorithmic
techniques tailored to them. The first model of massively parallel com-
putation was introduced for the MapReduce framework by Karloff et al.
(2010) and several variants have been proposed since (Feldman et al.,
2010; Koutris et al., 2018; Beame et al., 2017; Andoni et al., 2014; Goel
and Munagala, 2012; Goodrich et al., 2011; Pietracaprina et al., 2012;
Roughgarden et al., 2016). Perhaps the main advantage of the model
in Karloff et al. (2010) is its relative simplicity. It captures framework
characteristics that are sufficient for algorithm design, without delving
into the plethora of system parameters. In this monograph, we will
primarily focus on this version of the model; we call it the Massively
Parallel Model of Computation (MPC). See Section 2 for formal details.

The MPC model is a special case of the Bulk-Synchronous-Parallel
(BSP) model of Valiant (1990), where machines have sublinear memory
(i.e., nδ for δ < 1 and input size n) and computation proceeds in
alternating rounds of communication and sequential computation. The
MPC model can be thought of making different trade-offs than the
classic PRAM computational model. Much of the difference comes from
being able to run a sequential algorithm on a small sublinear portion of
the data during a single round. Full details are given in Section 2.

The MPC model has a strong connection to practice and this is
demonstrated by algorithmic developments resulting in good practical
performance (Chierichetti et al., 2010; Bahmani et al., 2012a; Suri
and Vassilvitskii, 2011; Karloff et al., 2010; Mirzasoleiman et al., 2013;
Broder et al., 2014; Feldman et al., 2010; Zhao et al., 2012; Ene et
al., 2011; Malkomes et al., 2015; Kumar et al., 2015; Bahmani et al.,
2012b; Ene and Nguyen, 2015; Cohen-Addad et al., 2021b; Cohen-
Addad et al., 2021a; Lattanzi et al., 2019; Ghaffari et al., 2019b; Bateni
et al., 2017; Assadi et al., 2019b; Bhaskara and Wijewardena, 2018)
and influencing software libraries. For example, theoretical algorithms
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4 Introduction

for k-means clustering have been incorporated in the Spark Machine
Learning software library1 (Bahmani et al., 2012b).

1.1 Purpose of This Monograph

This line of work has demonstrated that massively parallel frameworks
are useful for some challenging applications. With this as a proof-
of-concept, an exciting area of research is to broaden the use of the
frameworks to address a wide range of problems by using theoretical
models to drive algorithm design.

This monograph will describe algorithmic tools that have been
developed for massively distributed computing that leverage the unique
features of the framework. The tools were chosen because we believe
they are generally applicable and can be used as building blocks to
design algorithms in the area.

This monograph is not exhaustive. However, it will cover the follow-
ing areas.

• Partitioning and Coresets: This is one of the most natural
approaches for parallel algorithms design. The idea is to partition
the input to the problem across machines, and have each machine
solve the problem on the individual parts. The individual solutions
are then combined to build the solution to the overall problem.

• Sample and Prune: Another common approach to solve prob-
lems on large data sets is to use sampling to reduce problem
size. Unfortunately, sampling from simple distributions, such as
uniform, often misses too much information to solve a problem
near optimally. We discuss the iterative sample-and-prune method,
which has been shown to be efficient for many problems.

• Dynamic Programming: Dynamic programming is a powerful
technique for solving problems. Unfortunately, it is typically dif-
ficult to parallelize. We discuss techniques for adapting certain
dynamic programs to the massively parallel setting.

1https://spark.apache.org/docs/2.2.0/mllib-clustering.html
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1.2. Prerequisites 5

• Rounds Reduction: A simulation approach to solve problems in
a parallel fashion is to apply a known algorithm, performing one
step in a single round of distributed computation. While simple,
it is often inefficient and leads to a large number of rounds. We
discuss round compression, where multiple iterative rounds are
compressed into a single round.

• Lower Bounds: Finally, we discuss the limitations of the mas-
sively parallel model of computation. We highlight the efforts to
develop lower bounds for the model and derive connections to
other models of computation.

1.2 Prerequisites

This monograph will assume the basics on approximation algorithm
design and randomized algorithms. For a quick overview, we recom-
mend the books by Williamson and Shmoys (2011, Chapter 2) and
Mitzenmacher and Upfal (2005, Chapters 1-4).
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