
Massively Parallel
Computation: Algorithms

and Applications

Full text available at: http://dx.doi.org/10.1561/2400000025

Other titles in Foundations and Trends® in Optimization

Acceleration Methods
Alexandre d’Aspremont, Damien Scieur and Adrien Taylor
ISBN: 978-1-68083-928-9

Algorithms for Verifying Deep Neural Networks
Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong,
Clark Barrett and Mykel J. Kochenderfer
ISBN: 978-1-68083-786-5

Distributionally Robust Learning
Ruidi Chen and Ioannis Ch. Paschalidis
ISBN: 978-1-68083-772-8

Atomic Decomposition via Polar Alignment: The Geometry of
Structured Optimization
Zhenan Fan, Halyun Jeong, Yifan Sun and Michael P. Friedlander
ISBN: 978-1-68083-742-1

Optimization Methods for Financial Index Tracking: From The-
ory to Practice
Konstantinos Benidis, Yiyong Feng and Daniel P. Palomar
ISBN: 978-1-68083-464-2

Full text available at: http://dx.doi.org/10.1561/2400000025

Massively Parallel Computation:
Algorithms and Applications

Sungjin Im
University of California, Merced

Ravi Kumar
Google, Mountain View

Silvio Lattanzi
Google, Barcelona

Benjamin Moseley
Carnegie Mellon University

Sergei Vassilvitskii
Google, New York

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000025

Foundations and Trends® in Optimization

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Im et al.. Massively Parallel Computation: Algorithms and Applications. Founda-
tions and Trends® in Optimization, vol. 5, no. 4, pp. 340–417, 2023.

ISBN: 978-1-63828-217-4
© 2023 S. Im et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2400000025

Foundations and Trends® in Optimization
Volume 5, Issue 4, 2023

Editorial Board

Editors-in-Chief
Garud Iyengar
Columbia University, USA

Editors

Dimitris Bertsimas
Massachusetts Institute of Technology

John R. Birge
The University of Chicago

Robert E. Bixby
Rice University

Emmanuel Candes
Stanford University

David Donoho
Stanford University

Laurent El Ghaoui
University of California, Berkeley

Donald Goldfarb
Columbia University

Michael I. Jordan
University of California, Berkeley

Zhi-Quan (Tom) Luo
University of Minnesota, Twin Cites

George L. Nemhauser
Georgia Institute of Technology

Arkadi Nemirovski
Georgia Institute of Technology

Yurii Nesterov
HSE University

Jorge Nocedal
Northwestern University

Pablo A. Parrilo
Massachusetts Institute of Technology

Boris T. Polyak
Institute for Control Science, Moscow

Tamás Terlaky
Lehigh University

Michael J. Todd
Cornell University

Kim-Chuan Toh
National University of Singapore

John N. Tsitsiklis
Massachusetts Institute of Technology

Lieven Vandenberghe
University of California, Los Angeles

Robert J. Vanderbei
Princeton University

Stephen J. Wright
University of Wisconsin

Full text available at: http://dx.doi.org/10.1561/2400000025

Editorial Scope
Topics

Foundations and Trends® in Optimization publishes survey and tutorial
articles in the following topics:

• algorithm design, analysis, and implementation (especially, on modern
computing platforms

• models and modeling systems, new optimization formulations for
practical problems

• applications of optimization in machine learning, statistics, and data
analysis, signal and image processing, computational economics and
finance, engineering design, scheduling and resource allocation, and
other areas

Information for Librarians

Foundations and Trends® in Optimization, 2023, Volume 5, 4 issues.
ISSN paper version 2167-3888. ISSN online version 2167-3918. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2400000025

Contents

1 Introduction 2
1.1 Purpose of This Monograph 4
1.2 Prerequisites . 5

2 The MPC Model 6
2.1 Formal Definition . 7
2.2 Example: Word Frequencies in Two Rounds 9
2.3 Other Related Models . 11
2.4 Section Notes . 14

3 Partitioning and Coresets 15
3.1 Overview . 16
3.2 Application: Minimum Spanning Tree 16
3.3 Application: k-Center Clustering 18
3.4 Coresets . 19
3.5 Application: k-Center Clustering in Euclidean Space 20
3.6 Problems . 21
3.7 Section Notes . 22

4 Sample and Prune 23
4.1 Overview . 23
4.2 Application: Top k Selection 27

Full text available at: http://dx.doi.org/10.1561/2400000025

4.3 Application: k-Center Clustering 27
4.4 Application: Monotone Submodular Maximization Subject

to a Cardinality Constraint 29
4.5 Section Notes . 30

5 Dynamic Programming 32
5.1 Overview . 33
5.2 Warm-up: Knapsack . 35
5.3 Interval Selection in MPC 37
5.4 Approximate Dynamic Programs 40
5.5 Section Notes . 41

6 Round Reduction via Sampling 42
6.1 k-core Decomposition and a Sequential Algorithm 42
6.2 Parallelizing the Sequential Algorithm: O(log n) Rounds . . 44
6.3 Round Compression via Random Vertex Partitioning:

O(log log n) Rounds . 47
6.4 Section Notes . 49

7 Round Reduction via Graph Exponentiation 51
7.1 Approximate Core Decomposition 52
7.2 Connected Components 57
7.3 Section Notes . 63

8 Lower Bounds 64
8.1 Connectivity in MPC . 64
8.2 Unconditional Lower Bounds 65
8.3 Conditional Lower Bounds 69
8.4 Section Notes . 71

9 Conclusions 72

References 73

Full text available at: http://dx.doi.org/10.1561/2400000025

Massively Parallel Computation:
Algorithms and Applications
Sungjin Im1, Ravi Kumar2, Silvio Lattanzi3, Benjamin Moseley4 and
Sergei Vassilvitskii5

1University of California, Merced, USA; sim3@ucmerced.edu
2Google, Mountain View, USA; ravi.k53@gmail.com
3Google, Barcelona, Spain; silviol@google.com
4Carnegie Mellon University, USA; moseleyb@andrew.cmu.edu
5Google, New York, USA; sergeiv@google.com

ABSTRACT

The algorithms community has been modeling the underly-
ing key features and constraints of massively parallel frame-
works and using these models to discover new algorithmic
techniques tailored to them. This monograph focuses on the
Massively Parallel Model of Computation (MPC) framework,
also known as the MapReduce model in the literature. It
describes algorithmic tools that have been developed to lever-
age the unique features of the MPC framework. These tools
were chosen for their broad applicability, as they can serve as
building blocks to design new algorithms. The monograph is
not exhaustive and includes topics such as partitioning and
coresets, sample and prune, dynamic programming, round
compression, and lower bounds.

Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley and Sergei Vassilvitskii
(2023), “Massively Parallel Computation: Algorithms and Applications”, Foundations
and Trends® in Optimization: Vol. 5, No. 4, pp 340–417. DOI: 10.1561/2400000025.
©2023 S. Im et al.

Full text available at: http://dx.doi.org/10.1561/2400000025

1
Introduction

The modern era is witnessing a revolution in the ability to scale compu-
tations to massively large data sets. A key breakthrough in scalability
was the introduction of fast and easy-to-use distributed programming
models such as MapReduce (Dean and Ghemawat, 2008), Hadoop
(hadoop.apache.org), and Spark (spark.apache.org). We refer to these
programming models as massively parallel frameworks.

Massively parallel frameworks were originally designed for relatively
simple types of computations such as counting the frequency of words
in a data set. Since then, they have been shown to be useful for a far
richer class of applications. The goal of a recent line of work is to study
these frameworks algorithmically to unlock their true underlying power
and expand their applicability. The hope is, through an algorithmic
investigation, to achieve successes similar to those on topics such as
cache-oblivious algorithms (Frigo et al., 2012) and data streaming
algorithms (McGregor, 2014).

Practically, massively distributed frameworks enable programmers
to easily deploy algorithms on tens to thousands of machines. Algo-
rithmically, the frameworks have restrictions on their computational
expressive power to help ensure programs can be efficiently parallelized.

2

Full text available at: http://dx.doi.org/10.1561/2400000025

hadoop.apache.org
spark.apache.org

3

The challenges are then to (i) develop simple tools that reveal fun-
damentals of massive computation and aid algorithm design and (ii)
understand which computations can benefit from the framework.

The algorithms community has been addressing this problem by
modeling the underlying key features and constraints of massively par-
allel frameworks and using these models to discover new algorithmic
techniques tailored to them. The first model of massively parallel com-
putation was introduced for the MapReduce framework by Karloff et al.
(2010) and several variants have been proposed since (Feldman et al.,
2010; Koutris et al., 2018; Beame et al., 2017; Andoni et al., 2014; Goel
and Munagala, 2012; Goodrich et al., 2011; Pietracaprina et al., 2012;
Roughgarden et al., 2016). Perhaps the main advantage of the model
in Karloff et al. (2010) is its relative simplicity. It captures framework
characteristics that are sufficient for algorithm design, without delving
into the plethora of system parameters. In this monograph, we will
primarily focus on this version of the model; we call it the Massively
Parallel Model of Computation (MPC). See Section 2 for formal details.

The MPC model is a special case of the Bulk-Synchronous-Parallel
(BSP) model of Valiant (1990), where machines have sublinear memory
(i.e., nδ for δ < 1 and input size n) and computation proceeds in
alternating rounds of communication and sequential computation. The
MPC model can be thought of making different trade-offs than the
classic PRAM computational model. Much of the difference comes from
being able to run a sequential algorithm on a small sublinear portion of
the data during a single round. Full details are given in Section 2.

The MPC model has a strong connection to practice and this is
demonstrated by algorithmic developments resulting in good practical
performance (Chierichetti et al., 2010; Bahmani et al., 2012a; Suri
and Vassilvitskii, 2011; Karloff et al., 2010; Mirzasoleiman et al., 2013;
Broder et al., 2014; Feldman et al., 2010; Zhao et al., 2012; Ene et
al., 2011; Malkomes et al., 2015; Kumar et al., 2015; Bahmani et al.,
2012b; Ene and Nguyen, 2015; Cohen-Addad et al., 2021b; Cohen-
Addad et al., 2021a; Lattanzi et al., 2019; Ghaffari et al., 2019b; Bateni
et al., 2017; Assadi et al., 2019b; Bhaskara and Wijewardena, 2018)
and influencing software libraries. For example, theoretical algorithms

Full text available at: http://dx.doi.org/10.1561/2400000025

4 Introduction

for k-means clustering have been incorporated in the Spark Machine
Learning software library1 (Bahmani et al., 2012b).

1.1 Purpose of This Monograph

This line of work has demonstrated that massively parallel frameworks
are useful for some challenging applications. With this as a proof-
of-concept, an exciting area of research is to broaden the use of the
frameworks to address a wide range of problems by using theoretical
models to drive algorithm design.

This monograph will describe algorithmic tools that have been
developed for massively distributed computing that leverage the unique
features of the framework. The tools were chosen because we believe
they are generally applicable and can be used as building blocks to
design algorithms in the area.

This monograph is not exhaustive. However, it will cover the follow-
ing areas.

• Partitioning and Coresets: This is one of the most natural
approaches for parallel algorithms design. The idea is to partition
the input to the problem across machines, and have each machine
solve the problem on the individual parts. The individual solutions
are then combined to build the solution to the overall problem.

• Sample and Prune: Another common approach to solve prob-
lems on large data sets is to use sampling to reduce problem
size. Unfortunately, sampling from simple distributions, such as
uniform, often misses too much information to solve a problem
near optimally. We discuss the iterative sample-and-prune method,
which has been shown to be efficient for many problems.

• Dynamic Programming: Dynamic programming is a powerful
technique for solving problems. Unfortunately, it is typically dif-
ficult to parallelize. We discuss techniques for adapting certain
dynamic programs to the massively parallel setting.

1https://spark.apache.org/docs/2.2.0/mllib-clustering.html

Full text available at: http://dx.doi.org/10.1561/2400000025

https://spark.apache.org/docs/2.2.0/mllib-clustering.html

1.2. Prerequisites 5

• Rounds Reduction: A simulation approach to solve problems in
a parallel fashion is to apply a known algorithm, performing one
step in a single round of distributed computation. While simple,
it is often inefficient and leads to a large number of rounds. We
discuss round compression, where multiple iterative rounds are
compressed into a single round.

• Lower Bounds: Finally, we discuss the limitations of the mas-
sively parallel model of computation. We highlight the efforts to
develop lower bounds for the model and derive connections to
other models of computation.

1.2 Prerequisites

This monograph will assume the basics on approximation algorithm
design and randomized algorithms. For a quick overview, we recom-
mend the books by Williamson and Shmoys (2011, Chapter 2) and
Mitzenmacher and Upfal (2005, Chapters 1-4).

Full text available at: http://dx.doi.org/10.1561/2400000025

References

Afrati, F. N., A. D. Sarma, S. Salihoglu, and J. D. Ullman. (2012). “Up-
per and Lower Bounds on the Cost of a Map-Reduce Computation”.
arXiv: 1206.4377.

Andoni, A., A. Nikolov, K. Onak, and G. Yaroslavtsev. (2014). “Parallel
Algorithms for Geometric Graph Problems”. In: STOC. 574–583.

Andoni, A., Z. Song, C. Stein, Z. Wang, and P. Zhong. (2018). “Parallel
Graph Connectivity in Log Diameter Rounds”. In: FOCS. 674–685.

Assadi, S., M. Bateni, A. Bernstein, V. S. Mirrokni, and C. Stein.
(2019a). “Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs”. In: SODA. 1616–1635.

Assadi, S., M. Bateni, and V. S. Mirrokni. (2019b). “Distributed
Weighted Matching via Randomized Composable Coresets”. In:
ICML. 333–343.

Bahmani, B., R. Kumar, and S. Vassilvitskii. (2012a). “Densest Sub-
graph in Streaming and MapReduce”. PVLDB. 5(5): 454–465.

Bahmani, B., B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii.
(2012b). “Scalable K-Means++”. PVLDB. 5(7): 622–633.

Bateni, M. H., S. Behnezhad, M. Derakhshan, M. T. Hajiaghayi, R.
Kiveris, S. Lattanzi, and V. Mirrokni. (2017). “Affinity clustering:
Hierarchical clustering at scale”. In: NIPS. 6867–6877.

Beame, P., P. Koutris, and D. Suciu. (2017). “Communication steps for
parallel query processing”. JACM. 64(6): 40:1–40:58.

73

Full text available at: http://dx.doi.org/10.1561/2400000025

https://arxiv.org/abs/1206.4377

74 References

Behnezhad, S., L. Dhulipala, H. Esfandiari, J. Lacki, and V. S. Mirrokni.
(2019a). “Near-Optimal Massively Parallel Graph Connectivity”. In:
FOCS. 1615–1636.

Behnezhad, S., M. Hajiaghayi, and D. G. Harris. (2019b). “Exponentially
Faster Massively Parallel Maximal Matching”. In: FOCS. 1637–1649.

Bhaskara, A. and M. Wijewardena. (2018). “Distributed Clustering via
LSH Based Data Partitioning”. In: ICML. 569–578.

Bilardi, G., M. Scquizzato, and F. Silvestri. (2012). “A lower bound
technique for communication on BSP with application to the FFT”.
In: ECPP. 676–687.

Broder, A. Z., L. G. Pueyo, V. Josifovski, S. Vassilvitskii, and S. Venkate-
san. (2014). “Scalable K-Means by ranked retrieval”. In: WSDM.
233–242.

Ceccarello, M., A. Pietracaprina, and G. Pucci. (2019). “Solving k-center
Clustering (with Outliers) in MapReduce and Streaming, almost as
Accurately as Sequentially”. Proc. VLDB Endow. 12(7): 766–778.

Chang, Y., M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng. (2019).
“The Complexity of (∆+1) Coloring in Congested Clique, Massively
Parallel Computation, and Centralized Local Computation”. In:
PODC. 471–480.

Charikar, M., W. Ma, and L.-Y. Tan. (2020). “New lower bounds for
Massively Parallel Computation from query complexity”. In: SPAA.
141–151.

Chierichetti, F., R. Kumar, and A. Tomkins. (2010). “Max-cover in
map-reduce”. In: WWW. 231–240.

Cohen-Addad, V., S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, N. Parot-
sidis, and J. Tarnawski. (2021a). “Correlation Clustering in Constant
Many Parallel Rounds”. In: ICML. 2069–2078.

Cohen-Addad, V., S. Lattanzi, A. Norouzi-Fard, C. Sohler, and O.
Svensson. (2021b). “Parallel and Efficient Hierarchical k-Median
Clustering”. In: NeurIPS.

Coy, S. and A. Czumaj. (2022). “Deterministic massively parallel con-
nectivity”. In: STOC. 162–175.

Czumaj, A., J. Lacki, A. Madry, S. Mitrovic, K. Onak, and P. Sankowski.
(2018). “Round compression for parallel matching algorithms”. In:
STOC. 471–484.

Full text available at: http://dx.doi.org/10.1561/2400000025

References 75

Dean, J. and S. Ghemawat. (2008). “MapReduce: Simplified Data
Processing on Large Clusters”. CACM. 51: 107–113.

Ene, A., S. Im, and B. Moseley. (2011). “Fast clustering using MapRe-
duce”. In: KDD. 681–689.

Ene, A. and H. L. Nguyen. (2015). “Random Coordinate Descent Meth-
ods for Minimizing Decomposable Submodular Functions”. In: ICML.
787–795.

Esfandiari, H., S. Lattanzi, and V. Mirrokni. (2018). “Parallel and
Streaming Algorithms for K-Core Decomposition”. In: ICML. 1396–
1405.

Feldman, J., S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitk-
ina. (2010). “On distributing symmetric streaming computations”.
TALG. 6(4): 66:1–66:19.

Frigo, M., C. E. Leiserson, H. Prokop, and S. Ramachandran. (2012).
“Cache-Oblivious Algorithms”. TALG. 8(1): 4.

Ghaffari, M., T. Gouleakis, C. Konrad, S. Mitrovic, and R. Rubinfeld.
(2018). “Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover”. In: PODC. 129–138.

Ghaffari, M., F. Kuhn, and J. Uitto. (2019a). “Conditional Hardness
Results for Massively Parallel Computation from Distributed Lower
Bounds”. In: FOCS. FOCS ’19.

Ghaffari, M., S. Lattanzi, and S. Mitrovic. (2019b). “Improved Parallel
Algorithms for Density-Based Network Clustering”. In: ICML. 2201–
2210.

Ghaffari, M. and J. Uitto. (2019). “Sparsifying Distributed Algorithms
with Ramifications in Massively Parallel Computation and Central-
ized Local Computation”. In: SODA. 1636–1653.

Goel, A. and K. Munagala. (2012). “Complexity Measures for Map-
Reduce, and Comparison to Parallel Computing”. arXiv: 1211.6526.

Gonzalez, T. F. (1985). “Clustering to minimize the maximum inter-
cluster distance”. TCS. 38: 293–306.

Goodrich, M. T. (2010). “Simulating Parallel Algorithms in the MapRe-
duce Framework with Applications to Parallel Computational Ge-
ometry”. arXiv: 1004.4708.

Full text available at: http://dx.doi.org/10.1561/2400000025

https://arxiv.org/abs/1211.6526
https://arxiv.org/abs/1004.4708

76 References

Goodrich, M. T., N. Sitchinava, and Q. Zhang. (2011). “Sorting, Search-
ing, and Simulation in the Mapreduce Framework”. In: ISAAC. 374–
383.

Hegeman, J. W. and S. V. Pemmaraju. (2015). “Lessons from the
congested clique applied to MapReduce”. TCS. 608: 268–281.

Im, S. and B. Moseley. (2015). “Brief Announcement: Fast and Better
Distributed MapReduce Algorithms for k-Center Clustering”. In:
SPAA. 65–67.

Im, S. and B. Moseley. (2019). “A Conditional Lower Bound on Graph
Connectivity in MapReduce”. arXiv: 1904.08954.

Im, S., B. Moseley, and X. Sun. (2017). “Efficient massively parallel
methods for dynamic programming”. In: STOC. 798–811.

Indyk, P., S. Mahabadi, M. Mahdian, and V. S. Mirrokni. (2014).
“Composable core-sets for diversity and coverage maximization”. In:
PODS. 100–108.

Jacob, R., T. Lieber, and N. Sitchinava. (2014). “On the complexity
of list ranking in the parallel external memory model”. In: MFCS.
384–395.

Karloff, H., S. Suri, and S. Vassilvitskii. (2010). “A Model of Computa-
tion for MapReduce”. In: SODA. 938–948.

Koutris, P., S. Salihoglu, and D. Suciu. (2018). “Algorithmic Aspects
of Parallel Data Processing”. Foundations and Trends in Databases.
8(4): 239–370.

Kumar, R., B. Moseley, S. Vassilvitskii, and A. Vattani. (2015). “Fast
Greedy Algorithms in MapReduce and Streaming”. TOPC. 2(3):
14:1–14:22.

Lattanzi, S., T. Lavastida, K. Lu, and B. Moseley. (2019). “A framework
for parallelizing hierarchical clustering methods”. In: ECML/PKDD.
73–89.

Lattanzi, S., B. Moseley, S. Suri, and S. Vassilvitskii. (2011). “Filtering:
a method for solving graph problems in MapReduce”. In: SPAA.
85–94.

Lenzen, C. and R. Wattenhofer. (2010). “Brief announcement: exponen-
tial speed-up of local algorithms using non-local communication”.
In: PODC. 295–296.

Full text available at: http://dx.doi.org/10.1561/2400000025

https://arxiv.org/abs/1904.08954

References 77

Linial, N. (1987). “Distributive graph algorithms global solutions from
local data”. In: FOCS. 331–335.

Malkomes, G., M. J. Kusner, W. Chen, K. Q. Weinberger, and B.
Moseley. (2015). “Fast Distributed k-Center Clustering with Outliers
on Massive Data”. In: NIPS. 1063–1071.

McGregor, A. (2014). “Graph stream algorithms: a survey”. SIGMOD
Record. 43(1): 9–20.

Mirzasoleiman, B., A. Karbasi, R. Sarkar, and A. Krause. (2013). “Dis-
tributed Submodular Maximization: Identifying Representative Ele-
ments in Massive Data”. In: NIPS. 2049–2057.

Mitzenmacher, M. and E. Upfal. (2005). Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press.

Nemhauser, G. L., L. A. Wolsey, and M. L. Fisher. (1978). “An Analysis
of Approximations for Maximizing Submodular Set Functions–I”.
Math. Program. 14(1): 265–294.

Park, H.-M., F. Silvestri, U. Kang, and R. Pagh. (2014). “MapReduce
Triangle Enumeration With Guarantees”. In: CIKM. 1739–1748.

Pietracaprina, A., G. Pucci, M. Riondato, F. Silvestri, and E. Upfal.
(2012). “Space-round Tradeoffs for MapReduce Computations”. In:
ICS. 235–244.

Ponte Barbosa, R. da, A. Ene, H. L. Nguyen, and J. Ward. (2015). “The
Power of Randomization: Distributed Submodular Maximization on
Massive Datasets”. In: ICML. Vol. 37. 1236–1244.

Ponte Barbosa, R. da, A. Ene, H. L. Nguyen, and J. Ward. (2016).
“A New Framework for Distributed Submodular Maximization”. In:
FOCS. 645–654.

Roughgarden, T., S. Vassilvitskii, and J. T. Wang. (2016). “Shuffles and
Circuits (On Lower Bounds on Massively Parallel Computation)”.
In: SPAA ’16.

Suri, S. and S. Vassilvitskii. (2011). “Counting triangles and the curse
of the last reducer”. In: WWW. 607–614.

Valiant, L. G. (1990). “A bridging model for parallel computation”.
CACM. 33(8): 103–111.

Williamson, D. P. and D. B. Shmoys. (2011). The Design of Approxi-
mation Algorithms. Cambridge University Press.

Full text available at: http://dx.doi.org/10.1561/2400000025

78 References

Zhao, Z., G. Wang, A. Butt, M. Khan, V. Kumar, and M. Marathe.
(2012). “SAHAD: Subgraph Analysis in Massive Networks Using
Hadoop”. In: IPDPS. 390–401.

Full text available at: http://dx.doi.org/10.1561/2400000025

