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ABSTRACT
Structured optimization uses a prescribed set of atoms to
assemble a solution that fits a model to data. Polarity, which
extends the familiar notion of orthogonality from linear sets
to general convex sets, plays a special role in a simple and
geometric form of convex duality. This duality correspon-
dence yields a general notion of alignment that leads to an
intuitive and complete description of how atoms participate
in the final decomposition of the solution. The resulting
geometric perspective leads to variations of existing algo-
rithms effective for large-scale problems. We illustrate these
ideas with many examples, including applications in matrix
completion and morphological component analysis for the
separation of mixtures of signals.

Zhenan Fan, Halyun Jeong, Yifan Sun and Michael P. Friedlander (2020), “Atomic
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1
Introduction

Convex optimization provides a valuable computational framework that
renders many problems tractable because of the range of powerful al-
gorithms that can be brought to the task. The key is that a certain
mathematical structure—i.e., convexity of the functions and sets defining
the problem—lays open an enormous range of theoretical and algorith-
mic tools that lend themselves astonishingly well to computation. There
are limits, however, to the scalability of general-purpose algorithms for
convex optimization. As has been recognized in the optimization and
related communities for at least the past decade, significant efficiencies
can be gained by acknowledging the latent structure in the solution
itself, coupled with the overarching structure provided by convexity.

Structured optimization proceeds along these lines by using a pre-
scribed set of atoms from which to assemble an optimal solution. In
effect, the atoms selected to participate in forming a solution decompose
the model into simpler parts, which offers opportunities for algorithmic
efficiency in solving the optimization problem. From a modeling point of
view, the particular atoms that constitute the computed solution often
represent key explanatory components of a model. An atomic decompo-
sition thus provides a description of the most informative features of

2
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3

a solution—in other words, a kind of generalized principal component
analysis.

Our purpose with this monograph is to describe the rich convex
geometry that underlies atomic decomposition. The path we follow
builds on the duality inherent in convex cones: every convex cone is
paired uniquely with another cone that is polar to it. The extreme
rays of each cone in this pair are in some sense aligned. Brought into
the context of atomic decomposition, this notion of alignment through
the polar operation provides a theoretical framework that can be har-
nessed to identify the atoms that participate in a decomposition. This
approach facilitates certain algorithmic design patterns that promote
computational efficiency, as we demonstrate with concrete examples.
Similar computational economies accrue within reduced-space active-set
methods for optimization problems with inequality constraints, such as
implemented by the MINOS software package [1].

Early work in structured optimization focused on problem formu-
lations meant to produce sparse solution vectors, i.e., a solution with
relatively few non-zero elements. Compressed sensing [2]–[4] and model
selection [5], [6], with their many applications in signal processing and
statistics, helped to establish sparse optimization as an important class
of problems with a range of specialized algorithms. Generalizations
that accommodated different notions of sparsity soon followed, includ-
ing matrix problems with low-rank solutions (sparsity in the vector of
singular values), fused index pairs (sparsity in terms of the norms of
subgroups of variables), and sparsity in specialized dictionaries, such as
mass spectrographs of simple molecules used to represent structures of
more complicated molecules [7, Section 6.3.1].

Nonsmooth regularization functions that promote sparsity, such
as the 1-norm for sparse vectors, or the nuclear norm for low-rank
matrices, are key features of these formulations. Gauge functions, which
significantly generalize the notion of a norm, were recognized as flexible
regularization functions that promote a broad range of sparse structures.
By defining a set of atoms from which to build a solution, an almost
arbitrary set of solution structures can be considered. The gauge function
to this set can be incorporated into a convex optimization problem in
order to obtain a solution with the desired structure. The convex analysis
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4 Introduction

of gauges and support functions, which are their dual counterparts,
is rich in geometry and rife with opportunity for efficient algorithm
implementations for high-dimensional problems. Our purpose with this
monograph is to expose the basic elements of this theory and its many
connections to sparse and structured optimization. To make it accessible
to researchers who are not specialists in convex analysis, we chose a
largely self-contained treatment and make a few modest assumptions
that greatly simplify the derivations.

1.1 Applications and Prior Work

One of the main implications of our approach is its usefulness in adapt-
ing dual optimization methods for discovering atomic decompositions.
With the tools of polar alignment, a dual optimization method can
be interpreted as solving for an aligning dual vector z that exposes
the support of a primal solution x. If the number of exposed atoms
is small, a solution x of the primal problem can be obtained from a
reduced problem defined over the exposed support, but without the
nonsmooth atomic regularization. The resulting reduced problem is
often computationally much cheaper [8] and better conditioned [9]. Al-
ternatively, two-metric methods can be designed to act differently on a
primal iterate’s suspected support [10]. In many applications, such as
feature selection, knowing the optimal support may itself be sufficient.
As we illustrate through various examples, there are several important
cases where the dual aligning vector z can be computed directly.

Machine Learning. The regularized optimization problems described
in Section 5 frequently appear in applications of machine learning
for the purpose of model complexity reduction. The most popular
tools are the vector 1-norm in feature selection [5], its group-norm
variant [11], and the nuclear norm in matrix completion [12]. Many
other sparsity-promoting regularizers, however, appear in practice [13].
Although unconstrained formulations are most popular, particularly
when the proximal operator is computationally convenient [14], the
gauge-constrained formulation is frequently used and solved via the
conditional gradient method [15]–[17]. Popular dual methods, which
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1.1. Applications and Prior Work 5

iterate over a dual variable z(k) but maintain the corresponding primal
variable x(k) only implicitly, include bundle methods [18] and dual
averaging [19], [20].

Linear Conic Optimization. Conic programs are a cornerstone of con-
vex optimization. The nonnegative cone, the second-order cone and
the semidefinite cone respectively, give rise to linear, second-order, and
semidefinite programs. These problem classes capture an enormous
range of important models, and can be solved efficiently by a variety
of algorithms, including interior methods [21]–[23]. Conic programs
and their associated solvers are key ingredients for general purpose
optimization software packages such as YALMIP [24] and CVX [25].
The alignment conditions for these specific cones have been exploited
in dual methods, such as in the spectral bundle method for large-scale
semidefinite programming [26]. Example 3.6 demonstrates this alignment
principle in the context of conic optimization.

Gauge Optimization. The class of gauge optimization problems, as
defined by Freund’s 1987 seminal work [27], can be simply stated: find
the element of a convex set that is minimal with respect to a gauge
function. These conceptually simple problems appear in a remarkable
array of applications, and include parts of sparse optimization and
all of conic optimization [28, Example 1.3]. This class of optimization
problems admits a duality relationship different from classical Lagrange
duality, and is founded on the polar inequality. In this context, the polar
inequality provides an analogue to weak duality, well-known in Lagrange
duality, which guarantees that any feasible primal value provides an
upper bound for any feasible dual value. In the gauge optimization
context, a primal-dual pair (x, z) is optimal if and only if the polar
inequality holds as an equation, which under Definition 2.4 implies
that x and z are aligned. The connection between polar alignment and
optimality is discussed further in Subsection 5.2.

Two-Stage Methods. In sparse optimization, two-stage methods first
identify the primal variable support, and then solve the problem over a
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6 Introduction

reduced support [29], [30]. If the support is sparse enough, the second
problem may be computationally much cheaper because it can allow
for faster Newton-like methods. The atomic alignment principles we
describe in Section 4 give a general recipe for extracting primal variable
support from a computed dual variable, which at optimality is aligned
with the primal variable; see Section 5. This property forms the basis
for our approach to morphological component analysis, described in
Subsection 7.4.

Method Interpretability. The connection between sparsity and align-
ment points to a likely “aligning behavior” in many of the most effective
methods for sparse optimization [31]. Indeed, we show in Section 6
that this is true for a range of methods, including proximal gradient,
conditional gradient, and cutting-plane methods. Surprisingly, we also
find hints of aligning behavior in seemingly unrelated methods, such as
augmented Lagrangian and bundle methods. The alignment point of
view thus offers greater interpretability of commonly used methods in
many modern optimization applications.

1.2 Basic Definitions and Notation

We work with n-vectors in Rn and p-by-n matrices in Rp×n. The re-
striction to real-valued vectors and matrices considerably simplifies our
development, though many of the ideas set forth in this monograph
extend to more general functional spaces, as described by Zălinescu [32]
and Bauschke and Combettes [33].

Vectors are always denoted by lower-case letters; matrices by capital
letters. A vector norm ‖x‖ always refers to the 2-norm, unless otherwise
specified. Matrix norms always refer to the Schatten norm, e.g., if
(s1, s2, . . .) are the singular values of X, then

‖X‖1 =
∑
i

si, ‖X‖2 =
(∑

i

s2
i

)1/2
, and ‖X‖∞ = max

i
si.

Let ei denote the ith canonical unit vector, i.e., the vector of all zeros
except a single 1 in the ith position. The dot product of two n-vectors
x and z is 〈x, z〉 = ∑

j xjzj . The dot product of two p-by-n matrices
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1.2. Basic Definitions and Notation 7

X and Z is the trace inner product 〈X,Z〉 = tr(XTZ) = ∑
ij XijZij .

The adjoint F ∗ of any linear map F is the unique linear map that
satisfies the relationship 〈Fx, z〉 = 〈x, F ∗z〉 for all x and z. Thus, for
the linear map F : Rn → Rm, the product of the adjoint and an m-
vector y is F ∗y = ∑m

i=1 yi(Fei). For the linear map F : Rp×n → Rm, the
forward and adjoint maps take the form

FX =


〈F1, X〉

...
〈Fm, X〉

 and F∗y =
m∑
i=1

yiFi, (1.1)

where each F1, . . . , Fm is a p-by-n matrix. The notation X � 0 indicates
that X is symmetric positive definite.

Throughout the monograph, we use the symbol C to denote a convex
set in Rn. The convex hull of any set D in Rn contains all weighted
averages of the elements of the set, denoted

convD =
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ D, αi ≥ 0,
m∑
i=1

αi = 1
}
,

for some positive integer m. Define the conic extension of D by

coneD = {αd | d ∈ D, α ≥ 0} .

The closure, boundary and relative interior, respectively, of D denoted
clD, bndD and riD. The indicator to D is the function

δD(x) =

0 if x ∈ D;
+∞ otherwise.

The normal cone to the set C at x ∈ C is defined as

NC(x) = {d | 〈d, u− x〉 ≤ 0 for all u ∈ C} .

The Euclidean projection onto the set C is denoted

projC(x) = arg min
u∈C

‖x− u‖2,

which defines the distance of a point to the set C, denoted by

distC(x) = ‖x− projC(x)‖2.

Full text available at: http://dx.doi.org/10.1561/2400000028



8 Introduction

Let f : Rn → R ∪ {+∞} be any function. The domain is denoted
dom f = {x | f(x) < +∞}, and the convex conjugate is denoted

f∗(z) = sup
x∈Rn

{〈x, z〉 − f(x)} .

Full text available at: http://dx.doi.org/10.1561/2400000028
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