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Abstract

This monograph presents an unusual perspective on sensing uncertainty
and filtering with the intention of understanding what information is
minimally needed to achieve a specified task. Information itself is mod-
eled using information space concepts, which originated from dynamic
game theory (rather than information theory, which was developed
mainly for communication). The guiding principle in this monograph is
avoid sensing, representing, and encoding more than is necessary. The
concepts and tools are motivated by many tasks of current interest, such
as tracking, monitoring, navigation, pursuit-evasion, exploration, and
mapping. First, an overview of sensors that appear in numerous systems
is presented. Following this, the notion of a virtual sensor is explained,
which provides a mathematical way to model numerous sensors while
abstracting away their particular physical implementation. Dozens of
useful models are given, each as a mapping from the physical world
to the set of possible sensor outputs. Preimages with respect to this
mapping represent a fundamental source of uncertainty: These are
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equivalence classes of physical states that would produce the same
sensor output. Pursuing this idea further, the powerful notion of a
sensor lattice is introduced, in which all possible virtual sensors can be
rigorously compared. The next part introduces filters that aggregate
information from multiple sensor readings. The integration of infor-
mation over space and time is considered. In the spatial setting, clas-
sical triangulation methods are expressed in terms of preimages. In
the temporal setting, an information-space framework is introduced
that encompasses familiar Kalman and Bayesian filters, but also intro-
duces a novel family called combinatorial filters. Finally, the planning
problem is presented in terms of filters and information spaces. The
monograph concludes with some discussion about connections to many
related research fields and numerous open problems and future research
directions.
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1

Introduction

Think about the devices we build that intermingle sensors, actuators,
and computers. Whether they be robot systems, autonomous vehicles,
sensor networks, or embedded systems, they are completely blind to the
world until we equip them with sensors. All of their accomplishments
rest on their ability to sift through sensor data and make appropriate
decisions. This monograph therefore takes a completely sensor-centric
view for designing these systems.

It is tempting (and common) to introduce the most complete and
accurate sensors possible to eliminate uncertainties and learn a detailed,
complex model of the surrounding world. In contrast, this monograph
heads in the opposite direction by starting with sensing first and then
understanding what information is minimally needed to solve specific
tasks. If we can accomplish our mission without knowing certain details
about the world, then the overall system may be more simple and
robust.

This can be partly understood by considering computational con-
straints. One way or another, we want computers to process and
interpret the data obtained from sensors. The computers might range
from limited embedded systems to the most powerful computer

1
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2 Introduction

systems. The source of their data is quite different from classical uses of
computers, in which data are constructed by humans, possibly with the
help of software. When data are obtained from sensors, there is a direct
sensor mapping from the physical world onto a set of sensor readings.
Even though sensors have been connected to computers for decades,
there has been a tendency to immediately digitize the sensor data and
treat it like any other data. With the proliferation of cheap sensors
these days, it is tempting to easily gather hordes of sensor data and
google them for the right answer. This may be difficult to accomplish,
however, without carefully understanding the sensor mapping. A large
part of this monograph is therefore devoted to providing numerous def-
initions and examples of practical sensor mappings.

When studying sensors, one of the first things to notice is that most
sensors leave a huge amount of ambiguity with regard to the state of
the physical world. Example: How much can we infer about the world
when someone triggers an infrared sensor to turn on a bathroom sink?
In many fields, there is a common temptation to place enough powerful
sensors so that as much as possible about the physical world can be
reconstructed. The idea is to give a crisp, complete model that tends
to make computers happy. In this monograph, however, we argue that
it is important to start with the particular task and then determine its
information requirements: What critical pieces of information about the
world do we need to maintain, while leaving everything else ambiguous?
The idea is to “handle” uncertainty by avoiding big models whenever
possible. This is hard to accomplish if we design a general purpose
robot with no clear intention in mind; however, most devices appearing
in practice have specific, well-defined tasks to perform.

Depending on your background, there might be surprises in this
monograph:

1. Discrete vs. continuous: Not very important: Even
though computation is discrete and the physical world is usu-
ally modeled with continuous spaces, the distinction is not
too important here. The field of hybrid systems is devoted to
the interplay between continuous models, usually expressed
with differential equations, and discrete computation models.
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3

The point in this monograph, however, is to study sen-
sor mappings. These may be from continuous to continuous
spaces, continuous to discrete, or even discrete to discrete
(if the physical world is modeled discretely).

2. Information spaces, not information theory: As an
elegant and useful mathematical framework for characteriz-
ing information transmitted through a noisy channel, Shan-
non’s information theory is extremely powerful. The concepts
are fundamental to many fields; however, information spaces
were formulated since the 1940s in the context of game theory
and control theory for systems that are unable to determine
their state. Thus, this monograph talks more about how
to accomplish tasks in spite of huge amounts of ambiguity
in state, rather than measuring information content, using
entropy-based constructs. There may indeed be interesting
connections between the two subjects, but they are not well
understood and are therefore not covered here.

3. Perfectly accurate and reliable sensors yield huge
amounts of uncertainty: Uncertainty in sensing systems
is usually handled by formulating statistical models of dis-
turbance. For example, a global positioning system (GPS)
may output location coordinates, but a Gaussian noise model
might be used to account for the true position. It is impor-
tant, however, to study the often neglected source of uncer-
tainty due simply to the sensor mapping. Consider the sensor
pad at the entrance to a parking garage or drive-through
restaurant. It provides one bit of information, usually quite
reliably and accurately. It performs its task well, in spite
of enormous uncertainty about the world: What kind of car
drove over it? Where precisely did the car drive? How fast
was it going? We are comfortable allowing this uncertainty to
remain uncertain. We want to study these situations broadly.
This is complementary to the topic of noisy sensors, and
both issues can and should be addressed simultaneously. This
monograph, however, focuses mainly on the underrepresented
topic of uncertainty that arises from the sensor mapping.
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4 Introduction

Based on the discussion above, it is clear that sensing and com-
putation are closely intertwined. For robotic devices, actuation addi-
tionally comes into play. This means that commands are issued by the
computer, causing the device to move in the physical world. Therefore,
many problems of interest mix all three: sensing, actuation, and com-
putation. Alternative names for sensing are perception or even learning,
but each carries distinct connotations. A broader name for actuation is
control, which may or not refer to forcing changes in the physical world.
Based on this three-way mixture and its increasing relevance, we are
forced more than ever to develop new mathematical abstractions and
models that reduce complexity and meet performance goals.

Figure 1.1 shows a conceptual distinction between classical com-
putation and the three-way mixture considered in this paper. In
Figure 1.1(a), the Turing machine model is shown, in which a state
machine interacts with a boundless binary tape. This and other com-
putation models represent useful, powerful abstractions for ignoring the
physical world. Figure 1.1(b) emphasizes the interaction between the
physical world and a computer. Imagine discarding the Turing tape
and interacting directly with a wild, unknown, chaotic world through
sensing and actuation.

A natural question arises: What is the “state” of this system? In the
case of the Turing machine the full state is given by: the finite machine
state, head position, and the binary string written on the tape. For
Figure 1.1(b), this becomes replaced by two kinds of states: internal
and external. The internal state corresponds to the state inside of the
computation box. Some or all of the internal state will be called an
information state (or I-state), to be defined later. The external state

Fig. 1.1 (a) For classical computation, the full state is given by the finite machine state,

the head position, and the binary string written on the tape. (b) In this monograph, there
is both an internal computational state and an external physical state.
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corresponds to the state of the physical world. The internal state is
closer to the use of state in computer science, whereas the external
state is closer to its use in control theory. The internal vs. external
distinction is more important than discrete vs. continuous; either kind
of state may be continuous or discrete.

These internal states will be defined to live in an information space
(or I-space), which is where filtering and planning problems naturally
live when sensing is involved. In this monograph, we will define and
interpret these spaces in many settings. A continuing mission is to
make these spaces as small as possible while being able to efficiently
compute over them and to understand their connection to the external
states.

Here are some key themes to take from this monograph:

• Start from the task and try to understand what information
is actually required to be extracted from the physical world.

• Since sensors leave substantial uncertainty about the physical
world, they are best understood as inducing partitions of the
external state space into indistinguishable classes of physical
states.
• We can design combinatorial filters that are structurally simi-

lar to Bayesian or Kalman filters, but involve no probabilistic
models. These are often dramatically simpler in complexity.
They are also perfectly compatible with probabilistic reason-
ing: Stochastic models can be introduced over them.
• There is no problem defining enormous physical state spaces,

provided that we do not directly compute over them. How-
ever, state estimation or recovery of a particular state in a
giant state space should be avoided if possible.
• Virtual sensor models provide a powerful intermediate

abstraction that can be implemented by many alternative
physical sensing systems.

The remainder of this monograph is divided into four main parts:

1. Physical sensors: Before going into mathematical models,
a broad overview of real sensors will be given along with
discussions about what we would like to sense.
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6 Introduction

2. Virtual sensors: This part introduces mathematical mod-
els of sensors that are abstracted away from the particular
physical implementation. Using a definition of the physical
state space, a sensor is defined as a mapping from physical
states to data that can be measured.

3. Filtering: Information accumulates from multiple sensor
readings over time or space and needs to be efficiently com-
bined. Spatial filters generalize ancient triangulation methods
and combine information over space. For temporal filters,
we find and attempt to “live” in the smallest I-space
possible, given the task. The concepts provide a generaliza-
tion of Kalman and Bayesian filters. The new family includes
reduced complexity filters, called combinatorial filters, that
avoid physical state estimation.

4. Discussion: In the final part, the transition to planning is
briefly considered. A plan specifies actuation primitives (or
actions) that are conditioned on the I-states maintained in
a filter and manipulate the world to achieve tasks. Related
research and future research challenges are then presented to
end the monograph.

Filtering and planning can be distinguished by being passive and active,
respectively. A filtering problem might require making inferences, such
as counting the number of people in a building or determining the intent
of a set of autonomous vehicles. A planning problem usually disturbs
the environment, for example by causing a robot to move a box across
the floor.
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