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Abstract

Policy search is a subfield in reinforcement learning which focuses on

finding good parameters for a given policy parametrization. It is well

suited for robotics as it can cope with high-dimensional state and action

spaces, one of the main challenges in robot learning. We review recent

successes of both model-free and model-based policy search in robot

learning.

Model-free policy search is a general approach to learn policies

based on sampled trajectories. We classify model-free methods based on

their policy evaluation strategy, policy update strategy, and exploration

strategy and present a unified view on existing algorithms. Learning a

policy is often easier than learning an accurate forward model, and,

hence, model-free methods are more frequently used in practice. How-

ever, for each sampled trajectory, it is necessary to interact with the

*Both authors contributed equally.

Full text available at: http://dx.doi.org/10.1561/2300000021



robot, which can be time consuming and challenging in practice. Model-

based policy search addresses this problem by first learning a simulator

of the robot’s dynamics from data. Subsequently, the simulator gen-

erates trajectories that are used for policy learning. For both model-

free and model-based policy search methods, we review their respective

properties and their applicability to robotic systems.
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1

Introduction

From simple house-cleaning robots to robotic wheelchairs and general

transport robots the number and variety of robots used in our everyday

life are rapidly increasing. To date, the controllers for these robots are

largely designed and tuned by a human engineer. Programming robots

is a tedious task that requires years of experience and a high degree of

expertise. The resulting programmed controllers are based on assum-

ing exact models of both the robot’s behavior and its environment.

Consequently, hard-coding controller for robots has its limitations

when a robot has to adapt to new situations or when the robot/

environment cannot be modeled sufficiently accurately. Hence, there

is a gap between the robots currently used and the vision of incor-

porating fully autonomous robots. In robot learning, machine learn-

ing methods are used to automatically extract relevant information

from data to solve a robotic task. Using the power and flexibility of

modern machine learning techniques, the field of robot control can be

further automated, and the gap toward autonomous robots, e.g., for

general assistance in households, elderly care, and public services can

be narrowed substantially.

1
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2 Introduction

1.1 Robot Control as a Reinforcement Learning Problem

In most tasks, robots operate in a high-dimensional state space x

composed of both internal states (e.g., joint angles, joint velocities, end-

effector pose, and body position/orientation) and external states (e.g.,

object locations, wind conditions, or other robots). The robot selects its

motor commands u according to a control policy π. The control policy

can either be stochastic, denoted by π(u|x), or deterministic, which

we will denote as u = π(x). The motor commands u alter the state of

the robot and its environment according to the probabilistic transition

function p(xt+1|xt,ut). Jointly, the states and actions of the robot form

a trajectory τ = (x0,u0,x1,u1, . . .), which is often also called a rollout

or a path.

We assume that a numeric scoring system evaluates the performance

of the robot system during a task and returns an accumulated reward

signal R(τ ) for the quality of the robot’s trajectory. For example, the

reward R(τ ) may include a positive reward for a task achievement and

negative rewards, i.e., costs, that punish energy consumption. Many

of the considered motor tasks are stroke-based movements, such as

returning a tennis ball or throwing darts. We will refer to such tasks

as episodic learning tasks as the execution of the task, the episode,

ends after a given number T of time steps. Typically, the accumulated

reward R(τ ) for a trajectory is given as

R(τ ) = rT (xT ) +
T−1∑
t=0

rt(xt,ut), (1.1)

where rt is an instantaneous reward function, which might be a punish-

ment term for the consumed energy, and rT is a final reward, such as

quadratic punishment term for the deviation to a desired goal posture.

For many episodic motor tasks the policy is modeled as time-dependent

policy, i.e., either a stochastic policy π(ut|xt, t) or a deterministic policy

ut = π(xt, t) is used.

In some cases, the infinite-horizon case is considered

R(τ ) =

∞∑
t=0

γtr(xt,ut), (1.2)

Full text available at: http://dx.doi.org/10.1561/2300000021



1.1 Robot Control as a Reinforcement Learning Problem 3

where γ ∈ [0,1) is a discount factor that discounts rewards further in

the future.

Many tasks in robotics can be phrased as choosing a (locally) opti-

mal control policy π∗ that maximizes the expected accumulated reward

Jπ = E[R(τ )|π] =

∫
R(τ )pπ(τ )dτ , (1.3)

where R(τ ) defines the objectives of the task, and pπ(τ ) is the dis-

tribution over trajectories τ . For a stochastic policy π(ut|xt, t), the

trajectory distribution is given as

pπ(τ ) = p(x0)
T−1∏
t=0

p(xt+1|xt,ut)π(ut|xt, t), (1.4)

where p(xt+1|xt,ut) is given by the system dynamics of the robot and

its environment. For a deterministic policy, pπ(τ ) is given as

pπ(τ ) = p(x0)
T−1∏
t=0

p(xt+1|xt,π(xt, t)). (1.5)

With this general reinforcement learning (RL) problem setup,

many tasks in robotics can be naturally formulated as reinforcement

learning (RL) problems. However, robot RL poses three main chal-

lenges, which have to be solved: The RL algorithm has to manage

(i) high-dimensional continuous state and action spaces, (ii) strong real-

time requirements, and (iii) the high costs of robot interactions with

its environment.

Traditional methods in RL, such as TD-learning [81], typically try

to estimate the expected long-term reward of a policy for each state x

and time step t, also called the value function V π
t (x). The value func-

tion is used to calculate the quality of an executing action u in state x.

This quality assessment is subsequently utilized to directly compute

the policy by action selection or to update the policy π. However, value

function methods struggle with the challenges encountered in robot RL,

as these approaches require filling the complete state–action space with

data. In addition, the value function is computed iteratively by the use

of bootstrapping, which often results in a bias in the quality assess-

ment of the state–action pairs if we need to resort to value function

Full text available at: http://dx.doi.org/10.1561/2300000021



4 Introduction

approximation techniques as it is the case for continuous state spaces.

Consequently, value function approximation turns out to be a very dif-

ficult problem in high-dimensional state and action spaces. Another

major issue is that value functions are often discontinuous, especially

when the non-myopic policy differs from a myopic policy. For instance,

the value function of the under-powered pendulum swing-up is dis-

continuous along the manifold where the applicable torque is just not

sufficient to swing the pendulum up [23]. Any error in the value function

will eventually propagate through to the policy.

In a classical RL setup, we seek a policy without too specific prior

information. Key to successful learning is the exploration strategy of

the learner to discover rewarding states and trajectories. In a robotics

context, arbitrary exploration is not desired if not discouraged since

the robot can easily be damaged. Therefore, the classical RL paradigm

in a robotics context is not directly applicable since exploration needs

to take hardware constraints into account. Two ways of implementing

cautious exploration are to either avoid significant changes in the pol-

icy [58] or to explicitly discourage entering undesired regions in the

state space [22].

In contrast to value-based methods, Policy Search (PS) methods

use parametrized policies πθ. They directly operate in the parameter

space Θ, θ ∈Θ, of parametrized policies, and typically avoid learning a

value function. Many methods do so by directly using the experienced

reward to come from the rollouts as quality assessment for state–action

pairs instead of using the rather dangerous bootstrapping used in value

function approximation. The usage of parametrized policies allows for

scaling RL into high-dimensional continuous action spaces by reducing

the search space of possible policies.

Policy search allows task-appropriate pre-structured policies, such

as movement primitives [72], to be integrated straightforwardly. Addi-

tionally, imitation learning from an expert’s demonstrations can be

used to obtain an initial estimate for the policy parameters [59]. Finally,

by selecting a suitable policy parametrization, stability and robustness

guarantees can be given [11]. All these properties simplify the robot

learning problem and permit the successful application of reinforce-

ment learning to robotics. Therefore, PS is often the RL approach of

Full text available at: http://dx.doi.org/10.1561/2300000021



1.2 Policy Search Taxonomy 5

choice in robotics since it is better at coping with the inherent chal-

lenges of robot reinforcement learning. Over the last decade, a series of

fast policy search algorithms have been proposed and shown to work

well on real systems [7, 17, 22, 39, 54, 59, 87]. In this review, we provide

a general overview, summarize the main concepts behind current policy

search approaches, and discuss relevant robot applications of these

policy search methods. We focus mainly on those aspects of RL that

are predominant for robot learning, i.e., learning in high-dimensional

continuous state and action spaces and a high data-efficiency and local

exploration. Other important aspects of RL, such as the exploration–

exploitation trade-off, feature selection, using structured models, or

value function approximation, are not covered in this monograph.

1.2 Policy Search Taxonomy

Numerous policy search methods have been proposed in the last decade,

and several of them have been used successfully in the domain of

robotics. In this monograph, we review several important recent devel-

opments in policy search for robotics. We distinguish between model-

free policy search methods (Section 2), which learn policies directly

based on sampled trajectories, and model-based approaches (Section 3),

which use the sampled trajectories to first build a model of the state

dynamics, and, subsequently, use this model for policy improvement.

Figure 1.1 categorizes policy search into model-free policy search

and model-based policy search and distinguishes between different pol-

icy update strategies. The policy updates in both model-free and model-

based policy search (green blocks) are based on either policy gradients

(PG), expectation–maximization (EM)-based updates, or information-

theoretic insights (Inf.Th.). While all three update strategies are fairly

well explored in model-free policy search, model-based policy search

almost exclusively focuses on PG to update the policy.

Model-free policy search uses stochastic trajectory generation,

i.e., the trajectories are generated by “sampling” from the robot

p(xt+1|xt,ut) and the policy πθ. This means, a system model is not

explicitly required; we just have to be able to sample trajectories

from the real robot. In the model-based case (right sub-tree), we can

Full text available at: http://dx.doi.org/10.1561/2300000021



6 Introduction

Fig. 1.1 Categorization of policy search into model-free policy search and model-based

policy search. In the model-based case (right sub-tree), data from the robot is used to learn
a model of the robot (blue box). This model is then used to generate trajectories. Here, we

distinguish between stochastic trajectory generation and deterministic trajectory prediction.

Model-free policy search (left sub-tree) uses data from the robot directly as a trajectory
for updating the policy. The policy updates in both model-free and model-based policy

search (green blocks) are based on either policy gradients (PG), expectation–maximization

(EM)-based updates, or information-theoretic insights (Inf.Th.).

either use stochastic trajectory generation or deterministic trajec-

tory prediction. In the case of stochastic trajectory generation, the

learned models are used as simulator for sampling trajectories. Hence,

learned models can easily be combined with model-free policy search

approaches by exchanging the “robot” with the learned model of the

robot’s dynamics. Deterministic trajectory prediction does not sample

trajectories, but analytically predicts the trajectory distribution pθ(τ ).

Typically, deterministic trajectory prediction is computationally more

involved than sampling trajectories from the system. However, for the

subsequent policy update, deterministic trajectory prediction can allow

for analytic computation of gradients, which can be advantageous over

stochastic trajectory generation, where these gradients can only be

approximated.

1.2.1 Model-free and Model-based Policy Search

Model-free policy search methods use real robot interactions to create

sample trajectories τ [i]. While sampling trajectories is relatively

straightforward in computer simulation, when working with robots,

the generation of each “sample” typically needs some level of human

Full text available at: http://dx.doi.org/10.1561/2300000021



1.3 Typical Policy Representations 7

supervision. Consequently, trajectory generation with the real system

is considerably more time consuming than working with simulated

systems. Furthermore, real robot interactions cause wear and tear in

non-industrial robots. However, in spite of the relatively high number

of required robot interactions for model-free policy search, learning

a policy is often easier than learning accurate forward models, and,

hence, model-free policy search is more widely used than model-based

methods.

Model-based policy search methods attempt to address the prob-

lem of sample inefficiency by using the observed trajectories τ [i] to

learn a forward model of the robot’s dynamics and its environment.

Subsequently, this forward model is used for internal simulations of

the robot’s dynamics and environment, based on which the policy is

learned. Model-based PS methods have the potential to require fewer

interactions with the robot and to efficiently generalize to unforeseen

situations [6]. While the idea of using models in the context of robot

learning is well known since the 1980s [2], it has been limited by its

strong dependency on the quality of the learned models. In practice, the

learned model is not exact, but only a more or less accurate approxima-

tion to the real dynamics. Since the learned policy is inherently based

on internal simulations with the learned model, inaccurate models can,

therefore, lead to control strategies that are not robust to model errors.

In some cases, learned models may be physically implausible and con-

tain negative masses or negative friction coefficients. These implausible

effects are often exploited by the policy search algorithm, resulting in

a poor quality of the learned policy. This effect can be alleviated by

using models that explicitly account for model errors [21, 73]. We will

discuss such methods in Section 3.

1.3 Typical Policy Representations

Typical policy representations, which are used for policy search can

be categorized into time-independent representations π(x) and time-

dependent representations π(x, t). Time-independent representations

use the same policy for all time steps, and, hence, often require a com-

plex parametrization. Time-dependent representations can use different

Full text available at: http://dx.doi.org/10.1561/2300000021



8 Introduction

policies for different time steps, allowing for a potentially simpler struc-

ture of the individual policies can be used.

We will describe all policy representations in their deterministic

formulation πθ(x, t). In stochastic formulations, typically a zero-mean

Gaussian noise vector εt is added to πθ(x, t). In this case, the parameter

vector θ typically also includes the (co)variance matrix used for gen-

erating the noise εt. In robot learning, the three main policy represen-

tations are linear policies, radial basis function networks, and dynamic

movement primitives [72].

Linear Policies. Linear controllers are the most simple time-

independent representation. The policy π is a linear policy

πθ(x) = θTφ(x), (1.6)

where φ is a basis function vector. This policy only depends linearly

on the policy parameters. However, specifying the basis functions by

hand is typically a difficult task, and, hence, the application of linear

controllers is limited to problems where appropriate basis functions are

known, e.g., for balancing tasks, the basis functions are typically given

by the state variables of the robot.

Radial Basis Functions Networks. A typical nonlinear time-

independent policy representation is a radial basis function (RBF) net-

work. An RBF policy πθ(x) is given as

πθ(x) = wTφ(x), φi(x) = exp
(
−1

2(x − µi)TDi(x − µi)
)
, (1.7)

where Di = diag(di) is a diagonal matrix. Unlike in the linear policy

case, the parameters β = {µi,di}i=1,...,n of the basis functions them-

selves are now considered as free parameters that need to be learned.

Hence, the parameter vector θ of the policy is given by θ = {w,β}.
While RBF networks are powerful policy representations, they are also

difficult to learn due to the high number of nonlinear parameters. Fur-

thermore, as RBF networks are local representations, they are hard to

scale to high-dimensional state spaces.

Full text available at: http://dx.doi.org/10.1561/2300000021



1.3 Typical Policy Representations 9

Dynamic Movement Primitives. Dynamic Movement Primitives

(DMPs) are the most widely used time-dependent policy representa-

tion in robotics [32, 72]. DMPs use nonlinear dynamical systems for

generating the movement of the robot. The key principle of DMPs is to

a use a linear spring–damper system which is modulated by a nonlinear

forcing function ft, i.e.,

ÿt = τ2αy(βy(g − yt) − ẏt) + τ2ft , (1.8)

where the variable yt directly specifies the desired joint position of the

robot. The parameter τ is the time-scaling coefficient of the DMP,

the coefficients αy and βy define the spring and damping constants of

the spring–damper system and the goal parameter g is the unique point-

attractor of the spring–damper system. Note that the spring–damper

system is equivalent to a standard linear PD-controller that operates

on a linear system with zero desired velocity, i.e.,

ÿt = kp(g − yt) − kdẏt,

where the P-gain is given by kp = τ2αyβy and the D-gain by kd = τ2αy.

The forcing function ft changes the goal attractor g of the linear PD-

controller.

One key innovation of the DMP approach is the use of a phase

variable zt to scale the execution speed of the movement. The phase

variable evolves according to ż = −ταzz. It is initially set to z = 1 and

exponentially converges to 0 as t→∞. The parameter αz specifies the

speed of the exponential decline of the phase variable. The variable τ

can be used to temporally scale the evolution of the phase zt, and, thus,

the evolution of the spring–damper system as shown in Equation (1.8).

For each degree of freedom, an individual spring–damper system, and,

hence, and individual forcing function ft is used. The function ft
depends on the phase variable, i.e., ft = f(zt) and is constructed by

the weighted sum of K basis functions φi

f(z) =

∑K
i=1φi(z)wi∑K
i=1φi(z)

z, φi(z) = exp
(
− 1

2σ2
i
(z − ci)2

)
. (1.9)

Full text available at: http://dx.doi.org/10.1561/2300000021



10 Introduction

The parameters wi are denoted as “shape-parameters” of the DMP as

they modulate the acceleration profile, and, hence, indirectly specify

the shape of the movement. From Equation (1.9), we can see that the

basis functions are multiplied with the phase variable z, and, hence,

ft vanishes as t→∞. Consequently, the nonlinear dynamical system

is globally stable as it behaves like a linear spring–damper system for

t→∞. From this argument, we can also conclude that the goal param-

eter g specifies the final position of the movement while the shape

parameters wi specify how to reach this final position.

Integrating the dynamical systems for each DoF results in a desired

trajectory τ ∗ = {yt}t=0...T that is, subsequently, followed by feedback

control laws [57]. The policy πθ(xt, t) that is specified by a DMP,

directly controls the acceleration of the joint, and, hence, is given by

πθ(xt, t) = τ2αy(βy(g − yt) − ẏt) + τ2f(zt).

Note that the DMP policy is linear in the shape parameters w and the

goal attractor g, but nonlinear in the time-scaling constant τ .

The parameters θ used for learning a DMP are typically given by

the weight parameters wi, but might also contain the goal parameters g

as well as the temporal scaling parameter τ . In addition, the DMP

approach has been extended in [37] such that the desired final velocity ġ

of the joints can also be modulated. Such modulation is, for example,

useful for learning hitting movements in robot table tennis. Typically,

K = 5 to 20 basis functions are used, i.e., 5 to 20 shape weights per

degree of freedom of the robot are used.

Miscellaneous Representations. Other representations that have

been used in the literature include central pattern generators for robot

walking [25] and feed-forward neural networks, which have been used

mainly in simulation [31, 90].

1.4 Outline

The structure of this monograph is as follows: In Section 2, we give

a detailed overview of model-free policy search methods, where we

classify policy search algorithms according to their policy evalua-

tion, policy update, and exploration strategy. For the policy update
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strategies, we will follow the taxonomy in Figure 1.1 and discuss

policy gradient methods, EM-based approaches, information-theoretic

approaches. Additionally, we will discuss miscellaneous important

methods such as stochastic optimization and policy search approaches

based on the path integral theory. Policy search algorithms can either

use a step-based or episode-based policy evaluation strategy. Most pol-

icy update strategies presented in Figure 1.1 can be used for both,

step-based and episode-based policy evaluation. We will present both

types of algorithms if they have been introduced in the literature. Sub-

sequently, we will discuss different exploration strategies for model-

free policy search and conclude this section with robot applications of

model-free policy search. Section 3 surveys model-based policy search

methods in robotics. Here, we introduce two models that are commonly

used in policy search: locally weighted regression and Gaussian pro-

cesses. Furthermore, we detail stochastic and deterministic inference

algorithms to compute a probability distribution pπ(τ ) over trajecto-

ries (see the red boxes in Figure 1.1). We conclude this section with

examples of model-based policy search methods and their application

to robotic systems. In Section 4, we give recommendations for the prac-

titioner and conclude this monograph.
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