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Abstract

Solving estimation problems is a fundamental component of numerous
robotics applications. Prominent examples involve pose estimation, point
cloud alignment, or object tracking. Algorithms for solving these estimation
problems need to cope with new challenges due to an increased use of po-
tentially poor low-cost sensors, and an ever growing deployment of robotic
algorithms in consumer products which operate in potentially unknown envi-
ronments. These algorithms need to be capable of being robust against strong
nonlinearities, high uncertainty levels, and numerous outliers. However, par-
ticularly in robotics, the Gaussian assumption is prevalent in solutions to mul-
tivariate parameter estimation problems without providing the desired level of
robustness.

The goal of this tutorial is helping to address the aforementioned chal-
lenges by providing an introduction to robust estimation with a particular
focus on robotics. First, this is achieved by giving a concise overview of the
theory on M-estimation. M-estimators share many of the convenient proper-
ties of least-squares estimators, and at the same time are much more robust
to deviations from the Gaussian model assumption. Second, we present sev-
eral example applications where M-Estimation is used to increase robustness
against nonlinearities and outliers.

M. Bosse, G. Agamennoni, and I. Gilitschenski. Robust Estimation and Applications in
Robotics. Foundations and Trends R© in Robotics, vol. 4, no. 4, pp. 225–269, 2013.
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1
Introduction

Parameter estimation is the problem of inferring the value of a set of parame-
ters through a set of noisy observations. Many tasks in robotics are formulated
as an estimation problem. Most notable examples involve odometry, simulta-
neous localization and mapping (SLAM), or calibration. In case of odometry,
the parameters often involve the sequence of robot poses and locations of
landmarks that were seen (as in Leutenegger et al. (2015)). This is also true
for SLAM, where additionally a map is built that can be used for later relo-
calization. For calibration, the estimated quantites usually involve the pose of
a sensor and some of its internal parameters, e.g. the focal length of a cam-
era lens. Since observations are subject to noise, the parameter estimate will
always be afflicted with some level of uncertainty.

To model uncertainty, sensor and system noise are usually characterized
by a probability distribution, one of the most common distributions being the
Gaussian. Assuming Gaussian noise models leads to convenient simplifica-
tions due to its analytical properties and compact mathematical representa-
tion. Theoretically, the central limit theorem (CLT) is the main justification
for the use of the Gaussian distribution.1 The CLT can be applied in applica-

1The Gaussian distribution arises as the limit distribution of a sum of arbitrary independent,
identically distributed random variables with finite variance.

2
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3

tions where random variables are generated as the sum of many independent
random variables. This assumption is known as the hypothesis of elementary
errors and discussed in more detail in Fischer (2011). There are also sev-
eral computational properties that make the Gaussian distribution an attrac-
tive choice. Namely, the fact that any linear combination of Gaussian random
variables is Gaussian, and that the product of Gaussian likelihood functions
is itself Gaussian. These properties allow additive Gaussian noise to be easily
integrated into the parameter estimation framework of linear systems, where
variables are assumed to be jointly Gaussian-distributed.2

Unfortunately, there is a tendency to invoke the Gaussian in situations
where there is little evidence about whether or not it is applicable. Although
the CLT provides a justification, to some extent and in some situations, the
use of the Gaussian is rarely motivated by the nature of the actual stochas-
tic process that generates the noise. There are situations that arise in practice
which violate the CLT conditions. Many real-world systems contain strongly
non-linear dynamics that destroy Gaussianity, since a non-linear transforma-
tion of a Gaussian random variable is not generally Gaussian-distributed. In
certain applications the noise is multiplicative rather than additive, and the
Gaussian assumption is inadequate due to the nature of the process.

The success of parameter estimation hinges on the assumptions placed on
the noise distribution. Assuming a Gaussian distribution might still be a rea-
sonable approximation even in the presence of non-linearity or non-additive
noise, provided that the non-linearity is mild and the noise level is low. How-
ever, as these effects increase, there is neither a theoretical justification nor
a practical advantage for using methods that rely on this assumption. If the
Gaussian assumption is violated, then the parameter estimate may be mis-
leading, which leads to the possibility of drawing incorrect conclusions about
the parameter.

Outliers are a common type of a non-Gaussian phenomenon. An outlier
may stem from hidden factors or characteristics that are intrinsic to the prob-
lem, but are tedious or otherwise impractical to model. Systems that rely on
high-quality parameter estimates, such as robots, are especially sensitive to
outliers. In certain cases, outliers can cause the system to fail catastrophically

2There are a number of other properties motivating the use of the Gaussian distribution.
An introductory discussion of these properties can be found in Kim and Shevlyakov (2008).
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4 Introduction

to the point where a full recovery is no longer possible. For instance, a SLAM
solution is vulnerable to false data associations, which may introduce strong
biases or even lead to divergence in filter estimates.

Least-squares estimators are particularly prone to bias, outliers, or non-
Gaussian noise. The squared-error loss is extremely sensitive, and its perfor-
mance quickly degrades in the presence of these effects. The reason for this
is that the estimator is an unbounded function of the residuals. From a prob-
abilistic perspective, the Gaussian distribution is light-tailed, i.e. the tails of
the Gaussian account for a very small fraction of the probability mass. This
essentially rules out the possibility that an observation is wrong. Therefore,
when a large discrepancy arises between the bulk of the observations and an
outlier, the parameter estimate becomes an unrealistic compromise between
the two.

The main goal of this tutorial is to make robust statistical tools acces-
sible to the robotics community. Specifically, to provide the basis necessary
for addressing the problems described above using M-estimators. Hence the
contributions of this tutorial are twofold. On one hand, it provides an in-
troduction to robust statistics that only requires preliminary knowledge of
probability theory. In particular, the notion of random variables, probability
distributions, probability density functions, and multi-variate linear regres-
sion are assumed to be known to the reader. On the other hand, this tutorial
includes examples of robotics applications where robust statistical tools make
a difference. It also includes corresponding Matlab scripts, and discusses how
robust statistics improves parameter estimation in these examples.

The remainder of this tutorial is structured as follows. Chapter 2 gives
an overview of the history and development of robust statistics and briefly
discusses introductory material and existing applications in robotics. Chap-
ter 3 starts with an overview of the challenges of non-linear least-squares es-
timation, and motivates the use of robust statistics for tackling some of these
challenges. It also introduces basic concepts such as loss functions, and iter-
atively re-weighted non-linear least-squares. Chapter 4 describes qualitative
and quantitative criteria for characterizing the robustness of M-estimators and
provides definitions of concepts such as estimator bias, the influence function
and the breakdown point are found here. Chapter 5 presents example appli-
cations that illustrate the advantage of using robust estimation in robotics.

Full text available at: http://dx.doi.org/10.1561/2300000047
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Specifically, robust approaches to pose graph optimization, parameter esti-
mation under non-Gaussian noise, and state-estimation in the presence of
outliers and biases. Finally, chapter 6 concludes with a discussion of further
reading and applications of robust statistics to robotics.
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