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Abstract

This monograph gives an introduction to the fundamentals of Marko-

vian modeling in image segmentation as well as a brief overview of

recent advances in the field. Segmentation is considered in a com-

mon framework, called image labeling, where the problem is reduced

to assigning labels to pixels. In a probabilistic approach, label depen-

dencies are modeled by Markov random fields (MRF) and an optimal

labeling is determined by Bayesian estimation, in particular maximum

a posteriori (MAP) estimation. The main advantage of MRF models

is that prior information can be imposed locally through clique poten-

tials. The primary goal is to demonstrate the basic steps to construct

an easily applicable MRF segmentation model and further develop its

multiscale and hierarchical implementations as well as their combina-

tion in a multilayer model. MRF models usually yield a non-convex

energy function. The minimization of this function is crucial in order

to find the most likely segmentation according to the MRF model.

Besides classical optimization algorithms, like simulated annealing or
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deterministic relaxation, we also present recently introduced graph cut-

based algorithms. We briefly discuss the possible parallelization tech-

niques of simulated annealing, which allows efficient implementation on,

e.g., GPU hardware without compromising convergence properties of

the algorithms. While the main focus of this monograph is on generic

model construction and related energy minimization methods, many

sample applications are also presented to demonstrate the applicability

of these models in real life problems such as remote sensing, biomedical

imaging, change detection, and color- and motion-based segmentation.

In real-life applications, parameter estimation is an important issue

when implementing completely data-driven algorithms. Therefore some

basic procedures, such as expectation-maximization, are also presented

in the context of color image segmentation.

Note: A sample implementation of the most important segmen-

tation algorithms is available in grey scale at http://dx.doi.org/

10.1561/2000000035 demogray and in color at http://dx.doi.org/

10.1561/2000000035 democolor.
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1

Introduction

An image processing system involves a sensing device (usually a

camera) and computer algorithms to interpret the picture. The term

image (more precisely, monochrome image) refers to a two-dimensional

light intensity function whose value at any point is proportional to the

brightness (gray-level) of the image at that point [70]. A digital image

is a discretized image both in spatial coordinates and in brightness.

It is usually represented as a two-dimensional matrix, the elements of

such a digital array are called pixels. The digitized image is the start-

ing point of any kind of computer analysis. In some applications, the

sensing device may be more specific responding to other forms of light:

infrared imaging, photon emission tomography, radar imaging [182],

ultrasonic imaging, etc.

Many image processing tasks deal directly with raw pixel data

involving image compression [2], restoration [35, 64, 91, 219, 220, 223],

edge detection [65, 200, 219, 220, 223], segmentation [51, 52, 60, 61,

74, 83, 98, 115, 195, 196, 221], texture analysis [43, 66, 122], motion

detection [90, 213], optical flow and motion analysis [87, 90, 167], etc.

Most of these problems can be formulated in a general framework,

called image labeling, where we associate a label to each pixel from a

finite set. The meaning of this label depends on the problem that we

1
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2 Introduction

are trying to solve. For image restoration, it means a gray-level; for

edge detection, it means the presence or the direction of an edge; for

image segmentation, it means a region; etc. The problem here is how to

choose a label for a pixel, which is optimal in a certain sense. Herein, we

deal with a statistical approach of labeling. In real scenes, neighboring

pixels usually have similar features (intensity, color, texture, etc). In

a probabilistic framework, such regularities are well expressed mathe-

matically by Markov random fields. In this survey, we will focus on the

fundamental problem of image segmentation using Markovian models.

1.1 Image Segmentation

The primary goal of any segmentation algorithm is to divide the domain

R of the input image into the disjoint parts Ri such that they belong

to distinct objects in the scene. The solution of this problem sometimes

requires high level knowledge about the shape and appearance of the

objects under investigation [46, 123, 183, 202]. In many applications,

however, such information is not available or impractical to use. Hence

low-level features of the surface patches are used for the segmentation

process [9, 141, 224]. Herein, we are interested in the latter approach.

In either case, we have to summarize all relevant information in a model

which is then adjusted to fit the image data.

One broadly used class of models is the so called cartoon model,

which has been extensively studied from both probabilistic [64] and

variational [19, 163, 169] viewpoints. The model assumes that the real

world scene consists of a set of regions whose observed low-level features

change slowly, but across the boundary between them, these features

change abruptly. What we want to infer is a cartoon ω consisting of

a simplified, abstract version of the input image I: regions Ri have a

constant value (called a label in our context) and the discontinuities

between them form a curve Γ — the contour. The pair (ω,Γ) specifies

a segmentation. Region based methods are mainly focused on ω while

edge based methods try to determine Γ directly.

Taking the probabilistic approach, one usually wants to come up

with a probability measure on the set Ω of all possible segmentations

of I and then select the one with the highest probability. Note that

Full text available at: http://dx.doi.org/10.1561/2000000035



1.1 Image Segmentation 3

Ω is finite, although huge. A widely accepted standard, also motivated

by the human visual system [121, 162], is to construct this probability

measure in a Bayesian framework [37, 161, 214]: We shall assume that

we have a set of observed (Y ) and hidden (X) random variables. In

our context, any observed value y ∈ Y represents the low-level features

used for partitioning the image, and the hidden entity x ∈ X repre-

sents the segmentation itself. First, we have to quantify how well any

occurrence of x fits y. This is expressed by the probability distribution

P (y|x) — the imaging model. Second, we define a set of properties that

any segmentation x must possess regardless the image data. These are

described by P (x), the prior, which tells us how well any occurrence x

satisfies these properties. Factoring these distributions and applying the

Bayes theorem gives us the posterior distribution P (x|y) ∝ P (y|x)P (x).

Note that the constant factor 1/P (y) has been dropped as we are only

interested in x̂ which maximizes the posterior, that is, the maximum a

posteriori (MAP) estimate of the hidden field X.

The models of the above distributions also depend on certain param-

eters that we denote by Θ. Supervised segmentation assumes that these

parameters are either known or a set of joint realizations of the hidden

field X and observations Y (called a training set) is available [64, 205].

This is known in statistics as the complete data problem which is

generally easier to solve than the incomplete case [37]. Although the

prior knowledge of the parameters is a strong assumption, supervised

methods are still useful alternatives when working in a controlled envi-

ronment. Many industrial applications, like quality inspection of agri-

cultural products [166], fall into this category. In the unsupervised

case, however, we know neither Θ nor X. This is called the incom-

plete data problem where both Θ and X have to be inferred from the

only observable entity Y . Hence our MAP estimation problem becomes

(x̂,Θ̂) = argmaxx,ΘP (x,Θ|y). Expectation Maximization (EM) [48] and

its variants (Stochastic EM [33, 149], Gibbsian EM [36]), as well as Iter-

ated Conditional Expectation (ICE) [30, 108] are widely used to solve

such problems. It is important to note, however, that these methods

calculate a local maximum [37].

Due to the difficulty of estimating the number of pixel classes (or

clusters), unsupervised algorithms often suppose that this parameter

Full text available at: http://dx.doi.org/10.1561/2000000035



4 Introduction

is known a priori [68, 77, 141, 145, 149]. When the number of pixel

classes is also being estimated, the unsupervised segmentation problem

may be treated as a model selection problem over a combined model

space [102, 202, 203].

1.2 Markov Random Fields

In the early 20th century, mostly inspired by the Ising model [170], a

new type of stochastic process appeared in the theory of probability,

called Markov random field (MRF). MRFs rapidly became a broadly

used tool in a variety of problems, not only in statistical mechanics.

The use of MRFs in image processing became popular with the semi-

nal paper of S. Geman and D. Geman [64] in 1984, but its first use in

the domain dates to the early 70s [16, 215]. Here, we give a brief intro-

duction to the theory of MRFs [39, 54, 57, 79, 125, 144, 160, 184, 214].

1.2.1 The Ising Model

Following Ising [10, 69, 170], we consider a sequence, 0,1,2, . . . ,n on

the line. At each point, there is a small spin which is either up or down

at any given moment (see Figure 1.1). Now, we define a probability

measure on the set Ω of all possible configurations ω = (ω0,ω1, . . . ,ωn).

In this context, each spin is a function

δi(ω) =

{
1 if ωi is up

−1 if ωi is down
(1.1)

An energy U(ω) is assigned to each configuration:

U(ω) = −J
∑
i,j

δi(ω)δj(ω) − mH
∑
i

δi(ω). (1.2)

Fig. 1.1 One dimensional Ising model.
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1.2 Markov Random Fields 5

In the first sum, Ising made a simplifying assumption that only

interactions of points with one unit apart need to be taken into account.

This term represents the energy caused by the spin-interactions. The

constant J is a property of the material. If J > 0, the interactions

tend to keep neighboring spins in the same directions (attractive case).

If J < 0, neighboring spins with opposite orientation are favored (repul-

sive case). The second term represents the influence of an external mag-

netic field of intensity H and m > 0 is a property of the material. The

probability on Ω is then given by

P (ω) =
exp

(
− 1
kT U(ω)

)
Z

, (1.3)

where T is the temperature and k is a universal constant. The normal-

izing constant (also called partition function) Z is defined by

Z =
∑
ω∈Ω

exp

(
− 1

kT
U(ω)

)
. (1.4)

The probability defined in Equation (1.3) is called a Gibbs distribution.

One could extend the model to two dimensions in a natural way. The

spins are arranged on a lattice, they are represented by two coordinates

and a point have 4 neighbors unless it is on the boundary. In the two-

dimensional case, the limiting measure P is unstable, there is a phase

transition. As it is pointed out in [125], considering the attractive case

and an external field h, the measure Ph converges to P− if h goes to zero

through negative values but it converges to P+ 6= P− if h goes to zero

through positive values. It has been shown, that there exists a critical

temperature TC and below this temperature phase transition always

occurs. The temperature depends on the vertical (J1) and horizontal

(J2) interaction parameters.

As a special example, we mention the Cayley tree model [125], orig-

inally proposed by Bethe [10] as an approximation to the Ising model.

In this case, the points sit on a tree (see Figure 1.2). The root is called

the 0th level. From the root, we have q branches (q = 2 in Figure 1.2).

The q = 1 case simply gives a one-dimensional Markov chain. A con-

figuration on a tree of n levels is an assignment of a label up or down

to each point. We can define a similar energy function as for the Ising

model.

Full text available at: http://dx.doi.org/10.1561/2000000035



6 Introduction

Fig. 1.2 Cayley tree model.

1.2.2 The Potts Model

Another important extension of the Ising model to more than two states

per points is the Potts model [10, 195, 216]. The problem is to regard the

Ising model as a system of interacting spins that can be either parallel

or antiparallel. More generally, we consider a system of spins, each

spin pointing one of the q equally spaced directions. These vectors are

the linear combinations of q unit vectors pointing in the q symmetric

directions of a hypertetrahedron in q − 1 dimensions. For q = 2,3,4,

examples are shown in Figure 1.3. The energy function of the Potts

model can be written as

U(ω) =
∑
i,j

J(Θij), (1.5)

where J(Θ) is 2π periodic and Θij is the angle between two neighboring

spins in i and j. The q = 2 case is equivalent to the Ising model.

1.2.3 Gibbs Distribution and MRFs

The most natural way to define MRFs [2, 64, 184] related to image

models is to define them on a lattice. However, here we will define

Fig. 1.3 The Potts model.
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1.2 Markov Random Fields 7

MRFs more generally on graphs. It will be useful in Section 2 for the

study of hierarchical models. Let G = (S,E) be a graph where S =

{s1,s2, . . . ,sN} is a set of vertices (or sites) and E is the set of edges.

Definition 1.1 (Neighbors). Two points si and sj are neighbors if

there is an edge eij ∈ E connecting them. The set of points which are

neighbors of a site s (that is, the neighborhood of s) is denoted by Gs.

Definition 1.2 (Neighborhood system). G = {Gs | s ∈ S} is a

neighborhood system for G if

(1) s 6∈ Gs
(2) s ∈ Gr ⇔ r ∈ Gs

To each site of the graph, we assign a label λ from a finite set of

labels Λ. Such an assignment is called a configuration ω having some

probability P (ω). The restriction to a subset T ⊂ S is denoted by ωT
and ωs ∈ Λ denotes the label given to the site s. In the following, we

are interested in the probabilities assigned to the set Ω of all possi-

ble configurations. First, let us define the local characteristics as the

conditional probabilities P (ωs | ωr, r 6= s).

Definition 1.3(Markov random field). X is a Markov random field

(MRF) with respect to G if

(1) for all ω ∈ Ω: P (X = ω) > 0,

(2) for every s ∈ S and ω ∈ Ω:

P (Xs = ωs | Xr = ωr, r 6= s) = P (Xs = ωs | Xr = ωr, r ∈ Gs).

To continue our discussion about probabilities on Ω, the notion of

cliques will be very useful.

Definition 1.4 (Clique). A subset C ⊆ S is a clique if every pair

of distinct sites in C are neighbors. C denotes the set of cliques and

deg(C) = maxC∈C | C |.

Full text available at: http://dx.doi.org/10.1561/2000000035



8 Introduction

Using the above definition, we can define a Gibbs measure on Ω. Let

V be a potential which assign a number VT (ω) to each subconfiguration

ωT . V defines an energy U(ω) on Ω by

U(ω) = −
∑
T
VT (ω). (1.6)

Definition 1.5 (Gibbs distribution). A Gibbs distribution is a

probability measure π on Ω with the following representation:

π(ω) =
1

Z
exp(−U(ω)) , (1.7)

where Z is the normalizing constant (also called partition function):

Z =
∑
ω

exp(−U(ω)) ,

If VT (ω) = 0 whenever T is not a clique then V is called a nearest

neighbor Gibbs potential. In the following, we will focus on such poten-

tials. The next famous theorem establish the equivalence between Gibbs

measures and MRFs [16, 160].

Theorem 1.6(Hammersley–Clifford). X is a MRF with respect to

the neighborhood system G if and only if π(ω) = P (X = ω) is a Gibbs

distribution with a nearest neighbor Gibbs potential V , that is

π(ω) =
1

Z
exp

(
−
∑
C∈C

VC(ω)

)
(1.8)

The main benefit of this equivalence is that it provides us a simple

way to specify MRFs, namely specifying potentials instead of local

characteristics (see Definition 1.3), which is usually very difficult.

1.2.4 Spatial Lattice Schemes

In this section, we deal with a particular subclass of MRFs which are

the most commonly used schemes in image processing. In this case,
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1.3 Related Approaches 9

Fig. 1.4 First order neighborhood system.

we consider S as a lattice L so that ∀s ∈ S : s = (i, j) and define the

so-called nth order homogeneous neighborhood systems as

Gn = {Gn(i,j) : (i, j) ∈ L}, (1.9)

Gn(i,j) = {(k, l) ∈ L : (k − i)2 + (l − j)2 ≤ n}. (1.10)

Obviously, sites near the boundary have fewer neighbors than interior

ones (free boundary condition). Furthermore, G0 ≡ S and for all n ≥
0 : Gn ⊂ Gn+1. Figure 1.4 shows a first-order neighborhood correspond-

ing to n = 1. The cliques are {(i, j)},{(i, j),(i, j + 1)},{(i, j),(i + 1, j)}.
In practice, more than two order systems (cf. Figure 1.5) are rarely

used since the energy function would be too complicated requiring a

lot of computation. Although not as widespread as orthogonal lattice

schemes, hexagonal lattices [45, 193] as well as MRFs on graphs [204]

have also been studied in the literature.

1.3 Related Approaches

1.3.1 Weak Membrane Model

The weak membrane model was introduced in image reconstruction by

A. Blake and A. Zisserman [19]. The problem is to reconstruct surfaces

Full text available at: http://dx.doi.org/10.1561/2000000035



10 Introduction

Fig. 1.5 Second order neighborhood system.

which are continuous almost everywhere or, in other words, continuous

in patches. To reach a satisfactory formalization of this principle, they

have used a membrane model: Imagine an elastic membrane which we

are trying to fit to a surface. The edges will appear as tears in the

membrane. Depending on how elastic is the membrane, there may be

more or fewer edges. The membrane is described by an energy function

(the elastic energy of the membrane) which has to be minimized in

order to find an equilibrium state. The energy has three components:

D: A measure of faithfulness to the data:

D =

∫
(u − d)2dA, (1.11)

where u(x,y) represents the membrane and d(x,y) represents

the data.

S: A measure of how the function u(x,y) is deformed:

S = λ2

∫
(∇u)2dA. (1.12)

λ2 is a measure of elasticity of the membrane.

Full text available at: http://dx.doi.org/10.1561/2000000035



1.3 Related Approaches 11

P: The sum of penalties α levied for each break in the membrane:

P = αZ, (1.13)

where Z is a measure of the set of contours along which u(x,y)

is discontinuous (see [19] for more details).

The elastic energy of the membrane is then given by

E = D + S + P =

∫
(u − d)2dA + λ2

∫
(∇u)2dA + αZ. (1.14)

There is a strong relation between the weak membrane model and

MRF models: An elastic system can also be considered from a proba-

bilistic view-point. The link between the elastic energy E and proba-

bility P is

P ∝ exp

(
−E
T

)
, (1.15)

that is the Gibbs distribution. However, the weak membrane model

operates with mechanical analogies, representing a priori knowledge

from a mechanical point of view while MRF modelization is purely

probabilistic.1

1.3.2 Snakes, Variational and Level Set Methods

Active Contours (snakes) are closed curves evolving toward the bound-

ary of the object of interest. The curve evolution is governed by a

boundary functional [101] which takes its minimum on the object con-

tour. The main drawback of the parametric snake model is that it

cannot handle topological changes easily. Nevertheless, they became

quite popular because they make it relatively easy to enforce contour-

smoothness; and starting from an appropriate initialization a local min-

imum of the associated energy function will give good results. One

extension of the original model is gradient vector flow [217] snakes

1 We notice that the weak membrane model has also been used in a Markovian context but
originally, as proposed by Blake and Zisserman [19], it was a non-Markovian model.
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which make the snake less sensitive to initialization and allow the con-

tour to segment concave objects. Another extension is the so-called bal-

loon force [44] which basically introduces an area minimizing term [31]

into the snake energy.

Geodesic active contours [31] are curves of minimum length in the

metric defined by a function u. The criterion to minimize is usually

of the form
∫

Γu(s)ds. Most of the time, u is simply a function of the

image gradient like u = 1/(1 + |∇I|). The contour evolution equation

is as follows [31]:

∂Γ

∂t
= (κu∇u · N)N, (1.16)

where κ is the curvature and N is the inward normal of Γ.

Region based active contours are another class of boundary based

methods where region descriptors (usually some kind of statistical fea-

tures) are introduced into the energy in order to better characterize an

object [169, 188, 224].

Variational approaches consider the segmentation as an optimal

approximation of the original image I by a piecewise smooth function

f having discontinuities across Γ. The classical Mumford–Shah energy

functional [163] is then defined as

E(f,Γ) = µ2

∫ ∫
R

(f − I)2dxdy +

∫ ∫
R−Γ
||∇f ||2dxdy + ν|Γ|. (1.17)

Clearly, the minimum is achieved when f approximates I (first term),

f is smooth over each Ri (second term), and the boundaries Γ are as

short as possible. Note that dropping any of the above three terms

would result in infE = 0 with some trivial and (from a practical point

of view) useless settings for f and Γ. The minimization of the above

functional is far from trivial. Note also that in our context, f = ω is con-

stant over each region Ri, hence the problem can be further simplified

to a piecewise constant functional. A closely related model, proposed

by Blake and Zisserman, is the so-called weak membrane model (see

Section 1.3.1) which can be minimized via graduated non-convexity

(GNC) [19].
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More recently, the level set formulation [192] of the piecewise con-

stant Mumford–Shah energy functional proposed by Chan and Vese [38]

have become a popular framework for image segmentation. The con-

tour Γ is represented as the zero level set of an embedding function

(the level set function) φ : R→< on the image domain R: φ(Γ) = 0.

The main advantage of this formulation is that it handles topological

changes of the evolving contour. This makes the level set formalism

well suited to the segmentation of multiple objects. The region based

level set scheme for foreground–background segmentation consists in

minimizing the following functional:

ECV (c1, c2,φ) =

∫
R

(I − c1)2H(φ)dx +

∫
R

(I − c2)2(1 − H(φ))dx

+ν

∫
R
|∇H(φ)|dx, (1.18)

c1 and c2 are the means of the regions, where φ > 0 (outside or back-

ground) and φ < 0 (inside or foreground), and H(.) is the Heaviside

function. The last term measures the length of the zero crossing of φ

(i.e., the contour). The Euler–Lagrange equation for this model is

implemented by the following gradient descent:

∂φ

∂t
= δ(φ)

[
νdiv

(
∇φ
|∇φ|

)
− (I − c1)2 + (I − c2)2

]
. (1.19)

Unfortunately, even with the narrow band implementation [1], the level

set approach has a rather high computational complexity. The fast

marching method [192] has a lower complexity but it requires that the

speed function doesn’t change sign during evolution.

1.3.3 Conditional Random Fields

Conditional Random Fields (CRF) directly model the posterior

distribution of P (X|Y ) as a Gibbs field [86, 135, 136, 206]. Unlike

the generative image models commonly used in MRFs, CRFs can

depend on arbitrary non-independent characteristics of the observa-

tion Y = y. Originally, CRFs were proposed for segmenting 1D text
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sequences [140, 212], but it is straightforward to extend these consepts

to 2D images.

Basically, a CRF is a random field globally conditioned on the obser-

vation Y . Following [140], we can formally define CRFs on graph:

Definition 1.7 (Conditional Random Field). Let G = (V,E) be

a graph such that the label field X is indexed by the vertices: X =

{Xv}v∈V and neighboring elements v ∼ w of the field are connected

by edges in G, i.e., (v,w) ∈ E. Then (Y,X) is a conditional random

field (CRF) if the random variables Xv, when conditioned on Y , obey

the Markov property with respect to the graph: P (Xv|Y,Xw,w 6= v) =

P (Xv|Y,Xw,wṽ).

The simplest example of such a graph structure is a lattice where

vertices correspond to pixels and neighboring lattice sites are connected

by edges (see Section 1.2.4 for various neighborhood structures on lat-

tices). Considering a first order neighborhood, the posterior distribu-

tion can be easily expressed using the Hammersley–Clifford theorem

(see Theorem 1.6):

P (x|y) = exp

∑
e∈E,k

λkfk(e,x|e,y) +
∑
v∈V,k

µkgk(v,x|v,y))

 , (1.20)

where x is a labeling of a given input image y and x|S is the set of

components of x associated to the vertices in the subgraph S. Further-

more, the features fk and gk are assumed to be known and fixed, and the

parameter values λk and µk are to be learned from training data [140].

As we can see from Equation (1.20), standard CRFs use two forms of

feature functions, which can be interpreted in 2D as follows [86]:

• state feature function gk(s,xs,y) of the label xs at a site s

and the observed image y,
• transition feature function fk(s,r,xs,xr,y) of the labels xs

and xr at neighboring sites s ∼ r and the observed image y.

In image processing applications, state feature functions are usu-

ally defined as unary (also known as singleton) clique potentials based
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on classifier responses (such as Ada-boost [194] or kernel SVMs [191]),

while transition feature functions are defined as pairwise (also known

as doubleton) potentials modeling the correlation between pairs of

random variables. Recently, CRFs became popular in image segmen-

tation [86, 206], especially CRFs coupled with graph cut energy mini-

mization [128, 138, 208].
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markoviennes en analyse d’image,” PhD thesis, University of Rennes I, France,
1993.

[151] E. Memin, F. Heitz, and F. Charot, “Efficient parallel non-linear multigrid
relaxation algorithms for low-level vision applications,” Journal of Parallel
Distributed Computing, vol. 29, pp. 96–103, August 1995.

[152] D. Metaxas, Physics-based Deformable Models: Applications to Computer
Vision, Graphics and Medical Imaging. Kluwer Academic Publisher, 1997.

[153] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equa-
tion of state calculations by fast computing machines,” Journal of Chemical
Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[154] W. Michiels, E. H. L. Aarts, and J. Korst, Theoretical Aspects of Local Search.
New York, NY: Springer, 2007.

[155] M. Miller and L. Younes, “Group actions, homeomorphisms, and matching:
A general framework,” International Journal of Computer Vision, vol. 41,
pp. 61–84, February 2001.

[156] M. I. Miller, U. Grenander, O. J. A., and D. L. Snyder, “Automatic target
recognition organized via jump-diffusion algorithms,” IEEE Transactions on
Image Processing, vol. 6, pp. 157–174, January 1997.

[157] R. Morris, X. Descombes, and J. Zerubia, “Fully Bayesian image segmenta-
tion — an engineering perspective,” in Proceedings of International Conference
on Image Processing, Santa Barbara, USA, October 1997.

[158] G. Moser, V. Krylov, S. Serpico, and J. Zerubia, “High resolution SAR-image
classification by Markov random fields and finite mixtures,” in Proceedings of
SPIE IS&T/SPIE Electronic Imaging, pp. 1–8, San Jose, USA, January 2010.

[159] G. Moser, S. B. Serpico, and J. Zerubia, “Dictionary-based Stochastic
Expectation Maximization for SAR amplitude probability density function
estimation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44,
no. 1, pp. 188–199, 2006.

[160] J. Moussouris, “Gibbs and Markov random system with constrainsts,” Journal
of Statistical Physics, vol. 10, pp. 11–33, January 1974.

[161] D. Mumford, “The Bayesian rationale for energy functionals,” in Geometry-
Driven Diffusion in Computer Vision, (B. Romeny, ed.), pp. 141–153, Boston,
MA: Kluwer Academic Publisher, 1994.

[162] D. Mumford, “Pattern theory: A unifying perspective,” in Perception as
Bayesian Inference, (D. Knill and W. Richards, eds.), pp. 25–62, Cambridge
University Press, 1996.

Full text available at: http://dx.doi.org/10.1561/2000000035



150 References

[163] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problems,” Communications on Pure and
Applied Mathematics, vol. 42, no. 5, pp. 577–685, 1989.

[164] E. Nagy, Z. Balogi, I. Gombos, M. Akerfelt, A. Bjorkbom, G. Balogh, Z. Torok,
A. Maslyanko, A. Fiszer-Kierzkowska, K. Lisowska, P. Slotte, L. Sistonen,
I. Horvath, and L. Vigh, “Hyperfluidization-coupled membrane microdomain
reorganization is linked to activation of the heat shock response in a murine
melanoma cell line,” in Proceedings of National Academy Science USA,
pp. 7945–7950, 2007.

[165] R. B. Nelsen, An Introduction to Copulas. New York, NY: Springer, 2nd
Edition, 2006.

[166] J. C. Noordam, G. W. Otten, A. J. M. Timmermans, and B. v. Zwol, “High-
speed potato grading and quality inspection based on a color vision system,”
in Proceedings of SPIE Machine Vision Applications in Industrial Inspection,
(K. W. T. Jr., ed.), pp. 206–220, 2000.

[167] J.-M. Odobez and P. Bouthemy, “MRF-based motion segmentation exploiting
a 2D motion model robust estimation,” in Proceedings of International Con-
ference on Image Processing, pp. 628–631, Washington, DC, USA, October
1995.

[168] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar images.
New Jersey, NJ: SciTech Publishing, 2004.

[169] N. Paragios and R. Deriche, “Geodesic active regions and level set methods for
supervised texture segmentation,” International Journal of Computer Vision,
vol. 46, pp. 223–247, 2002.

[170] G. Parisi, Statistical Field Theory. Westview Press, 1998.
[171] P. Perez, “Champs markoviens et analyse multirésolution de l’image: Applica-
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