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Abstract

A bivariate Markov process comprises a pair of random processes

which are jointly Markov. One of the two processes in that pair is

observable while the other plays the role of an underlying process. We

are interested in three classes of bivariate Markov processes. In the

first and major class of interest, the underlying and observable pro-

cesses are continuous-time with finite alphabet; in the second class,

they are discrete-time with finite alphabet; and in the third class, the

underlying process is continuous-time with uncountably infinite alpha-

bet, and the observable process is continuous-time with countably or

uncountably infinite alphabet. We refer to processes in the first two

classes as bivariate Markov chains. Important examples of continuous-

time bivariate Markov chains include the Markov modulated Poisson

process, and the batch Markovian arrival process. A hidden Markov

model with finite alphabet is an example of a discrete-time bivariate

Markov chain. In the third class we have diffusion processes observed

in Brownian motion, and diffusion processes modulating the rate of
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a Poisson process. Bivariate Markov processes play central roles in

the theory and applications of estimation, control, queuing, biomedical

engineering, and reliability. We review properties of bivariate Markov

processes, recursive estimation of their statistics, and recursive and

iterative parameter estimation.

Full text available at: http://dx.doi.org/10.1561/2000000043



Contents

1 Introduction 1

2 Preliminaries 5

2.1 Continuous-time Markov Chains 6

2.2 Examples of Bivariate Markov Chains 14

2.3 Relations Among Models 18

2.4 Parametrization 19

2.5 An Auxiliary Result 20

3 Likelihood Function of Observable Process 21

3.1 Markov Renewal Property 21

3.2 Transition Density Matrices 24

3.3 Likelihood Function 25

3.4 Forward-Backward Recursions 26

3.5 Sampled Bivariate Markov Chain 28

3.6 Phase-Type Distributions 29

4 Recursive Non-Causal Estimation 33

4.1 State Estimation 34

4.2 Number of Jumps 35

4.3 Total Sojourn Time 37

4.4 Computational Load 37

ix

Full text available at: http://dx.doi.org/10.1561/2000000043



5 Recursive Causal Estimation 39

5.1 State Estimation 40

5.2 Number of Jumps 41

5.3 Total Sojourn Time 42

5.4 Computational Load 42

6 Maximum Likelihood Parameter Estimation 43

6.1 Identifiability 43

6.2 Optimality 44

6.3 EM Algorithm 46

6.4 Numerical Results 48

6.5 Other Parameter Estimation Approaches 49

7 Recursive Parameter Estimation 51

8 Discrete-Time Bivariate Markov Chains 57

8.1 Structure and Properties 57

8.2 Parameter Estimation 59

8.3 Approximation by Discrete-Time Bivariate

Markov Chains 62

9 Hidden Bivariate Markov Chains 65

9.1 Transformation of Measure Approach 67

9.2 Noisy Bivariate Markov Chains 70

10 Underlying Diffusion Processes 77

10.1 Diffusion Process observed in Brownian Motion 78

10.2 Diffusion Modulated Poisson Process 81

10.3 Numerical Solutions 82

11 Selected Applications 83

11.1 Ion-channel Current Estimation 84

Full text available at: http://dx.doi.org/10.1561/2000000043



11.2 Spectrum Sensing for Cognitive Radio 85

11.3 Network Congestion 86

12 Concluding Remarks 89

Acknowledgments 91

References 93

Full text available at: http://dx.doi.org/10.1561/2000000043



1

Introduction

A bivariate Markov process comprises a pair of random processes which

are jointly Markov. One of the two processes is observable, while the

other plays the role of an underlying process. The underlying process

affects the statistical properties of the observable process. Usually, the

observable process is not Markov, but the underlying process is often

conveniently chosen to be Markov. The theory of bivariate Markov

processes does not require either process to be Markov.

The family of bivariate Markov processes is very rich, and has pro-

duced powerful models in many applications. Perhaps the most familiar

bivariate Markov process stems from the hidden Markov model, see,

e.g., [13, 40]. The underlying process of a hidden Markov model is

a discrete-time finite-state Markov chain, and the observable process

comprises a collection of conditionally independent random variables,

e.g., normal, given the underlying Markov chain. Together, the two pro-

cesses form a bivariate Markov process. Another example follows from

the Markov modulated Poisson process, see, e.g., [43, 78, 93]. Here, the

underlying process is a continuous-time finite-state Markov chain, and

the observable process is conditionally Poisson given the underlying

Markov chain. A generalization of this process is given by a Poisson

1
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2 Introduction

process whose rate is modulated by an underlying diffusion process,

see, e.g., [16, 103, 120]. As a final example, we mention the bivariate

Markov process formed by an underlying diffusion process, and the

same process observed in Brownian motion. Here the underlying pro-

cess is a continuous-time continuous-alphabet Markov process. Bivari-

ate Markov processes play central roles in the theory and applications

of estimation, control, queuing, economics, biomedical engineering, and

reliability.

In general, each of the two process components of a bivariate Markov

process may be discrete-time or continuous-time, with finite, count-

ably infinite, or uncountably infinite alphabet. We shall focus on three

classes of bivariate Markov processes. In the first class, the pair of

processes comprising the bivariate Markov process are continuous-time

with finite alphabet; in the second class, they are discrete-time with

finite alphabet; and in the third class, both processes are continuous-

time with a diffusion underlying process and an observable process

with a countably or uncountably infinite alphabet. Our primary focus

in this paper will be on the first class of processes, which we refer

to as continuous-time bivariate Markov chains or simply as bivariate

Markov chains. We shall refer to processes from the second class as

discrete-time bivariate Markov chains. The processes in the third class

are assumed to be diffusion processes observed in Brownian motion, in

a counting process, or in a mixture of Brownian motion and a counting

process. Some of the results reported here for finite alphabet processes,

apply to bivariate Markov processes with countably infinite alphabet,

by resorting to modulo arithmetic.

The theory of univariate Markov processes applies to bivariate

Markov processes. Excellent sources for that theory may be found in

Doob [31], Breiman [15] and Todorovic [109]. Application of the the-

ory of univariate Markov processes to bivariate Markov processes, with

the observable and underlying processes playing different roles, is not

straightforward. Research on various forms of bivariate Markov pro-

cesses has been ongoing for more than four decades. The research

has focused on two main interrelated estimation problems, namely,

parameter and signal estimation. In parameter estimation, the max-

imum likelihood approach has dominated the field. Here, identifiability

Full text available at: http://dx.doi.org/10.1561/2000000043



3

of the parameter of the bivariate Markov process was studied; iterative

estimation approaches in the form of the expectation-maximization

(EM) algorithm were developed; and consistency and asymptotic nor-

mality were proven for parameter estimation of some bivariate Markov

chains. Application of the EM approach requires minimum mean square

error recursive estimation of several statistics of the bivariate Markov

chain. In particular, estimation of the number of jumps from one state

to another, and the total sojourn time of the process in each state, in

a given interval, are required. In other applications, estimation of the

state of the underlying process is of primary interest.

In this paper we present some of the fundamentals of the theory

of bivariate Markov processes, and review the various parameter and

signal estimation approaches. Our goals are to provide a comprehen-

sive introduction to bivariate Markov chains, along with the details of

the various estimation algorithms. While proofs are generally omitted,

an interested reader should be able to implement the estimation algo-

rithms for bivariate Markov chains straight out of this paper. Most of

the material in this paper should be accessible to the signal processing

community. It requires some familiarity with Markov chains and the

intricacies of the theory of hidden Markov models. The discussion on

diffusion processes requires some further knowledge in nonlinear esti-

mation theory.

Our presentation in Sections 1 to 7 focuses on continuous-time

bivariate Markov chains with a finite or countably infinite number

of states. In Section 8 we discuss finite alphabet discrete-time bivari-

ate Markov chains. In Section 9 we consider a bivariate Markov chain

observed through Brownian motion. In Section 10, we provide a glimpse

into the fascinating topic of bivariate Markov processes with underly-

ing diffusion processes. Several applications are discussed in Section 11,

and some concluding remarks are given in Section 12.
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