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Abstract

The proliferation of social media such as real time microblogging and online
reputation systems facilitate real time sensing of social patterns and behav-
ior. In the last decade, sensing and decision making in social networks have
witnessed significant progress in the electrical engineering, computer sci-
ence, economics, finance, and sociology research communities. Research in
this area involves the interaction of dynamic random graphs, socio-economic
analysis, and statistical inference algorithms. This monograph provides a sur-
vey, tutorial development, and discussion of four highly stylized examples:
social learning for interactive sensing; tracking the degree distribution of so-
cial networks; sensing and information diffusion; and coordination of deci-
sion making via game-theoretic learning. Each of the four examples is mo-
tivated by practical examples, and comprises of a literature survey together
with careful problem formulation and mathematical analysis. Despite being
highly stylized, these examples provide a rich variety of models, algorithms
and analysis tools that are readily accessible to a signal processing, con-
trol/systems theory, and applied mathematics audience.

V. Krishnamurthy, O. N. Gharehshiran and M. Hamdi. Interactive Sensing and Decision
Making in Social Networks. Foundations and Trends R© in Signal Processing, vol. 7, no. 1-2,
pp. 1–196, 2013.
DOI: 10.1561/2000000048.
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1
Introduction and Motivation

Research in social networks involves the interplay of complex networks
(dynamics of random graphs) and social analysis (stemming from the ar-
eas of economics and sociology). There are seminal books in this area in-
cluding [132, 249]. In comparison, this monograph deals with sensing and
decision-making in social networks. The proliferation of social media such
as real-time microblogging services (Twitter1), online reputation and rating
systems (Yelp) together with app-enabled smartphones, facilitate real time
sensing of social activities, social patterns, and behavior.
Sensing and decision making in social networks is an area that has wit-

nessed remarkable progress in the last decade in electrical engineering, com-
puter science, economics, finance, and sociology. It is the aim of this mono-
graph to survey some important topics in this area and present highly stylized
examples that are readily accessible to a signal processing, control/systems
theory, and applied mathematics audience. Indeed, the main tools used in
this monograph are dynamic programming, Bayesian estimation (filtering),
stochastic approximation (adaptive filtering) and their convergence analysis
(weak convergence and mean square analysis), game-theoretic learning, and

1On US Presidential election day in 2012, there were 15 thousand tweets per second re-
sulting in 500 million tweets in the day. Twitter can be considered as a real-time sensor.

2
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1.1. Motivation 3

graph theory. There has been much recent activity in the signal processing
community in the area of social networks. “How global behavior emerges
from simple local behavior of boundedly rational agents” has been an under-
lying theme of an NSF/UCLAworkshop in 2010, special sessions at ICASSP
2011 and 2012 and the ICASSP 2011 expert summary in [270]. Also, the re-
cent special issues [227, 268] deal with signal processing of social networks.

1.1 Motivation

Social sensing [5, 41, 44, 75] is defined as a process where physical sensors
present in mobile devices such as GPS are used to infer social relationships
and human activities. In this monograph, we work at a higher level of ab-
straction. We use the term social sensor or human-based sensor to denote an
agent that provides information about its environment (state of nature) on a
social network after interaction with other agents. Examples of such social
sensors include Twitter posts, Facebook status updates, and ratings on online
reputation systems like Yelp and Tripadvisor. Such social sensors go beyond
physical sensors for social sensing [221]. For example, user opinions/ratings
(such as the quality of a restaurant) are available on Tripadvisor but are diffi-
cult to measure via physical sensors. Similarly, future situations revealed by
the Facebook status of a user are impossible to predict using physical sensors.
Statistical inference using social sensors is relevant in a variety of appli-

cations including localizing special events for targeted advertising [59, 171],
marketing [245], localization of natural disasters [222], and predicting sen-
timent of investors in financial markets [33, 208]. It is demonstrated in [13]
that models built from the rate of tweets for particular products can outper-
form market-based predictors. However, social sensors present unique chal-
lenges from a statistical estimation point of view. First, social sensors inter-
act with and influence other social sensors. For example, ratings posted on
online reputation systems strongly influence the behaviour of individuals2 .
Such interactive sensing can result in non-standard information patterns due
to correlations introduced by the structure of the underlying social network.
Second, due to privacy reasons and time constraints, social sensors typically

2It is reported in [130] that 81% of hotel managers regularly check Tripadvisor reviews. It
is reported in [187] that a one-star increase in the Yelp rating maps to 5-9 % revenue increase.
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4 Introduction and Motivation

Figure 1.1:Main results and organization of the monograph.

do not reveal raw observations of the underlying state of nature. Instead, they
reveal their decisions (ratings, recommendations, votes) which can be viewed
as a low resolution (quantized) function of their raw measurements and inter-
actions with other social sensors.
As is apparent from the above discussion, there is strong motivation to

construct mathematical models that capture the dynamics of interactive sens-
ing involving social sensors. Such models facilitate understanding the dy-
namics of information flow in social networks and, therefore, the design of
algorithms that can exploit these dynamics to estimate the underlying state
of nature. In this monograph, social learning [23, 31, 50], game-theoretic
learning [92, 121], and stochastic approximation [167, 263] serve as useful
mathematical abstractions for modelling the interaction of social sensors.

1.2 Main Results and Organization

As can be seen from Figure 1.1, this monograph is organized into four chap-
ters (excluding this introductory chapter) that provide a survey, tutorial de-
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1.2. Main Results and Organization 5

velopment, and discussion of four highly stylized examples: social learning
for interactive sensing; tracking the degree distribution of social networks;
sensing and information diffusion; and coordination of decision-making via
game-theoretic learning. Each of the four chapters is motivated by practical
examples, and comprises of a literature survey together with careful problem
formulation and mathematical analysis. The examples and associated analy-
sis are readily accessible to a signal processing, control/systems theory, and
applied mathematics audience.
In terms of information patterns, Chapter 2 considers Bayesian estimation

and sequential decision making with sequential information flow and then in-
formation flow over small directed acyclic graphs. In comparison, Chapter 3
considers stochastic approximation algorithms for large random graphs that
evolve with time. Chapter 4 considers the asymptotics of large graphs with
fixed degree distribution but where the state of individual node in the graph
evolve over time—this models information diffusion. The mean field anal-
ysis in Chapter 4 results in a stochastic approximation type recursion, and
the estimation problems are Bayesian (nonlinear filtering). Finally, Chapter 5
deals with learning in non-cooperative repeated games comprising networks
of arbitrary size—the algorithms are of the stochastic approximation type. In
all these cases, sensors interact with and influence other sensors. It is the un-
derstanding of this interaction of local and global behaviors in the context of
social networks that constitutes the unifying theme of this monograph.
Below we give a brief synopsis of these four chapters.

1. Social Learning Approach to Interactive Sensing

Chapter 2 presents models and algorithms for interactive sensing in social
networks where individuals act as sensors and the information exchange be-
tween individuals is exploited to optimize sensing. Social learning is used as
a mathematical formalism to model the interaction between individuals that
aim to estimate an underlying state of nature.
Social learning in multi-agent systems seeks to answer the following

question:

How do decisions made by agents affect decisions made by sub-
sequent agents?

Full text available at: http://dx.doi.org/10.1561/2000000048



6 Introduction and Motivation

In social learning, each agent chooses its action by optimizing its local utility
function. Subsequent agents then use their private observations together with
the decisions of previous agents to estimate (learn) the underlying state of
nature. The setup is fundamentally different to classical signal processing in
which sensors use noisy observations to compute estimates.
In the last decade, social learning has been used widely in economics,

marketing, political science, and sociology to model the behavior of financial
markets, crowds, social groups, and social networks; see [1, 2, 23, 31, 50,
180] and numerous references therein. Related models have been studied in
the context of sequential decision making in information theory [65, 126] and
statistical signal processing [51, 162] in the electrical engineering literature.
Social learning models for interactive sensing can predict unusual behav-

ior. Indeed, a key result in social learning of an underlying random variable
is that rational agents eventually herd [31]; that is, they eventually end up
choosing the same action irrespective of their private observations. As a re-
sult, the actions contain no information about the private observations and
so the Bayesian estimate of the underlying random variable freezes. For a
multi-agent sensing system, such behavior can be undesirable, particularly if
individuals herd and make incorrect decisions.
In this context, the following questions are addressed in Chapter 2: How

can self-interested agents that interact via social learning achieve a trade-off
between individual privacy and reputation of the social group? How can pro-
tocols be designed to prevent data incest in online reputation blogs where
individuals make recommendations? How can sensing by individuals that in-
teract with each other be used by a global decision maker to detect changes in
the underlying state of nature? Chapter 2 presents an overview, insights and
discussion of social learning models in the context of data incest propagation,
change detection, and coordination of decision making.
Several examples in social networks motivate Chapter 2. Design of pro-

tocols to prevent data incest are motivated by the design of fair online rep-
utation systems such as Yelp or Tripadvisor. In Online reputation systems,
which maintain logs of votes (actions) by agents, social learning takes place
with information exchange over a loopy graph (where the agents form the
vertices of the graph). Due to the loops in the information exchange graph,
data incest (misinformation) can propagate: Suppose an agent wrote a poor

Full text available at: http://dx.doi.org/10.1561/2000000048



1.2. Main Results and Organization 7

rating of a restaurant on a social media site. Another agent is influenced by
this rating, visits the restaurant, and then also gives a poor rating on the social
media site. The first agent visits the social media site and notices that another
agent has also given the restaurant a poor rating—this double confirms her
rating and she enters another poor rating. In a fair reputation system, such
“double counting” or data incest should have been prevented by making the
first agent aware that the rating of the second agent was influenced by her
own rating.
As an example of change detection, consider measurement of the adop-

tion of a new product using a micro-blogging platform like Twitter. The adop-
tion of the technology diffuses through the market but its effects can only be
observed through the tweets of select members of the population. These se-
lected members act as sensors for the parameter of interest. Suppose the state
of nature suddenly changes due to a sudden market shock or presence of a
new competitor. Based on the local actions of the multi-agent system that is
performing social learning, a global decision maker (such as a market moni-
tor or technology manufacturer) needs to decide whether or not to declare if a
change has occurred. How can the global decision maker achieve such change
detection to minimize a cost function comprised of false alarm rate and de-
lay penalty? The local and global decision makers interact, since the local
decisions determine the posterior distribution of subsequent agents which de-
termines the global decision (stop or continue) which determines subsequent
local decisions.

2. Tracking Degree Distribution of Social Networks

Chapter 3 considers dynamical random graphs. The degree of a node in a
network (also known as the connectivity) is the number of connections the
node has in that network. The most important measure that characterizes the
structure of a network (specially when the size of the network is large and the
connections—adjacency matrix of the underlying graph—are not given) is the
degree distribution of the network. Chapter 3 considers a Markov-modulated
duplication-deletion random graph where, at each time instant, one node can
either join or leave the network with probabilities that evolve according to the
realization of a finite state Markov chain (state of nature). This chapter deals
with the following questions:

Full text available at: http://dx.doi.org/10.1561/2000000048



8 Introduction and Motivation

How can one estimate the state of nature using noisy observa-
tions of nodes’ degrees in a social network? and How good are
these estimates?

Chapter 3 comprises of two results. First, motivated by social network ap-
plications, we analyze the asymptotic behavior of the degree distribution of
the Markov-modulated random graph. From this degree distribution analy-
sis, we can study the connectivity of the network, the size and the exis-
tence of a large connected component, the delay in searching such graphs,
etc. [86, 132, 204, 202]. Second, a stochastic approximation algorithm is
presented to track the empirical degree distribution as it evolves over time.
We further show that the stationary degree distribution of Markov-modulated
duplication-deletion random graphs depends on the dynamics of such graphs
and, thus, on the state of nature. This means that, by tracking the empirical
degree distribution, the social network can be viewed as a social sensor to
track the state of nature. The tracking performance of the algorithm is an-
alyzed in terms of mean square error. A functional central limit theorem is
further presented for the asymptotic tracking error.
An important associated problem discussed in Chapter 3 is how to ac-

tually construct random graphs via simulation algorithms. In particular, for
large social networks, only the degree sequence is available, and not the ad-
jacency matrix. (The degree sequence is a non-increasing sequence of vertex
degrees.) Does a simple graph exist that realizes a particular degree sequence?
How can all graphs that realize a degree sequence be constructed? Chapter 3
presents a discussion of these issues.

3. Sensing and Information Diffusion in Social Networks

Chapter 4 considers the following questions:

How does a behavior diffuse over a social network comprising of
a population of interacting agents? and How can an underlying
stochastic state be estimated based on sampling the population?

As described in [184], there is a wide range of social phenomena such as
diffusion of technological innovations, cultural fads, and economic conven-
tions [50], where individual decisions are influenced by the decisions of

Full text available at: http://dx.doi.org/10.1561/2000000048



1.2. Main Results and Organization 9

others. Chapter 4 considers two extensions of the widely used Susceptible-
Infected-Susceptible (SIS) models for diffusion of information in social net-
works [183, 184, 132, 212, 249]. First, the states of individual nodes evolve
over time as a probabilistic function of the states of their neighbors and an
underlying target process. The underlying target process can be viewed as the
market conditions or competing technologies that evolve with time and affect
the information diffusion. Second, the nodes in the social network are sam-
pled randomly to determine their state. Chapter 4 reviews recent methods for
sampling social networks such as social sampling and respondent-driven sam-
pling. As the adoption of the new technology diffuses through the network,
its effect is observed via sentiment (such as tweets) of these selected mem-
bers of the population. These selected nodes act as social sensors. In signal
processing terms, the underlying target process can be viewed as a signal, and
the social network can be viewed as a sensor. The key difference compared
to classical signal processing is that the social network (sensor) has dynamics
due to the information diffusion. Our aim is to estimate the underlying target
state and the state probabilities of the nodes by sampling measurements at
nodes in the social network. In a Bayesian estimation context, this is equiva-
lent to a filtering problem involving estimation of the state of a prohibitively
large-scale Markov chain in noise. The key idea is to use mean field dynam-
ics as an approximation (with provable bounds) for the information diffusion
and, thereby, obtain a tractable model.

4. Coordination of Decisions as Non-cooperativeGame-Theoretic
Learning

Chapter 5 studies game-theoretic learning in the context of social networks.
Game theory has traditionally been used in economics and social sciences
with a focus on fully rational interactions where strong assumptions are made
on the information patterns available to individual agents. In comparison, so-
cial sensors are agents with partial information and it is the dynamic inter-
actions among such agents that is of interest. This, together with the interde-
pendence of agents’ choices, motivates the need for game-theoretic learning
models for agents interacting in social networks.
Chapter 5 deals with the question:

When individuals are self-interested and possess limited sensing

Full text available at: http://dx.doi.org/10.1561/2000000048



10 Introduction and Motivation

and communication capabilities, can a network of such individ-
uals achieve sophisticated global behavior?

We discuss a non-cooperative game-theoretic learning approach for adaptive
decision making in social networks. This can be viewed as non-Bayesian so-
cial learning. The aim is to ensure that all agents eventually choose actions
from a common polytope of randomized strategies—namely, the set of cor-
related equilibria [18, 20] of a non-cooperative game. The game-theoretic
concept of equilibrium describes a condition of global coordination where
all decision makers are content with the social welfare realized as the conse-
quence of their chosen strategies.
We consider two examples of information exchange among individuals.

The first example comprises of fully social agents that can communicate
with every other agent in the network. This provides a simple framework
to present the “regret-matching” [117, 121] decision making procedure that
ensures convergence of the global behavior of the network to the correlated
equilibria set. In the second example, we confine the information flow to so-
cial groups—each individual can only speak with her neighbors. Accordingly,
the regret-matching procedure is revised to adapt to this more practical social
network model. Finally, we consider the case of homogeneous social groups,
where individuals share and are aware of sharing the same incentives. The
regret-matching procedures is then adapted to exploit this valuable piece of
information available to individuals within each social group. The final result
in this chapter considers the scenario where the non-cooperative game model
evolves with time according to the sample path of a finite-state Markov chain.
It is shown that, if the speed of the Markovian jumps and the learning rate
of the regret-matching algorithm match, the global behavior emerging from
a network of individuals following the presented algorithms properly tracks
the time-varying set of correlated equilibria.
One of the main ideas in this chapter is that the limit system that repre-

sents the game-theoretic learning algorithms constitutes a differential inclu-
sion. Differential inclusions are generalization of ordinary differential equa-
tions (ODEs)3, and arise naturally in game-theoretic learning, since the strate-

3A generic differential inclusion is of the form dX/dt ∈ F(X, t), whereF(X, t) specifies
a family of trajectories rather than a single trajectory as in the ordinary differential equations
dX/dt = F (X, t). See §5.4.3 and Appendix B for more details.
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1.2. Main Results and Organization 11

gies according to which others play are unknown. This is highly non-standard
in the analysis of stochastic approximation algorithms in which the limit sys-
tem is usually an ODE.
Chapter 5 ends with an example that shows how the presented algorithms

can be applied in a social sensing application. We consider the problem of
estimating the true value of an unknown parameter via a network of sensors.
There have been a lot of recent works that study diffusion of information
over graphs linking a multitude of agents; see [226, 225] and numerous ref-
erences therein. We particulary focus on diffusion least mean square (LMS)
algorithms [182]: each sensor decides whether to activate, and if activates,
(i) it will exchange estimate with neighbors and fuse the collected data; (ii)
it will use the fused data and local measurements to refine its estimate via
an LMS-type adaptive filter. Using a game-theoretic formulation, an energy-
aware activation mechanism is devised that, taking into account the spatial-
temporal correlation of sensors’ measurements, prescribes sensors when to
activate. We first show that, as the step-size in the diffusion LMS approaches
zero, the analysis falls under the unifying classical stochastic approximation
theme of this chapter and, therefore, can be done using the well-known ODE
method [167]. It is then shown that the proposed algorithm ensures the esti-
mate at each sensor converges to the true parameter, yet the global activation
behavior along the way tracks the set of correlated equilibria of the underly-
ing activation control game.

5. Appendices

The two appendices at the end of this monograph present, respectively, a
mean-square error analysis and weak convergence analysis of two different
types of stochastic approximation algorithms used to track time-varying be-
havior in social networks. These analysis are crucial in allowing us to predict
the asymptotic dynamics of such algorithms. The chapters provide sufficient
intuition behind the theorems and the reader can skip the appendices without
loss of continuity. Appendix A generalizes the asymptotic analysis of duplica-
tion deletion random graphs in [61] to the case of Markov-modulated graphs.
It uses the concept of perturbed Lyapunov functions. The weak convergence
analysis presented in Appendix B generalizes the convergence analysis pro-
vided in the seminal papers [117, 119] to the case where the game-theoretic
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12 Introduction and Motivation

learning algorithm can track a time-varying correlated equilibrium. The con-
vergence analysis in both appendices are presented in a tutorial fashion and
are readily accessible to researchers in adaptive filtering, stochastic optimiza-
tion, and game theory.

Out-of-Scope Topics

Other important problems that have been extensively studied in the litera-
ture, but are outside the scope of this monograph include: consensus forma-
tion [132, Chapter 8], [149, 240], metrics for measuring networks (other than
degree distribution) [132, Chapter 2], [253], small world [144, 254, 255],
cooperative models of network formation [131, Chapter 1], [132, Chap-
ter 12], [233], behavior dynamics in peer-to-peer media-sharing social net-
works [112, 267], and privacy and security modeling [169, 179]. The inter-
ested reader is referred to the above cited works and references therein for
extensive treatment of the topics.

1.3 Perspective

The social learning and game-theoretic learning formalisms considered in this
monograph can be used either as descriptive tools, to predict the outcome of
complex interactions amongst agents in sensing, or as prescriptive tools, to
design social networks and sensing systems around given interaction rules.
Information aggregation, misinformation propagation and privacy are impor-
tant issues in sensing using social sensors. In this monograph, we treat these
issues in a highly stylized manner so as to provide easy accessibility to an
electrical engineering audience. The underlying tools used in this monograph
are widely used by the electrical engineering research community in the ar-
eas of signal processing, control, information theory and network communi-
cations. The fundamental theory of network science is well-documented in
seminal books such as [76, 132] and involves the interplay of random graphs
and game theory.
In Bayesian estimation, the twin effects of social learning (information

aggregation with interaction amongst agents) and data incest (misinforma-
tion propagation) lead to non-standard information patterns in estimating the
underlying state of nature. Herding occurs when the public belief overrides
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the private observations and, thus, actions of agents are independent of their
private observations. Data incest results in bias in the public belief as a con-
sequence of the unintentional re-use of identical actions in the formation of
public belief in social learning—the information gathered by each agent is
mistakenly considered to be independent. This results in overconfidence and
bias in estimates of the state of nature.
Tracking a time-varying parameter that evolves according to a finite-state

Markov chain (state of nature) is a problem of much interest in signal process-
ing [30, 87, 259]. In social networks, sometimes the parameter under study
(state of nature) cannot be sensed by pervasive sensors, e.g., the level of hap-
piness in a community, the tendency of individuals to expand their networks,
the strength of social links between individuals, etc. In such cases, social sen-
sors can do much better than pervasive sensors. A social network with a large
number of individuals can be viewed as an interactive sensing tool to obtain
information about individuals or state of nature; this is a social sensor. Mo-
tivated by social network applications, a social sensor based framework is
presented in Chapter 3 to track the degree distribution of Markov-modulated
dynamic networks whose dynamics evolve over time according to a finite-
state Markov chain.
Privacy issues impose important constraints on social sensors. Typically,

individuals are not willing to disclose private observations. Optimizing in-
teractive sensing with privacy constraints is an important problem. Privacy
and trust pose conflicting requirements on human-based sensing: Privacy re-
quirements result in noisier measurements or lower resolution actions, while
maintaining a high degree of trust (reputation) requires accurate measure-
ments. Utility functions, noisy private measurements, and quantized actions
are essential ingredients of the social and game-theoretic learning models
presented in this monograph that facilitate modelling this trade-off between
reputation and privacy.
In social sensor systems, the behavior is driven by the actions of a large

number of autonomous individuals, who are usually self-interested and opti-
mize their respective objectives. Often, these individuals form social contacts
(i.e. links) by choice, rather than by chance. Further, there are always social
and economic incentives associated with forming such social contacts based
on the information obtained about the state of the nature or contribution to
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the diffusion of information across the network. The social network analy-
sis using the common graph-theoretic techniques, however, fails to capture
the behavior of such self-interested individuals and the dynamics of their in-
teraction. This motivates the use of game-theoretic methods. Game-theoretic
learning explains how coordination in the decisions of such self-interested
individuals might arise as a consequence of a long-run process of adaptation
and learning in an interactive environment [94]. Interestingly enough, while
each individual has limitations in sensing and communication, the coordi-
nated behavior amongst individuals can lead to the manifestation of sophisti-
cated behavior at the network level.
The literature in the areas of social learning, sensing, and network-

ing is extensive. In each of the following chapters, we provide a brief re-
view of relevant works together with references to experimental data. The
book [50] contains a complete treatment of social learning models with
several remarkable insights. For further references, we refer the reader
to [151, 153, 154, 161, 191]. In [116], a nice description is given of how,
if individual agents deploy simple heuristics, the global system behavior
can achieve “rational” behavior. The related problem of achieving coherence
(i.e., agents eventually choosing the same action or the same decision policy)
among disparate sensors of decision agents without cooperation has also wit-
nessed intense research; see [215] and [251]. Non-Bayesian social learning
models are also studied in [79, 80].
There is also a growing literature dealing with the interplay of technologi-

cal networks and social networks [55]. For example, social networks overlaid
on technological networks account for a significant fraction of Internet use.
Indeed, as discussed in [55], three key aspects of that cut across social and
technological networks are the emergence of global coordination through lo-
cal actions, resource sharing models and the wisdom of crowds (diversity
and efficiency gains). These themes are addressed in the current paper in the
context of social learning.
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diffusion least mean square, 137

energy-aware diffusion LMS,
139, 141

Erdös-Gallai theorem, 66

game, 99
cooperative game, 145
global game, 45
non-cooperative game, 102
regime-switching game, 132,
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repeated game, 104
simultaneous move game, 104

giant component, 49
graph

connectivity graph, 110
duplication-deletion graph, 53
graph construction, 65

Markov-modulated random
graph, 53

mean field dynamics, 87

half-edge, 66
Havel-Hakimi theorem, 66
herding, 21

information cascade, 21

learning
adaptive learning, 99, 109, 111
reinforcement learning, 100, 118

Lyapunov function, 158, 170, 171,
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Markov chain, 52
Markovian switching, 64, 132

matrix
adjacency matrix, 28, 65
covariance matrix, 65
generator matrix, 56, 132, 134
transition matrix, 56, 132, 166
transitive closure matrix, 28, 36
weight matrix, 120

mean field dynamics, 76, 82, 88, 93
mean square error, 62
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mixed strategy, 103

Nash equilibrium, 106
nonlinear filtering, 92, 94

hidden Markov model filter, 18,
41, 94

social learning filter, 17, 19, 20,
40, 41

online reputation, 25, 31
ordinal decisions, 37
ordinary differential equation, 63,

128, 138

Partially Observed Markov Decision
Process (POMDP), 23, 24,
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power law, 51, 58
power law exponent, 58, 59

privacy, 55

regret-matching procedure, 108, 112

respondent-driven sampling, 85

searchability, 49
sentiment, 76, 77, 84, 91, 97
social group, 114

homogeneous social group, 118
social influence constraint, 31
social learning, 17, 25
social sampling, 85
social sensor, 48, 52, 60
state of nature, 50
stochastic approximation, 62, 138

adaptive filtering, 114
supermodularity, 24, 25

tightness, 162, 167
tracking error, 64

weak convergence, 63, 91, 124, 125,
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