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Abstract

In today’s society, we are flooded with massive volumes of data in the

order of a billion gigabytes on a daily basis from pervasive sensors. It is

becoming increasingly challenging to sense, store, transport, or process

(i.e., for inference) the acquired data. To alleviate these problems, it is

evident that there is an urgent need to significantly reduce the sensing

cost (i.e., the number of expensive sensors) as well as the related mem-

ory and bandwidth requirements by developing unconventional sensing

mechanisms to extract as much information as possible yet collecting

fewer data.

The aim of this monograph is therefore to develop theory and al-

gorithms for smart data reduction. We develop a data reduction tool

called sparse sensing, which consists of a deterministic and structured

sensing function (guided by a sparse vector) that is optimally designed

to achieve a desired inference performance with the reduced number

of data samples. We develop sparse sensing mechanisms, convex pro-

grams, and greedy algorithms to efficiently design sparse sensing func-

tions, where we assume that the data is not yet available and the model

information is perfectly known.

Sparse sensing offers a number of advantages over compressed sens-

ing (a state-of-the-art data reduction method for sparse signal recov-

ery). One of the major differences is that in sparse sensing the under-

lying signals need not be sparse. This allows for general signal process-

ing tasks (not just sparse signal recovery) under the proposed sparse

sensing framework. Specifically, we focus on fundamental statistical in-

ference tasks, like estimation, filtering, and detection. In essence, we

present topics that transform classical (e.g., random or uniform) sens-

ing methods to low-cost data acquisition mechanisms tailored for spe-

cific inference tasks. The developed framework can be applied to sensor

selection, sensor placement, or sensor scheduling, for example.

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. Foundations
and Trends R© in Signal Processing, vol. 9, no. 3-4, pp. 233–386, 2015.
DOI: 10.1561/2000000069.
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1

Introduction

1.1 Pervasive sensors and data deluge

Every day, we are generating data in the order of a billion gigabytes.

This massive volume of data comes from omnipresent sensors used in

medical imaging (e.g., breast or fetal ultrasound), seismic processing

(e.g., for oil or gas field exploration), environmental monitoring (e.g.,

pollution, temperature, precipitation sensing), radio astronomy (e.g.,

from radio telescopes like the square kilometre array), power networks

(e.g., to monitor wind farms or other distribution grids), smart infras-

tructures (e.g., to monitor the condition of railway tracks or bridges),

localization and surveillance platforms (e.g., security cameras or drones,

indoor navigation), and so on.

The acquired data samples are stored locally and then transported

to a central location (e.g., a server or cloud) to extract meaningful in-

formation (that is, for inference). Due to an unprecedented increase in

the volume of the acquired data, it is becoming increasingly challenging

to locally store and transport all the data samples to a central location

for data/signal processing. This is because the amount of sampled data

quickly exceeds the storage and communication capacity by several or-

ders of magnitude. Since the data processing is generally carried out

at a central location with ample computing power, mainly the sensing,

storage and transportation costs form the main bottleneck. To allevi-

2
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1.1. Pervasive sensors and data deluge 3

ate these bottlenecks, most of the data is blindly discarded without

even being examined in order to limit the memory and communication

requirements, causing a serious performance loss.

In this era of data deluge, it is of paramount importance to gather

only the informative data needed for a specific task. If we had some

prior knowledge about the task we want to perform on the data sam-

ples, then just a small portion of that data might be sufficient to reach

a desired inference accuracy, thereby significantly reducing the amount

of sampled, stored and transported data. That is to say, if the infer-

ence task is known beforehand, less data needs to be acquired. Thus,

the memory and bandwidth requirements can be seriously curtailed.

In addition, the cost of data collection (or sensing) can be significantly

reduced, where the major factors that determine the sensing cost are

the number of physical sensors (and their economical and energy costs)

and the physical space they occupy when installed. So, it is evident that

there is an urgent need for developing unconventional and innovative

sensing mechanisms tailored for specific inference tasks to extract as

much information as possible yet collecting fewer data. This leads to

the main question:

How can task-cognition be exploited to reduce the costs of sensing

as well as the related storage and communications requirements?

This is different from the classical big data setting in which the data

is already available and the question is how to mine information from

that large-scale data. Our problem has close similarities to sampling,

and is only related to model information, where the data is not yet

available. Given the central role of sampling in engineering sciences,

answering this question will impact a wide range of applications. The

basic question of interest for such applications is, how to design sensing

systems in order to minimize the amount of data acquired yet reach

a prescribed inference performance. In particular, the design questions

that should be answered are related to the optimal sensor placement

in space and/or time, data rate, and sampling density to reduce the

sensing cost as well as to reduce the storage and communications re-

quirements. We next illustrate our ideas with two specific examples of

sensor placement for indoor localization and temperature sensing.

Full text available at: http://dx.doi.org/10.1561/2000000069



4 Introduction

Access point

Figure 1.1: Illustration of an indoor localization setup. We show the floor
plan of a building (e.g., museum) with candidate locations for installing the
access points. The restriction on installing the access points in only certain
areas might be for security or ambience purposes.

Example 1.1 (Target localization). Indoor localization is becoming in-

creasingly important in many applications (see [69]). Some examples

include: locating people inside a building for rescue operations, mon-

itoring logistics in a production plant, lighting control, and so on. In

such environments, global positioning system (GPS) signals are typi-

cally unavailable. Thus, other types of measurements such as visual,

acoustic or radio waves revealing information about range, bearing,

and/or Doppler are used. These measurements are gathered by access

points, like cameras, microphones, radars, or wireless transceivers. One

such scenario is illustrated in Figure 1.1, where we show an indoor

localization setup for navigating a visitor inside a building. An inter-

esting question is, instead of installing many such costly access points

randomly, how can we minimize the number of access points (hence,

the amount of data), by optimizing their characteristics (e.g., their spa-

tial position, sampling rate) in such a way that a certain localization

performance can be guaranteed.

Full text available at: http://dx.doi.org/10.1561/2000000069



1.1. Pervasive sensors and data deluge 5
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Figure 1.2: Heatmaps of a 32KB data cache (a) without and (b) with a hot
spot. Black circles (◦) denote the candidate temperature sensor locations—
these are the areas with less or no active logic.

Example 1.2 (Field detection). Consider a multi-core processor with

a hot spot. A historical question of interest is to estimate the ther-

mal distribution, for instance, by interpolating noisy measurements. In

some applications, though, a precise estimation of the temperature field

might not be required. Instead, detecting the hot spots (i.e., the areas

where the temperature exceeds a certain threshold) would be sufficient

for subsequent control actions. Such a scenario is illustrated in Fig-

ure 1.21, where the image on the right (left) shows a 32 KB data cache

with (no) hotspots. An important question of interest for such detec-

tion problems then is, how to optimally design spatial samplers (i.e.,

how to optimize the sensor placement [64]) by exploiting the knowledge

of the underlying model, physical space and processing limitations.

Such optimally designed sensing systems can be used to perform a

number of inference tasks, such as estimation, filtering, and detection.

1We would like to thank the authors of [57] for the heatmaps.
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6 Introduction

1.2 Outline

This monograph is organized into three parts. In the first part of this

monograph (i.e., in Chapter 2), the theory of sparse sensing is discussed

in depth. In the second part of this monograph (i.e., in Chapters 3—6)

the developed theory in Chapter 2 is applied to basic statistical signal

processing problems. Finally, the monograph concludes with the third

part (i.e., Chapter 7), where we pose some interesting open problems

for future research.

Chapter 2 on sparse sensing forms the backbone of this monograph.

In order to reduce the sensing and other related costs, it is crucial

to tailor the sensing mechanism for the specific inference task that

will be performed on the acquired data samples. The tool that

we will exploit in this monograph to reduce the cost of sensing

is sparse sensing, which consists of an optimally designed struc-

tured and deterministic sparse (i.e., with many zeros and a few

nonzeros) sensing function that is used to acquire the data in or-

der to reach a desired inference performance. Here, the number of

nonzeros determines the amount of data samples acquired (thus

determines the amount of data reduction). In this chapter, we

will model the sparse sensing function as a linear projection op-

eration, where the sensing function is parameterized by a sparse

vector. This vector is basically a design parameter that is used as

a handle to trade the amount of acquired data samples with the

inference performance. We refer to this sparse sensing scheme as

discrete sparse sensing, as the continuous observation domain is

first discretized into grid points and we select (using the sparse

vector) the best subset out of those grid points. To harness the

full potential of sparse sensing, we need to sample in between the

grid points and take samples anywhere in the continuous observa-

tion domain. We refer to such sensing mechanisms as continuous

sparse sensing. We will discuss some applications of the proposed

sparse sensing mechanisms and also list major differences with the

state of the art in data reduction, that is, compressed sensing. Al-

though the specific inference task is kept abstract in this chapter,

Full text available at: http://dx.doi.org/10.1561/2000000069



1.2. Outline 7

the obtained novel unifying view allows us to jointly treat sparse

sensing mechanisms for the different inference tasks considered in

Chapters 3—6.

Chapter 3 focuses on discrete sparse sensing for a general nonlinear

estimation problem. In particular, we solve the problem of choos-

ing the best subset of observations that follow known nonlinear

models with arbitrary yet independent distributions. We also ex-

tend this framework to nonlinear colored Gaussian observations

as it occurs frequently when the observations are subject to ex-

ternal noises or interference. The data is acquired using a discrete

sparse sensing function, which is guided by a sparse vector. The

Cramér-Rao bound (CRB) is used as an inference performance

metric and we derive several functions of the CRB that include

the sparse vector. To compute the optimal sparse samplers, we

propose convex relaxations of the derived inference performance

metric and also develop low-complexity solvers. We also discuss

greedy algorithms leveraging the submodularity of the inference

performance metric. In sum, we can conclude that discrete sparse

samplers for nonlinear inverse problems can be computed effi-

ciently (in polynomial or even linear time).

Chapter 4 extends the theory developed in Chapter 3 to nonlinear fil-

tering problems, that is, the focus will be on the design of discrete

sparse sensing functions for systems that admit a known nonlin-

ear state-space representation. In particular, we solve the problem

of choosing the best subset of time-varying observations based on

the entire history of measurements up to that point. The poste-

rior CRB is used as the inference performance metric to decide

on the best subset of observations. Although this framework is

valid for independent observations that follow arbitrary distribu-

tions (e.g., non-Gaussian), we also extend it to colored Gaussian

observations. Further, we introduce some additional constraints

to obtain smooth sensing patterns over time. Finally, we devise

sparse sensing mechanisms for structured time-varying observa-

tions (e.g., for time-varying sparse signals). In all these cases, the

Full text available at: http://dx.doi.org/10.1561/2000000069



8 Introduction

discrete sparse samplers can be designed efficiently by solving a

convex program or through a greedy algorithm that leverages on

submodularity.

Chapter 5 is dedicated to discrete sparse sensing for statistical de-

tection. Specifically, the aim is to choose the best subset of ob-

servations that are conditioned on the hypothesis, which belongs

to a binary set. Naturally, the best subset of observations is the

one that results in a prescribed global error probability. Since the

numerical optimization of the error probabilities is difficult, we

adopt simpler costs related to distance measures between the con-

ditional distributions of the sensor observations. We design sparse

samplers for the Bayesian and Neyman-Pearson setting, where we

respectively use the Bhattacharyya distance and Kullback-Leibler

distance (and J-divergence) as the inference performance metric.

For conditionally independent observations, we give an explicit

solution, which is optimal in terms of the error exponents. More

specifically, the best subset of observations is the one with the

smallest local average root-likelihood ratio and largest local aver-

age log-likelihood ratio in the Bayesian and Neyman-Pearson set-

ting, respectively. We supplement the proposed framework with

a thorough analysis for Gaussian observations, including the case

when the sensors are conditionally dependent, and also provide

examples for other observation distributions. One of the results

shows that, for nonidentical Gaussian sensor observations with

uncommon means and common covariances under both hypothe-

ses, the number of sensors required to achieve a desired detection

performance reduces significantly as the sensors become more co-

herent.

Chapter 6 contrasts with the discrete sparse sensing mechanisms that

have been considered in Chapter 3 to Chapter 5, where the sparse

sensing functions are parameterized by a discrete sparse vec-

tor that needs to be optimally designed. This basically means

that the continuous observation domain is first discretized into

grid points and we have to select the best subset out of those

Full text available at: http://dx.doi.org/10.1561/2000000069



1.2. Outline 9

grid points. However, this discretization might be very coarse be-

cause of complexity reasons, preventing the system to achieve the

best possible compression rates for the considered inference task.

Therefore, in this chapter, we introduce continuous sparse sens-

ing (or off-the-grid sparse sensing), where it is possible to sample

in between the grid points and take samples anywhere in the

continuous observation domain. The basic idea is to start from a

discretized sampling space and to model every sampling point in

the continuous sampling space as a discrete sampling point plus a

perturbation. Then, the smallest set of possible discrete sampling

points is searched for, along with the best possible perturbations,

in order to reach the prescribed inference performance. We will

demonstrate this approach for linear inverse problems, that is,

for linear estimation problems with additive Gaussian noise, al-

though it can be extended for other inference problems as well.

Chapter 7 contains the conclusions and outlines a number of direc-

tions for future research along with some open problems.

Full text available at: http://dx.doi.org/10.1561/2000000069
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