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Abstract

Financial engineering and electrical engineering are seemingly differ-
ent areas that share strong underlying connections. Both areas rely
on statistical analysis and modeling of systems; either modeling the
financial markets or modeling, say, wireless communication channels.
Having a model of reality allows us to make predictions and to optimize
the strategies. It is as important to optimize our investment strategies
in a financial market as it is to optimize the signal transmitted by an
antenna in a wireless link.

This monograph provides a survey of financial engineering from a
signal processing perspective, that is, it reviews financial modeling, the
design of quantitative investment strategies, and order execution with
comparison to seemingly different problems in signal processing and
communication systems, such as signal modeling, filter/beamforming
design, network scheduling, and power allocation.

Y. Feng and D. P. Palomar. A Signal Processing Perspective on Financial
Engineering. Foundations and TrendsR© in Signal Processing, vol. 9, no. 1-2,
pp. 1–231, 2015.
DOI: 10.1561/2000000072.
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1
Introduction

Despite the different natures of financial engineering and electrical engi-
neering, both areas are intimately connected on a mathematical level.
The foundations of financial engineering lie on the statistical analy-
sis of numerical time series and the modeling of the behavior of the
financial markets in order to perform predictions and systematically
optimize investment strategies. Similarly, the foundations of electrical
engineering, for instance, wireless communication systems, lie on statis-
tical signal processing and the modeling of communication channels in
order to perform predictions and systematically optimize transmission
strategies. Both foundations are the same in disguise.

This observation immediately prompts the question of whether both
areas can benefit from each other. It is often the case in science that the
same or very similar methodologies are developed and applied indepen-
dently in different areas. The purpose of this monograph is to explore
such connections and to capitalize on the existing mathematical tools
developed in wireless communications and signal processing to solve
real-life problems arising in the financial markets in an unprecedented
way.

2
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3

Thus, this monograph is about investment in financial assets treated
as a signal processing and optimization problem. An investment is the
current commitment of resources in the expectation of reaping future
benefits. In financial markets, such resources usually take the form of
money and thus the investment is the present commitment of money
in order to reap (hopefully more) money later [27]. The carriers of
money in financial markets are usually referred to as financial assets.
There are various classes of financial assets, namely, equity securities
(e.g., common stocks), exchange-traded funds (ETFs), market indexes,
commodities, exchanges rates, fixed-income securities, derivatives (e.g.,
options and futures), etc. A detailed description of each kind of asset
is well documented, e.g., [27, 103]. For different kinds of assets, the key
quantities of interest are not the same; for example, for equity securities
the quantities of interest are the compounded returns or log-returns;
for fixed-income securities they are the changes in yield to maturity;
and for options they are changes in the rolling at-the-money forward
implied volatility [143].

Roughly speaking, there are three families of investment philoso-
phies: fundamental analysis, technical analysis, and quantitative analy-
sis. Fundamental analysis uses financial and economical measures, such
as earnings, dividend yields, expectations of future interest rates, and
management, to determine the value of each share of the company’s
stocks and then recommends purchasing the stocks if the estimated
value exceeds the current stock price [88, 89]. Warren Buffett of Berk-
shire Hathaway is probably the most famous practitioner of fundamen-
tal analysis [91]. Technical analysis, also known as “charting,” is essen-
tially the search for patterns in one dimensional charts of the prices of a
stock. In a way, it pretends to be a scientific analysis of patterns (similar
to machine learning) but generally implemented in an unscientific and
anecdotal way with a low predictive power, as detailed in [132]. Quanti-
tative analysis applies quantitative (namely scientific or mathematical)
tools to discover the predictive patterns from financial data [128]. To
put this in perspective with the previous approach, technical analysis
is to quantitative analysis what astrology is to astronomy. The pioneer
of the quantitative investment approach is Edward O. Thorp, who used

Full text available at: http://dx.doi.org/10.1561/2000000072



4 Introduction

his knowledge of probability and statistics in the stock markets and has
made a significant fortune since the late 1960s [193]. Quantitative anal-
ysis has become more and more widely used since advanced computer
science technology has enabled practitioners to apply complex quan-
titative techniques to reap many more rewards more efficiently and
more frequently in practice [4]. In fact, one could even go further to
say that algorithmic trading has been one of the main driving forces in
the technological advancement of computers. Some institutional hedge
fund firms that rely on quantitative analysis include Renaissance Tech-
nologies, AQR Capital, Winton Capital Management, and D. E. Shaw
& Co., to name a few.

In this monograph, we will focus on the quantitative analysis of eq-
uity securities since they are the simplest and easiest accessible assets.
As we will discover, many quantitative techniques employed in signal
processing methods may be applicable in quantitative investment. Nev-
ertheless, the discussion in this monograph can be easily extended to
some other tradeable assets such as commodities, ETFs, and futures.

Thus, to explore the multiple connections between quantitative in-
vestment in financial engineering and areas in signal processing and
communications, we will show how to capitalize on existing mathemat-
ical tools and methodologies that have been developed and are widely
applied in the context of signal processing applications to solve prob-
lems in the field of portfolio optimization and investment management
in quantitative finance. In particular, we will explore financial engineer-
ing in several respects: i) we will provide the fundamentals of market
data modeling and asset return predictability, as well as outline state-
of-the-art methodologies for the estimation and forecasting of portfolio
design parameters in realistic, non-frictionless financial markets; ii) we
will present the problem of optimal portfolio construction, elaborate
on advanced optimization issues, and make the connections between
portfolio optimization and filter/beamforming design in signal process-
ing; iii) we will reveal the theoretical mechanisms underlying the design
and evaluation of statistical arbitrage trading strategies from a signal
processing perspective based on multivariate data analysis and time
series modeling; and iv) we will discuss the optimal order execution

Full text available at: http://dx.doi.org/10.1561/2000000072



1.1. A Signal Processing Perspective on Financial Engineering 5

and compare it with network scheduling in sensor networks and power
allocation in communication systems.

We hope this monograph can provide more straightforward and sys-
tematic access to financial engineering for researchers in signal process-
ing and communication societies1 so that they can understand prob-
lems in financial engineering more easily and may even apply signal
processing techniques to handle financial problems.

In the following content of this introduction, we first introduce fi-
nancial engineering from a signal processing perspective and then make
connections between problems arising in financial engineering and those
arising in different areas of signal processing and communication sys-
tems. At the end, the outline of the monograph is detailed.

1.1 A Signal Processing Perspective on Financial Engineer-
ing

Figure 1.1 summarizes the procedure of quantitative investment.
Roughly speaking and oversimplifying, there are three main steps
(shown in Figure 1.1):

• financial modeling: modeling a very noisy financial time series to
decompose it into trend and noise components;

• portfolio design: designing quantitative investment strategies
based on the estimated financial models to optimize some pre-
ferred criterion; and

• order execution: properly executing the orders to establish or un-
wind positions of the designed portfolio in an optimal way.

In the following, we will further elaborate the above three steps from
a signal processing perspective.

1There have been some initiatives in Signal Processing journals on the financial
engineering topic, namely, the 2011 IEEE Signal Processing Magazine - Special Issue
on Signal Processing for Financial Applications, the 2012 IEEE Journal of Selected
Topics in Sginal Processing - Special Issue on Signal Processing Methods in Finance
and Electronic Trading, and the 2016 IEEE Journal of Selected Topics in Signal
Processing - Special Issue on Financial Signal Processing and Machine Learning for
Electronic Trading.
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6 Introduction

Financial Modeling

Portfolio Optimization

(Risk-Return Trade-Off)

Order Execution

Statistical Arbitrage

(Mean-Reversion)

Investment Strategies

Figure 1.1: Block diagram of quantitative investment in financial engineering.

1.1.1 Financial Modeling

For equity securities, the log-prices (i.e., the logarithm of the prices)
and the compounded returns or log-returns (i.e., the differences of the
log-prices) are the quantities of interest. From a signal processing per-
spective, a log-price sequence can be decomposed into two parts: trend
and noise components, which are also referred to as market and idiosyn-
cratic components, respectively. The purpose of financial modeling or
signal modeling is to decompose the trend components from the noisy
financial series. Then based on the constructed financial models, one
can properly design some quantitative investment strategies for future
benefits [196, 129, 143].

For instance, a simple and popular financial model of the log-price
series is the following random walk with drift:

yt = µ+ yt−1 + wt, (1.1)

where yt is the log-price at discrete-time t, {wt} is a zero-mean white
noise series, and the constant term µ represents the time trend of the
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1.1. A Signal Processing Perspective on Financial Engineering 7
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Figure 1.2: The decomposition of the log-price sequence of the S&P 500 Index into
time trend component, and the component without time trend (i.e., the accumulative
noise).

log-price yt since E [yt − yt−1] = µ, which is usually referred to as drift.
Based on model (1.1), we can see the trend signal and noise com-

ponents in the log-prices more clearly by rewriting yt as follows:

yt = µt+ y0 +
t∑
i=1

wi, (1.2)

where the term µt denotes the trend (e.g., uptrend if µ > 0, downtrend
if µ < 0, or no trend if µ = 0), and the term

∑t
i=1wi denotes the

accumulative noise as time evolves.
Figure 1.2 shows the weekly log-prices of the S&P 500 index from

04-Jan-2010 to 04-Feb-2015 (the log-prices are shifted down so that
the initial log-price is zero, i.e., y0 = 0), where the estimated drift is
µ = 0.0022. Obviously, we observe two patterns: first, there exists a
significant uptrend since 2010 in the US market (see the dashed red
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8 Introduction

line µt); and second, the accumulative noise in the log-prices is not
steady and looks like a random walk (see the solid gray line for the
accumulative noise

∑t
i=1wi = yt − µt).

1.1.2 Quantitative Investment

Once the specific financial model is calibrated from the financial time
series, the next question is how to utilize such a calibrated financial
model to invest. As mentioned before, one widely employed approach
is to apply quantitative techniques to design the investment strategies,
i.e., the quantitative investment [65, 128, 64, 143].

Figure 1.2 shows that there are two main components in a finan-
cial series: trend and noise. Correspondingly, there are two main types
of quantitative investment strategies based on the two components: a
trend-based approach, termed risk-return trade-off investment; and a
noise-based approach, termed mean-reversion investment.

The trend-based risk-return trade-off investment tends to maximize
the expected portfolio return while keeping the risk low; however, this
is easier said than done because of the sensitivity to the imperfect
estimation of the drift component and the covariance matrix of the
noise component of multiple assets. In practice, one needs to consider
the parameter estimation errors in the problem formulation to design
the portfolio in a robust way. Traditionally, the variance of the portfolio
return is taken as a measure of risk, and the method is thus referred
to as “mean-variance portfolio optimization” in the financial literature
[135, 137, 138]. From the signal processing perspective, interestingly,
the design of a mean-variance portfolio is mathematically identical to
the design of a filter in signal processing or the design of beamforming
in wireless multi-antenna communication systems [123, 149, 213].

The noise-based mean-reversion investment aims at seeking prof-
itability based on the noise component. For clarity of presentation, let
us use a simple example of only two stocks to illustrate the rough idea.
Suppose the log-price sequences of the two stocks are cointegrated (i.e.,
they share the same stochastic drift), at some point in time if one stock
moves up while the other moves down, then people can short-sell the
first overperforming stock and long/buy the second underperforming
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1.2. Connections between Fin. Eng. and Signal Process. 9

stock2, betting that the deviation between the two stocks will eventu-
ally diminish. This idea can be generalized from only two stocks to a
larger number of stocks to create more profitable opportunities. This
type of quantitative investment is often referred to as “pairs trading”,
or more generally, “statistical arbitrage” in the literature [160, 203].

1.1.3 Order Execution

Ideally, after one has made a prediction and designed a portfolio, the
execution should be a seamless part of the process. However, in practice,
the process of executing the orders affects the original predictions in
the wrong way, i.e., the achieved prices of the executed orders will
be worse than what they should have been. This detrimental effect
is called market impact. Since it has been shown that smaller orders
have a much smaller market impact, a natural idea to execute a large
order is to partition it into many small pieces and then execute them
sequentially [8, 18, 78, 146].

Interestingly, the order execution problem is close to many other
scheduling and optimization problems in signal processing and com-
munication systems. From a dynamic control point of view, the order
execution problem is quite similar to sensor scheduling in dynamic wire-
less sensor networks [180, 181, 208]. From an optimization point of view,
distributing a large order into many smaller sized orders over a certain
time window [8, 79] corresponds to allocating total power over differ-
ent communication channels in broadcasting networks [198] or wireless
sensor networks [214].

1.2 Connections between Financial Engineering and Areas in
Signal Processing and Communication Systems

We have already briefly introduced the main components of financial
engineering from a signal processing perspective. In the following we
make several specific connections between financial engineering and
areas in signal processing and communication systems.

2In financial engineering, to “long” means simply to buy financial instruments,
to “short-sell” (or simply, to “short”) means to sell financial instruments that are
not currently owned.
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10 Introduction

Modeling. One of the most popular models used in financial engineer-
ing is the autoregressive moving average (ARMA) model. It models the
current observation (e.g., today’s return) as the weighted summation
of a linear combination of previous observations (e.g., several previous
days’ returns) and a moving average of the current and several previ-
ous noise components [196]. Actually, this model is also widely used
in signal processing and it is referred to as a rational model because
its z-transform is a rational function, or as a pole-zero model because
the roots of the numerator polynomial of the z-transform are known as
zeros and the roots of the denominator polynomial of the z-transform
are known as poles [133].

Robust Covariance Matrix Estimation. After a specific model has
been selected, the next step is to estimate or calibrate its parameters
from the empirical data. In general, a critical parameter to be esti-
mated is the covariance matrix of the returns of multiple stocks. Usually
the empirical data contains noise and some robust estimation methods
are needed in practice. One popular idea in financial engineering is
to shrink the sample covariance matrix to the identity matrix as the
robust covariance matrix estimator [120]. Interestingly, this is mathe-
matically the same as the diagonal loading matrix (i.e., the addition of a
scaled identity matrix to the sample interference-plus-noise covariance
matrix) derived more than thirty years ago for robust adaptive beam-
forming in signal processing and communication systems [1, 38, 45]. For
large-dimensional data, the asymptotic performance of the covariance
matrix estimators is important. The mathematical tool for the asymp-
totic analysis is referred to as general asymptotics or large-dimensional
general asymptotics in financial engineering [121, 122], or as random
matrix theory (RMT) in information theory and communications [199].

Portfolio Optimization vs Filter/Beamforming Design. One popular
portfolio optimization problem is the minimum variance problem:

minimize
w

wTΣw

subject to wT1 = 1,
(1.3)

Full text available at: http://dx.doi.org/10.1561/2000000072



1.2. Connections between Fin. Eng. and Signal Process. 11

where w ∈ RN is the portfolio vector variable representing the nor-
malized dollars invested in N stocks, wT1 = 1 is the capital budget
constraint, and Σ ∈ RN×N is the (estimated in advance) positive defi-
nite covariance matrix of the stock returns.

The above problem (1.3) is really mathematically identical to the
filter/beamforming design problem in signal processing [149]:

minimize
w

wHRw

subject to wHa = 1,
(1.4)

where w ∈ CN is the complex beamforming vector variable denoting
the weights of N array observations and a ∈ CN and R ∈ CN×N (es-
timated in advance) are the signal steering vector (also known as the
transmission channel) and the positive definite interference-plus-noise
covariance matrix, respectively. The similarity between problems (1.3)
and (1.4) shows some potential connections between portfolio optimiza-
tion and filter/beamforming design, and we will explore more related
formulations in detail later in the monograph.

Index Tracking vs Sparse Signal Recovery. Index tracing is a widely
used quantitative investment that aims at mimicking the market index
but with much fewer stocks. That is, suppose that a benchmark index
is composed of N stocks and let rb = [rb1, . . . , rbT ]T ∈ RT and X =
[r1, . . . , rT ]T ∈ RT×N denote the returns of the benchmark index and
the N stocks in the past T days, respectively, index tracking intends
to find a sparse portfolio w to minimize the tracking error between the
tracking portfolio and benchmark index [106]:

minimize
w

1
T
‖Xw− rb‖22 + λ‖w‖0

subject to 1Tw = 1, w ≥ 0,
(1.5)

where λ ≥ 0 is a predefined trade-off parameter.
Mathematically speaking, the above problem (1.5) is identical to

the sparse signal recovery problem [37] and compressive sensing [51] in
signal processing:

minimize
w

1
T
‖Φw− y‖22 + λ‖w‖0 (1.6)
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12 Introduction

Table 1.1: Connections between financial engineering and signal processing.

Financial Engineer-
ing Signal Processing

Modeling ARMA model [196] rational or pole-zero
model [133]

Covariance
Matrix
Estimation

shrinkage sample co-
variance matrix estima-
tor [120]

diagonal loading in
beamforming [1, 38, 45]

Asymptotic
Analysis

(large-dimensional)
general asymptotics
[121, 122]

random matrix theory
[199]

Optimization portfolio optimization
[135, 137, 179, 213]

filter/beamforming de-
sign [149, 213]

Sparsity index tracking [106] sparse signal recovery
[37, 51]

where λ ≥ 0 is a predefined trade-off parameter, Φ ∈ RT×N is a dic-
tionary matrix with T � N , y ∈ RT is a measurement vector, and
w ∈ RN is a sparse signal to be recovered. Again, the similarity be-
tween the two problems (1.5) and (1.6) shows that the quantitative
techniques dealing with sparsity may be useful for both index tracking
and sparse signal recovery.

Table 1.1 summarizes the above comparisons in a more compact
way and it is interesting to see so many similarities and connections
between financial engineering and signal processing.

1.3 Outline

The abbreviations and notations used throughout the monograph are
provided on pages 211 and 213, respectively.

Figure 1.3 shows the outline of the monograph and provides the
recommended reading order for the reader’s convenience. The detailed
organization is as follows.
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Part I mainly focuses on financial modeling (Chapters 2 and 3) and
order execution (Chapter 4).

Chapter 2 starts with some basic financial concepts and then in-
troduces several models, such as the i.i.d. model, factor model, ARMA
model, autoregressive conditional heteroskedasticity (ARCH) model,
generalized ARCH (GARCH) model, and vector error correction model
(VECM), which will be used in the later chapters. Thus, this chapter
provides a foundation for the following chapters in the monograph.

Chapter 3 deals with the model parameter estimation issues. In
particular, it focuses on the estimation of the mean vector and the co-
variance matrix of the returns of multiple stocks. Usually, these two
parameters are not easy to estimate in practice, especially under two
scenarios: when the number of samples is small, and when there exists
outliers. This chapter reviews the start-of-the-art robust estimation of
the mean vector and the covariance matrix from both financial engi-
neering and signal processing.

Chapter 4 formulates the order execution as optimization problems
and presents the efficient solving approaches.

Once financial modeling and order execution have been introduced
in Part I, we move to the design of quantitative investment strate-
gies. As shown in Figure 1.1 there are two main types of investment
strategies, namely risk-return trade-off investment strategies and mean-
reversion investment strategies, which are documented in Parts II and
III, respectively.

Part II entitled “Portfolio Optimization” focuses on the risk-return
trade-off investment. It contains Chapters 5-9 and is organized as fol-
lows.

Chapter 5 reviews the most basic Markowitz mean-variance portfo-
lio framework, that is, the objective is to optimize a trade-off between
the mean and the variance of the portfolio return. However, this frame-
work is not practical due to two reasons: first, the optimized strategy
is extremely sensitive to the estimated mean vector and covariance
matrix of the stock returns; and second, the variance is not an ap-
propriate risk measurement in financial engineering. To overcome the
second drawback, some more practical single side risk measurements,
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e.g., Value-at-Risk (VaR) and Conditional VaR (CVaR), are introduced
as the alternatives to the variance.

Chapter 6 presents the robust portfolio optimization to deal with
parameter estimation errors. The idea is to employ different uncer-
tainty sets to characterize different estimation errors and then derive
the corresponding worst-case robust formulations.

Chapter 7, different from previous Chapters 5 and 6 that consider
each portfolio individually, designs multiple portfolios corresponding to
different clients jointly via a game theoretic approach by modeling a
financial market as a game and each portfolio as a player in the game.
This approach is important in practice because multiple investment
decisions may affect each other.

Chapter 8 considers a passive quantitative investment method
named index tracking. It aims at designing a portfolio that mimics a
preferred benchmark index as closely as possible but with much fewer
instruments.

Chapter 9 considers a newly developed approach to the portfolio
design aiming at diversifying the risk, instead of diversifying the capital
as usually done, among the available assets, which is called a “risk
parity portfolio” in the literature.

Part III, containing Chapter 10, explores the mean-reversion in-
vestment that utilizes the noise component in the log-price sequences
of multiple assets.

Chapter 10 introduces the idea of constructing a pair of two stocks
via cointegration and optimizes the threshold for trading to achieve a
preferred criterion. Then it extends further from pairs trading based
on only two stocks to statistical arbitrage for multiple stocks.

After covering the main content of the three parts, Chapter 11
concludes the monograph.
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Chapter 1:
“Introduction”

Chapter 2:
“Basic Models”

Chapter 3:
“Mean/Cov 
Estimaton”

Chapter 4:
“Order 

Execution”

Chapter 5:
“MV Portfolio”

Chapter 9:
“Risk Parity 
Portfolio”

Chapter 7:
“Multiple 
Portfolio”

Chapter 8:
“Index 

Tracking”

Chapter 10:
“Statistical 
Arbitrage”

Chapter 11:
“Conclusion”

Part I:
Financial 
Modeling

Part II:
Portfolio

Optimization

Recommended reading order

Part III:
Statistical
Arbitrage

Chapter 6:
“Robust Portfolio 

Optimization”

Figure 1.3: Outline of the monograph.
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